Advertisement

Exploring Halotolerant Rhizomicrobes as a Pool of Potent Genes for Engineering Salt Stress Tolerance in Crops

  • Neveen B. Talaat
Chapter

Abstract

Soil salinization is a constant threat to crop productivity and ecology worldwide. The conventional approach, breeding salt-tolerant plant cultivars, has often failed to efficiently alleviate this devastating environmental stress factor. In contrast, the use of a diverse array of microorganisms harbored by plants has attracted increasing attention because of the remarkable beneficial effects of them on plants. Among these microorganisms, halophilic and halotolerant rhizomicrobes is one of the most important extremophilic microorganisms. They can be found in saline or hypersaline ecosystems and have developed different adaptations to survive in salty environments. Their proteins and encoding genes are magnificently engineered to function in a milieu containing 2–5 M salt and represent a valuable repository and resource for reconstruction and visualizing processes of habitat selection and adaptive evolution. Indeed, the natural occurrence of these microorganisms in saline soils opens up a possible important role of them in increasing the salt tolerance in crops. They are capable of eliciting physical, chemical, and molecular changes in plants which enhanced their tolerance and promoted their growth, and thus they can refine agricultural practices and production under saline conditions. Likewise, their ability to serve as bioinoculants could be a more ready utilizable and sustainable solution to ameliorate the deleterious salt effects on plants. However, the ecology of their interactions with plants is still under investigation and not fully understood. This chapter aims to introduce the halotolerant rhizomicrobes and shed light on their special mechanisms to adapt to salinity conditions. A special section would be dedicated for their potential to be exploited in engineering salt tolerance in crops.

Keywords

Halotolerant rhizomicrobes Plant halotolerant-microbe interaction Plant salt tolerance Salt stress 

Abbreviations

ACC

1-Aminocyclopropane-1-carboxylic acid

AMF

Arbuscular mycorrhizal fungi

APX

Ascorbate peroxidase

CAT

Catalase

DHAR

Dehydroascorbate reductase

EPS

Exopolysaccharides

GPX

Guaiacol peroxidase

GR

Glutathione reductase

IAA

Indole acetic acid

LCO

Lipo-chitooligosaccharide

MDA

Malondialdehyde

MDHAR

Monodehydroascorbate reductase

mtlD

Mannitol 1-phosphate dehydrogenase

PGDH

3-Phosphoglycerate dehydrogenase

PGPR

Plant growth-promoting rhizobacteria

QACs

Quaternary ammonium compounds

ROS

Reactive oxygen species

SHMT

Serine hydroxymethyltransferase

SOD

Superoxide dismutase

SOS

Salt overly sensitive

VOCs

Volatile organic compounds

VSP2

Vegetative storage protein 2

References

  1. Ahmad M, Zahir ZA, Nazli F, Akram F, Arshad M, Khalid M (2013) Effectiveness of halo-tolerant, auxin producing Pseudomonas and Rhizobium strains to improve osmotic stress tolerance in mung bean (Vigna radiata L.). Braz J Microbiol 44:1341–1348PubMedCrossRefPubMedCentralGoogle Scholar
  2. Alavi P, Starcher MR, Zachow C, Müller H, Berg G (2013) Root- microbe systems: the effect and mode of interaction of Stress Protecting Agent (SPA) Stenotrophomonas rhizophila DSM14405T. Front Plant Sci 4:141PubMedPubMedCentralCrossRefGoogle Scholar
  3. Anwar T, Chauhan RS (2012) Computational analysis of halotolerance gene from halophilic prokaryotes to infer their signature sequences. Int J Adv Biotechnol Bioinforma 1(1):69–78Google Scholar
  4. Arora S, Patel P, Vanza M, Pao GG (2014) Isolation and characterization of endophytic bacteria colonizing halophyte and other salt tolerant plant species from Coastal Gujarat. Afr J Microbiol Res 8(17):1779–1788CrossRefGoogle Scholar
  5. Berthomieu P, Conejero G, Nublat A, Brackenbury WJ, Lambert C, Savio C, Uozumi N, Oiki S, Yamada K, Cellier F, Gosti F, Simonneau T, Essah PA, Tester M, Very A-A, Sentenac H, Casse F (2003) Functional analysis of AtHKT1 in Arabidopsis shows that Na+ recirculation by the phloem is crucial for salt tolerance. EMBO J 22:2004–2014PubMedPubMedCentralCrossRefGoogle Scholar
  6. Bharti N, Yadav D, Barnawal D, Maji D, Kalra A (2013) Exiguobacterium oxidotolerans, a halotolerant plant growth promoting rhizobacteria, improves yield and content of secondary metabolites in Bacopa monnieri (L.) Pennell under primary and secondary salt stress. World J Microbiol Biotechnol 29:379–387PubMedCrossRefPubMedCentralGoogle Scholar
  7. Bharti N, Pandey SS, Barnawal D, Patel VK, Kalra A (2016) Plant growth promoting rhizobacteria Dietzia natronolimnaea modulates the expression of stress responsive genes providing protection of wheat from salinity stress. Sci Rep 6:34768PubMedPubMedCentralCrossRefGoogle Scholar
  8. Bhattacharjee S (2012) The language of reactive oxygen species signaling in plants. J Bot 2012:1–22CrossRefGoogle Scholar
  9. Bhise KK, Bhagwat PK, Dandge PB (2017) Plant growth-promoting characteristics of salt tolerant Enterobacter cloacae strain KBPD and its efficacy in amelioration of salt stress in Vigna radiata L. J Plant Growth Regul 39:215–226CrossRefGoogle Scholar
  10. Blumwald E (2000) Sodium transport and salt tolerance in plants. Curr Opin Cell Biol 12:431–434PubMedCrossRefPubMedCentralGoogle Scholar
  11. Bonfá MRL, Grossman MJ, Piubeli F, Mellado E, Durrant LR (2013) Phenol degradation by halophilic bacteria isolated from hypersaline environments. Biodegradation 24:699–709PubMedCrossRefPubMedCentralGoogle Scholar
  12. Chen TH, Murata N (2002) Enhancement of tolerance of abiotic stress by metabolic engineering of betaines and other compatible solutes. Curr Opin Plant Biol 5:250–257PubMedCrossRefPubMedCentralGoogle Scholar
  13. Chinnusamy V, Schumaker K, Zhu JK (2004) Molecular genetic perspectives on cross-talk and specificity in abiotic stress signaling in plants. J Exp Bot 55:225–236PubMedPubMedCentralCrossRefGoogle Scholar
  14. Ciccarelli FD, Doerks T, von Mering C, Creevey CJ, Snel B, Bork P (2006) Toward automatic reconstruction of a highly resolved tree of life. Science 311:1283–1287PubMedCrossRefPubMedCentralGoogle Scholar
  15. DasSarma S, DasSarma P (2015) Halophiles and their enzymes: negativity put to good use. Curr Opin Microbiol 25:120–126PubMedPubMedCentralCrossRefGoogle Scholar
  16. Detkova EN, Boltyanskaya YV (2007) Osmoadaptation of haloalkaliphilic bacteria: role of osmoregulators and their possible practical application. Microbiology 76:511–522CrossRefGoogle Scholar
  17. Edbeib MF, Wahab RA, Huyop F (2016) Halophiles: biology, adaptation, and their role in decontamination of hypersaline environments. World J Microbiol Biotechnol 32:135PubMedCrossRefPubMedCentralGoogle Scholar
  18. Egamberdieva D (2009) Alleviation of salt stress by plant growth regulators and IAA producing bacteria in wheat. Acta Physiol Plant 31:861–864CrossRefGoogle Scholar
  19. Essghaier B, Dhieb C, Rebib H, Ayari S, Boudabous ARA, Sadfi-Zouaoui N (2014) Antimicrobial behavior of intracellular proteins from two moderately halophilic bacteria: strain J31 of Terribacillus halophilus and strain M3-23 of Virgibacillus marismortui. J Plant Pathol Microbiol 5:214CrossRefGoogle Scholar
  20. Estrada B, Aroca R, Maathuis FJM, Barea JM, Ruiz-Lozano JM (2013) Arbuscular mycorrhizal fungi native from a Mediterranean saline area enhance maize tolerance to salinity through improved ion homeostasis. Plant Cell Environ 36:1771–1782PubMedCrossRefPubMedCentralGoogle Scholar
  21. Fulda S, Mikkat S, Huang F et al (2006) Proteome analysis of salt stress response in the cyanobacterium Synechocystis sp. strain PCC 6803. Proteomics 6:2733–2745PubMedCrossRefPubMedCentralGoogle Scholar
  22. Goel D, Singh AK, Yadav V, Babbar SB, Murata N, Bansal KC (2011) Transformation of tomato with a bacterial codA gene enhances tolerance to salt and water stresses. J Plant Physiol 168(11):1286–1294PubMedCrossRefPubMedCentralGoogle Scholar
  23. Gong X, Zhang J, Liu JH (2014) A stress responsive gene of Fortunella crassifolia FcSISP functions in salt stress resistance. Plant Physiol Biochem 83:10–19PubMedCrossRefPubMedCentralGoogle Scholar
  24. Guasch-Vidal B, Estévez J, Dardanelli MS, Soria-Díaz ME, Fernández de Córdoba F, Balog CIA, Manyani H, Gil-Serrano A, Thomas-Oates J, Hensbergen PJ, Deelder AM, Megías M, Van Brussel AAN (2013) High NaCl concentrations induce the nod genes of Rhizobium tropici CIAT899 in the absence of flavonoid inducers. Mol Plant-Microbe Interact 26:451–460PubMedCrossRefPubMedCentralGoogle Scholar
  25. Hagemann M (2011) Molecular biology of cyanobacterial salt acclimation. FEMS Microbiol Rev 35(1):87–123PubMedCrossRefPubMedCentralGoogle Scholar
  26. Jewell MC, Campbell BC, Godwin ID (2010) Transgenic plants for abiotic stress resistance. In: Kole C, Michler C, Abbott AG, Hall TC (eds) Transgenic crop plants. Springer, Berlin, pp 67–132CrossRefGoogle Scholar
  27. Joghee NN, Jayaraman G (2016) Biochemical changes induced by salt stress in halotolerant bacterial isolates are media dependent as well as species specific. Prep Biochem Biotechnol 46(1):8–14PubMedCrossRefPubMedCentralGoogle Scholar
  28. Kang S-M, Khan AL, Waqas M, You Y-H, Kim J-H, Kim J-G, Hamayun M, Lee I-J (2014) Plant growth-promoting rhizobacteria reduce adverse effects of salinity and osmotic stress by regulating phytohormones and antioxidants in Cucumis sativus. J Plant Interact 9:673–682CrossRefGoogle Scholar
  29. Karan R, Capes MD, DasSarma S (2012) Function and biotechnology of extremophilic enzymes in low water activity. Aquat Biosyst 8(1):4PubMedPubMedCentralCrossRefGoogle Scholar
  30. Kixmuller D, Greie JC (2012) An ATP-driven potassium pump promotes long-term survival of Halobacterium salinarum within salt crystals. Environ Microbiol Rep 4:234–241PubMedCrossRefPubMedCentralGoogle Scholar
  31. Kolman MA, Nishi CN, Perez-Cenci M et al (2015) Sucrose in cyanobacteria: from a salt-response molecule to play a key role in nitrogen fixation. Life (Basel) 5:102–126Google Scholar
  32. Kolp S, Pietsch M, Galinski EA, Gutschow M (2006) Compatible solutes as protectants for zymogens against proteolysis. Biochim Biophys Acta 1764:1234–1242PubMedCrossRefPubMedCentralGoogle Scholar
  33. Kumar M, Choi JY, Kumari N, Pareek A, Kim SR (2015) Molecular breeding in Brassica for salt tolerance: importance of microsatellite (SSR) markers for molecular breeding in Brassica. Front Plant Sci 6:688PubMedPubMedCentralGoogle Scholar
  34. Kurz M (2008) Compatible solute influence on nucleic acids: many questions but few answers. Saline Syst 4:6PubMedPubMedCentralCrossRefGoogle Scholar
  35. Lai SJ, Lai MC, Lee RJ, Chen YH, Yen HE (2014) Transgenic Arabidopsis expressing osmolyte glycine betaine synthesizing enzymes from halophilic methanogen promote tolerance to drought and salt stress. Plant Mol Biol 85:429PubMedCrossRefPubMedCentralGoogle Scholar
  36. Lanyi JK (1990) Halorhodopsin, a light-driven electrogenic chloride transport system. Physiol Rev 70:319–330PubMedCrossRefPubMedCentralGoogle Scholar
  37. Liu XD, Luo YT, Mohamed OA, Liu DY, Wei GH (2014) Global transcriptome analysis of Mesorhizobium alhagi CCNWXJ12-2 under salt stress. BMC Microbiol 14:1PubMedCrossRefPubMedCentralGoogle Scholar
  38. Liu X, Luo Y, Li Z, Wei G (2016) Functional analysis of PrkA – a putative serine protein kinase from Mesorhizobium alhagi CCNWXJ12-2 – in stress resistance. BMC Microbiol 16:227PubMedPubMedCentralCrossRefGoogle Scholar
  39. Metwali EMR, Soliman HIA, Fuller MP, Al-Zahrani HS, Howladar SM (2015) Molecular cloning and expression of a vacuolar Na+/H+ antiporter gene (AgNHX1) in fig (Ficus carica L.) under salt stress. Plant Cell Tissue Organ Cult 123(2):377–387CrossRefGoogle Scholar
  40. Miller G, Susuki N, Ciftci-Yilmaz S, Mittler R (2010) Reactive oxygen species homeostasis and signalling during drought and salinity stresses. Plant Cell Environ 33:453–467PubMedCrossRefPubMedCentralGoogle Scholar
  41. Mittler R, Vanderauwera S, Suzuki N, Miller G, Tognetti VB, Vandepoele K, Gollery M, Shulaev V, Van Breusegem F (2011) ROS signaling: the new wave? Trends Plant Sci 16:300–309PubMedCrossRefPubMedCentralGoogle Scholar
  42. Moreno ML, Sanchez-Porro C, Piubeli F, Frias L, Garcia MT, Mellado E (2011) Cloning, characterization and analysis of cat and ben genes from the phenol degrading halophilic bacterium Halomonas organivorans. PLoS One 6:e21049PubMedCentralCrossRefGoogle Scholar
  43. Munns R, Gilliham M (2015) Salinity tolerance of crops – what is the cost? New Phytol 208:668–673PubMedCrossRefPubMedCentralGoogle Scholar
  44. Nakbanpote W, Panitlurtumpai N, Sangdee A, Sakulpone N, Sirisom P, Pimthong A (2014) Salt-tolerant and plant growth-promoting bacteria isolated from Zn/Cd contaminated soil: identification and effect on rice under saline conditions. J Plant Interact 9:379–387CrossRefGoogle Scholar
  45. Naz I, Bano A, Ul-Hassan T (2009) Isolation of phytohormones producing plant growth promoting rhizobacteria from weeds growing in Khewra salt range, Pakistan and their implication in providing salt tolerance to Glycine max L. Afr J Biotechnol 8(21):5762–5766CrossRefGoogle Scholar
  46. Nia SH, Zarea MJ, Rejali F, Varma A (2012) Yield and yield components of wheat as affected by salinity and inoculation with Azospirillum strains from saline or non-saline soil. J Saudi Soc Agric Sci 11:113–121Google Scholar
  47. Noctor G, Foyer CH (2011) Ascorbate and glutathione: the heart of the redox hub. Plant Physiol 155:2–18PubMedPubMedCentralCrossRefGoogle Scholar
  48. Oren A (2008) Microbial life at high salt concentrations: phylogenetic and metabolic diversity. Saline Syst 4:1–13CrossRefGoogle Scholar
  49. Orhan F (2016) Alleviation of salt stress by halotolerant and halophilic plant growth-promoting bacteria in wheat (Triticum aestivum). Braz J Microbiol 47:621–627PubMedPubMedCentralCrossRefGoogle Scholar
  50. Patel KG, Mandaliya VB, Mishra GP, Dobaria JR, Thankppan R (2016) Transgenic peanut overexpressing mtlD gene confers enhanced salinity stress tolerance via mannitol accumulation and differential antioxidative responses. Acta Physiol Plant 38:181CrossRefGoogle Scholar
  51. Paul S, Bag SK, Das S, Harvill ET, Dutta C (2008) Molecular signature of hypersalin adaptation: insights from genome and proteome composition of halophilic prokaryotes. Genome Biol 9:R70PubMedPubMedCentralCrossRefGoogle Scholar
  52. Piernik A, Hrynkiewicz K, Wojciechowska A, Szymańska A, Lis MI, Muscolo A (2017) Effect of halotolerant endophytic bacteria isolated from Salicornia europaea L. on the growth of fodder beet (Beta vulgaris L.) under salt stress. Arch Agron Soil Sci 63:1–15CrossRefGoogle Scholar
  53. Piubeli F, Lourdes Moreno M, Kishi LT, Henrique-Silva F, Garcia MT, Mellado E (2015) Phylogenetic profiling and diversity of bacterial communities in the Death Valley, an extreme habitat in the Atacama Desert. Indian J Microbiol 55:392–399PubMedPubMedCentralCrossRefGoogle Scholar
  54. Plemenitas A, Lenassi M, Konte T, Kejzar A, Zajc J, Gostincar C, Gunde-Cimerman N (2014) Adaptation to high salt concentrations in halotolerant/halophilic fungi: a molecular perspective. Front Microbiol 5:199PubMedPubMedCentralGoogle Scholar
  55. Pourbabaee AA, Bahmani E, Alikhani HA, Emami S (2016) Promotion of wheat growth under salt stress by halotolerant bacteria containing ACC deaminase. J Agric Sci Technol 18:855–864Google Scholar
  56. Qiu Q, Guo Y, Dietrich M, Schumaker KS, Zhu JK (2002) Regulation of SOS1, a plasma membrane Na+/H+ exchanger in Arabidopsis thaliana, by SOS2 and SOS3. Proc Natl Acad Sci USA 99:8436–8441PubMedPubMedCentralCrossRefGoogle Scholar
  57. Quadri I, Hassani II, l’Haridon S, Chalopin M, Hacene H, Jebbar M (2016) Characterization and antimicrobial potential of extremely halophilic archaea isolated from hypersaline environments of the Algerian Sahara. Microbiol Res 186–187:119–131PubMedCrossRefPubMedCentralGoogle Scholar
  58. Qurashi AW, Sabri AN (2013) Osmolyte accumulation in moderately halophilic bacteria improves salt tolerance of chickpea. Pak J Bot 45:1011–1016Google Scholar
  59. Rahnama H, Vakilian H, Fahimi H, Ghareyazie B (2011) Enhanced salt stress tolerance in transgenic potato plants (Solanum tuberosum L.) expressing a bacterial mtlD gene. Acta Physiol Plant 33:1521–1532CrossRefGoogle Scholar
  60. Rajput L, Imran A, Mubeen F, Hafeez FY (2013) Salt-tolerant PGPR strain Planococcus rifietoensis promotes the growth and yield of wheat (Triticum aestivum) cultivated in saline soil. Pak J Bot 45:1955–1962Google Scholar
  61. Ramadoss D, Lakkineni VK, Bose P, Ali S, Annapurna K (2013) Mitigation of salt stress in wheat seedlings by halotolerant bacteria isolated from saline habitats. Springer Plus 2(6):1–7Google Scholar
  62. Redman RS, Kim YO, Woodward CJDA, Greer C, Espino L, Doty SL, Rodriguez RJ (2011) Increased fitness of rice plants to abiotic stress via habitat adapted symbiosis: a strategy for mitigating impacts of climate change. PLoS One 6(7):e14823PubMedPubMedCentralCrossRefGoogle Scholar
  63. Rohban R, Amoozegar MA, Ventosa A (2009) Screening and isolation of halophilic bacteria producing extracellular hydrolyses from Howz Soltan Lake, Iran. J Ind Microbiol Biotechnol 36:333–340PubMedCrossRefPubMedCentralGoogle Scholar
  64. Roy SJ, Negrão S, Tester M (2014) Salt resistant crop plant. Curr Opin Biotechnol 26:115–124PubMedCrossRefPubMedCentralGoogle Scholar
  65. Saghafi K, Ahmadi J, Asgharzadeh A, Bakhtiari S (2013) The effect of microbial inoculants on physiological responses of two wheat cultivars under salt stress. Int J Adv Biol Biomed Res 4:421–431CrossRefGoogle Scholar
  66. Sarathambal C, Ilamurugu K (2013) Saline tolerant plant growth promoting diazotrophs from rhizosphere of Bermuda grass and their effect on rice. Indian J Weed Sci 45:80–85Google Scholar
  67. Saum SH, Muller V (2008) Regulation of osmoadaptation in the moderate halophile Halobacillus halophilus: chloride, glutamate and switching osmolyte strategies. Saline Syst 4:2014CrossRefGoogle Scholar
  68. Selvakumar G, Kim K, Hu S, Sa T (2014) Effect of salinity on plants and the role of arbuscular mycorrhizal fungi and plant growth-promoting rhizobacteria in alleviation of salt stress. In: Ahmad P, Wani MR (eds) Physiological mechanisms and adaptation strategies in plants under changing environment. Springer, New York, pp 115–144CrossRefGoogle Scholar
  69. Shabani L, Sabzalian MR, Pour SM (2016) Arbuscular mycorrhiza affects nickel translocation and expression of ABC transporter and metallothionein genes in Festuca arundinacea. Mycorrhiza 26:67–76PubMedCrossRefPubMedCentralGoogle Scholar
  70. Sharma S, Kulkarni J, Jha B (2016) Halotolerant rhizobacteria promote growth and enhance salinity tolerance in peanut. Front Microbiol 9:1600Google Scholar
  71. Siddikee MA, Chauhan PS, Anandham R, Han GH, Sa T (2010) Isolation, characterization, and use for plant growth promotion under salt stress, of ACC deaminase-producing halotolerant bacteria derived from coastal soil. J Microbiol Biotechnol 20(11):1577–1584PubMedCrossRefPubMedCentralGoogle Scholar
  72. Siddikee MA, Glick BR, Chauhan PS, Yim WJ, Sa T (2011) Enhancement of growth and salt tolerance of red pepper seedlings (Capsicum annuum L.) by regulating stress ethylene synthesis with halotolerant bacteria containing 1-aminocyclopropane-1-carboxylic acid deaminase activity. Plant Physiol Biochem 49(4):427–434PubMedCrossRefPubMedCentralGoogle Scholar
  73. Singh RP, Jha PN (2016) A halotolerant bacterium Bacillus licheniformis HSW-16 augments induced systemic tolerance to salt stress in wheat plant (Triticum aestivum). Front Plant Sci 7:1890PubMedPubMedCentralGoogle Scholar
  74. Soares MA, Li H, Kowalski KP, Bergen M, Torres MS, White JF (2016) Evaluation of the functional roles of fungal endophytes of Phragmites australis from high saline and low saline habitats. Biol Invasions 18:2689–2702CrossRefGoogle Scholar
  75. Soontharapirakkul K, Promden W, Yamada N, Kageyama H, Incharoensakdi A, Iwamoto-Kihara A, Takabe T (2011) Halotolerant cyanobacterium Aphanothece halophytica contains an Na+-dependent F1F0-ATP synthase with a potential role in salt-stress tolerance. J Biol Chem 286(12):10169–10176PubMedPubMedCentralCrossRefGoogle Scholar
  76. Sorty AM, Meena KK, Choudhary K, Bitla UM, Minhas PS, Krishnani KK (2016) Effect of plant growth promoting bacteria associated with halophytic weed (Psoralea corylifolia L) on germination and seedling growth of wheat under saline conditions. Appl Biochem Biotechnol 180:872–882PubMedCrossRefPubMedCentralGoogle Scholar
  77. Subramanian S, Souleimanov A, Smith DL (2016) Proteomic studies on the effects of lipo-chitooligosaccharide and thuricin 17 under unstressed and salt stressed conditions in Arabidopsis thaliana. Front Plant Sci 7:1314PubMedPubMedCentralCrossRefGoogle Scholar
  78. Talaat NB (2014) Effective microorganisms enhance the scavenging capacity of the ascorbate-glutathione cycle in common bean (Phaseolus vulgaris L.) plants grown in salty soils. Plant Physiol Biochem 80:136–143PubMedCrossRefPubMedCentralGoogle Scholar
  79. Talaat NB (2015a) Effective microorganisms improve growth performance and modulate the ROS-scavenging system in common bean (Phaseolus vulgaris L.) plants exposed to salinity stress. J Plant Growth Regul 34:35–46CrossRefGoogle Scholar
  80. Talaat NB (2015b) Effective microorganisms modify protein and polyamine pools in common bean (Phaseolus vulgaris L.) plants grown under saline conditions. Sci Hortic 190:1–10CrossRefGoogle Scholar
  81. Talaat NB, Shawky BT (2011) Influence of arbuscular mycorrhizae on yield, nutrients, organic solutes, and antioxidant enzymes of two wheat cultivars under salt stress. J Plant Nutr Soil Sci 174:283–291CrossRefGoogle Scholar
  82. Talaat NB, Shawky BT (2013) Modulation of nutrient acquisition and polyamine pool in salt-stressed wheat (Triticum aestivum L.) plants inoculated with arbuscular mycorrhizal fungi. Acta Physiol Plant 35:2601–2610CrossRefGoogle Scholar
  83. Talaat NB, Shawky BT (2014a) Protective effects of arbuscular mycorrhizal fungi on wheat (Triticum aestivum L.) plants exposed to salinity. Environ Exp Bot 98:20–31CrossRefGoogle Scholar
  84. Talaat NB, Shawky BT (2014b) Modulation of the ROS-scavenging system in salt-stressed wheat plants inoculated with arbuscular mycorrhizal fungi. J Plant Nutr Soil Sci 177:199–207CrossRefGoogle Scholar
  85. Talaat NB, Shawky BT (2015) Plant-microbe interaction and salt stress tolerance in plants. In: Wani SH, Hossain MA (eds) Managing salt tolerance in plants: molecular and genomic perspectives. CRC Press/Taylor & Francis Group, Oxford, pp 267–289CrossRefGoogle Scholar
  86. Talaat NB, Ghoniem AE, Abdelhamid MT, Shawky BT (2015a) Effective microorganisms improve growth performance, alter nutrients acquisition and induce compatible solutes accumulation in common bean (Phaseolus vulgaris L.) plants subjected to salinity stress. Plant Growth Regul 75:281–295CrossRefGoogle Scholar
  87. Talaat NB, Shawky BT, Ibrahim AS (2015b) Alleviation of drought induced oxidative stress in maize (Zea mays L.) plants by dual application of 24-epibrassinolide and spermine. Environ Exp Bot 113:47–58CrossRefGoogle Scholar
  88. Tani C, Sasakawa H (2003) Salt tolerance of Casuarina equisetifolia and Frankia Ceql strain isolated from the root nodules of C. equisetifolia. Soil Sci Plant Nutr 49:215–222CrossRefGoogle Scholar
  89. Tank N, Saraf M (2010) Salinity-resistant plant growth promoting rhizobacteria ameliorates sodium chloride stress on tomato plants. J Plant Interact 5:51–58CrossRefGoogle Scholar
  90. Tasseva G, Richard L, Zachowski A (2004) Regulation of phosphatidylcholine biosynthesis under salt stress involves choline kinases in Arabidopsis thaliana. FEBS Lett 566:115–120PubMedCrossRefPubMedCentralGoogle Scholar
  91. Tiwari S, Singh P, Tiwari R, Meena KK, Yandigeri M, Singh DP, Arora DK (2011) Salt-tolerant rhizobacteria-mediated induced tolerance in wheat (Triticum aestivum) and chemical diversity in rhizosphere enhance plant growth. Biol Fertil Soils 47:907–916CrossRefGoogle Scholar
  92. Trivedi R (2017) Ecology of saline soil microorganisms. In: Arora S, Singh AK, Singh YP (eds) Bioremediation of salt affected soils: an Indian perspective. Springer, Cham, pp 157–172CrossRefGoogle Scholar
  93. Ullah S, Bano A (2015) Isolation of PGPRs from rhizospheric soil of halophytes and its impact on maize (Zea mays L.) under induced soil salinity. Can J Microbiol 11:1–7Google Scholar
  94. Vannier N, Mony C, Bittebière AK, Vandenkoornhuyse P (2015) Epigenetic mechanisms and microbiota as a toolbox for plant phenotypic adjustment to environment. Front Plant Sci 6:1159PubMedPubMedCentralCrossRefGoogle Scholar
  95. Waditee R, Bhuiyan NH, Rai V, Aoki K, Tanaka Y, Hibino T, Suzuki S, Takano J, Jagendorf AT, Takabe T (2005) Proc Natl Acad Sci USA 102:1318–1323PubMedPubMedCentralCrossRefGoogle Scholar
  96. Waditee R, Bhuiyan NH, Hirata E, Hibino T, Tanaka Y, Shikata M, Takabe T (2007) Metabolic engineering for betaine accumulation in microbes and plants. J Biol Chem 282(47):34185–34193PubMedCrossRefPubMedCentralGoogle Scholar
  97. Waditee R, Sittipol D, Tanaka Y, Takabe T (2012) Overexpression of serine hydroxymethyltransferase from halotolerant cyanobacterium in Escherichia coli results in increased accumulation of choline precursors and enhanced salinity tolerance. FEMS Microbiol Lett 333:46–53CrossRefGoogle Scholar
  98. Weyens N, van der Lelie D, Taghavi S, Newman L, Vangronsveld J (2009) Exploiting plant-microbe partnerships to improve biomass production and remediation. Trends Biotechnol 27:591–598PubMedCrossRefPubMedCentralGoogle Scholar
  99. Yang X, Liang Z, Wen X, Lu C (2008) Genetic engineering of the biosynthesis of glycine betaine leads to increased tolerance of photosynthesis to salt stress in transgenic tobacco plants. Plant Mol Biol 66:73–86PubMedCrossRefPubMedCentralGoogle Scholar
  100. Yokoi S, Quintero FJ, Cubero B, Ruiz MT, Bressan RA, Hasegawa PM, Pardo JM (2002) Differential expression and function of Arabidopsis thaliana NHX Na+/H+ antiporters in the salt stress response. Plant J 30:529–539PubMedCrossRefPubMedCentralGoogle Scholar
  101. Zhang G, Yi L (2013) Stability of halophilic proteins: from dipeptide attributes to discrimination classifier. Int J Biol Macromol 53:1–6PubMedCrossRefPubMedCentralGoogle Scholar
  102. Zhong NQ, Han LB, Wu XM, Wang LL, Wang F, Ma YH, Xia GX (2012) Ectopic expression of a bacterium NhaD-type Na+/H+ antiporter leads to increased tolerance to combined salt/alkali stresses. J Integr Plant Biol 54(6):412–421PubMedCrossRefPubMedCentralGoogle Scholar
  103. Zhou H, Wang H, Huang Y, Fang T (2016) Characterization of pyrene degradation by halophilic Thalassospira sp. strain TSL5-1 isolated from the coastal soil of Yellow Sea, China. Int Biodeterior Biodegrad 107:62–69CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Neveen B. Talaat
    • 1
  1. 1.Department of Plant Physiology, Faculty of AgricultureCairo UniversityGizaEgypt

Personalised recommendations