Advertisement

Enhancing Crop Productivity in Saline Environment Using Nanobiotechnology

  • Pradeep Kumar Shukla
  • Saumya Shukla
  • Preeti Rajoriya
  • Pragati Misra
Chapter

Abstract

Abiotic stresses are the main factor negatively affecting crop growth and productivity worldwide. Salinity is one of the most important environmental stresses, limiting crop production in arid and semiarid areas of the world, and in the saline areas which is three times larger than the land used for agriculture. It is estimated that more than 6% of the world’s total land and approximately 20% of irrigated land are affected by salinity, and therefore, is a serious concern in agriculture. Nanoparticles are nowadays gaining importance in improvement of plant systems as they help in reducing adverse effects of stresses, imposing a positive impact on the plant. Applications of nanomaterials can enhance seed germination, improve plant's resistance against abiotic and biotic stress, augment nutrient utilization efficiency, ultimately improving plant growth and developmental processes, with reduced environmental impact compared to traditional approaches. Various reports have evidenced the positive effect of nanoparticles in mitigating the harmful effects of salt stress. This chapter presents a brief glimpse on the effect of various nanoparticles to mitigate the salt-induced damage in the plants.

Keywords

Nanoparticles Salt stress Agriculture Gene expression 

Abbreviations

AgNPs

Silver nanoparticles

APX

Ascorbate peroxidase

CAT

Catalase

CeO2NPs

Cerium oxide nanoparticles

Chl

Chlorophyll

CuNPs

Copper (II) oxide nanoparticles

GPX

Glutathione peroxidase

NPs

Nanoparticles

NSPs

Nanoscale particles

OP

Osmotic potential

PCD

Programmed cell death

POD

Peroxidase

SOD

Superoxide dismutase

ZnONPs

Zinc oxide nanoparticles

Notes

Acknowledgments

The authors are heartily thankful to Hon’ble Vice Chancellor Prof. Rajendra B. Lal, Sam Higginbottom University of Agriculture, Technology and Sciences, Allahabad, for providing essential facilities and valuable suggestions during the course of the investigation.

References

  1. Alharby HF, Metwali EMR, Fuller MP, Aldhebiani AY (2016) Impact of application of zinc oxide nanoparticles on callus induction, plant regeneration, element content and antioxidant enzyme activity in tomato (Solanum lycopersicum mill.) under salt stress. Arch Biol Sci 68:723–735CrossRefGoogle Scholar
  2. Almutairi ZM (2015) Influence of silver nano-particles on the salt resistance of tomato (Solanum lycopersicum L.) during germination. Int J Agric Biol 18:449–457CrossRefGoogle Scholar
  3. Almutairi ZM (2016) Effect of nano-silicon application on the expression of salt tolerance genes in germinating tomato (Solanum lycopersicum L.) seedlings under salt stress. POJ 9:106–114Google Scholar
  4. Aravind P, Prasad MNV (2003) Zinc alleviates cadmium-induced oxidative stress in Ceratophyllum demersum L.: a free floating freshwater macrophyte. Plant Physiol Biochem 41:391–397CrossRefGoogle Scholar
  5. Ashraf M, Foolad M (2007) Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ Exp Bot 59:206–216CrossRefGoogle Scholar
  6. Ashraf M, McNeilly T (2004) Salinity tolerance in brassica oilseeds. Crit Rev Plant Sci 23:157–174CrossRefGoogle Scholar
  7. Askary M, Talebi SM, Amini F, Bangan ADB (2016) Effect of NaCl and iron oxide nanoparticles on Mentha piperita essential oil composition. EEB 14:27–32CrossRefGoogle Scholar
  8. Azimi R, Borzelabad MJ, Feizi H, Azimi A (2014) Interaction of SiO2 nanoparticles with seed prechilling on germination and early seedling growth of tall wheat grass (Agropyron elongatum L.). Pol J Chem Technol 16:25–29CrossRefGoogle Scholar
  9. Baalbaki RZ, Zurayk RA, Bleik SN, Talhuk A (1990) Germination and seedling development of drought susceptible wheat under moisture stress. Seed Sci Technol 17:291–302Google Scholar
  10. Ball P (2002) Natural strategies for the molecular engineer. Nanotechnology 13:15–28CrossRefGoogle Scholar
  11. Bayuelo Jimenez JS, Debouk DG, Lynch JP (2002) Salinity tolerance in phaseolus species during early vegetative growth. Crop Sci 42:2184–2192CrossRefGoogle Scholar
  12. Beltagi MS, Ismail MA, Mohamed FH (2006) Induced salt tolerance in common bean (Phaseolus vulgaris L.) by gamma irradiation. Pak J Biol Sci 6:1143–1148Google Scholar
  13. Bybordi A, Malakouti MJ (2007) Effects of zinc fertilizer on the yield and quality of two winter varieties of canola. Zinc crops; improving crop production and human health 24–26 May. IstanbulGoogle Scholar
  14. Cakmak I (2008) Enrichment of cereal grains with zinc: agronomic or genetic biofortification? Plant Soil 302:1–17CrossRefGoogle Scholar
  15. Chen Z, Pottosin II, Cuin TA, Fuglsang AT, Tester M, Jha D, Zepeda-Jazo I, Zhou M, Palmgren MG, Newman IA, Shabala S (2007) Root plasma mem-brane transporters controlling K+/Na+ homeostasis in salt-stressed barley. Plant Physiol 145:1714–1725PubMedPubMedCentralCrossRefGoogle Scholar
  16. Cuin TA, Shabala S (2007) Compatible solutes reduce ROS-induced potassium efflux in Arabidopsis roots. Plant Cell Environ 30:875–885PubMedCrossRefGoogle Scholar
  17. Currie HA, Perry C (2007) Silica in plants: biological, biochemical and chemical studies. Ann Bot 100:1383–1389PubMedPubMedCentralCrossRefGoogle Scholar
  18. Da Costa MVJ, Sharma PK (2016) Effect of copper oxide nanoparticles on growth, morphology, photosynthesis, and antioxidant response in Oryza sativa. Photosynthetica 54:110–119CrossRefGoogle Scholar
  19. Darvishzadeh F, Nejatzadeh F, Iranbakhsh AR (2015) Effects of silver nanoparticles on salinity tolerance in basil plant (Ocimum basilicum L.) during germination in vitro. NCMBJ 15:63–70Google Scholar
  20. Davies JC (2009) Nanotechnology oversight: an agenda for the new administration. project on emerging technologies. Woodrow Wilson International Center for Scholars, Washington, DCGoogle Scholar
  21. Demidchik V, Shabala SN, Coutts KB, Tester M, Davies JM (2003) Free oxygen radicals regulate plasma membrane Ca2+ and K+ permeable channels in plant root cells. J Cell Sci 116:81–88PubMedCrossRefGoogle Scholar
  22. Demidchik V, Shabala SN, Davies JM (2007) Spatial variation in H2O2 response of Arabidopsis thaliana root epidermal Ca2+ flux and plasma membrane Ca2+ channels. Plant J 49:377–386PubMedCrossRefGoogle Scholar
  23. Ekhtiyari R, Moraghebi F (2011) The study of the effects of nano silver technology on salinity tolerance of cumin seed (Cuminum cyminum L.). Plant Ecosyst 7:99–107Google Scholar
  24. Ekhtiyari R, Mohebbi H, Mansouri M (2011) The study of the effects of nano silver technology on salinity tolerance of (Foeniculum vulgare mill.). Plant Ecosyst 7:55–62Google Scholar
  25. Fang YL, Wang Z, Xin L, Zhao X, Hu Q (2008) Effect of foliar application of zinc, selenium, and iron fertilizers on nutrients concentration and yield of rice grain in China. J Agric Food Chem 56:2079–2084PubMedCrossRefGoogle Scholar
  26. Farooq M, Hussain M, Wakeel A, Siddique KHM (2015) Salt stress in maize: effects, resistance mechanisms and management. A review. Agron Sustain Dev 35:461–481CrossRefGoogle Scholar
  27. Fisher RA, Turner NC (1978) Plant productivity, in arid and semi arid zones. Ann Rev Plant Physiol 29:897–912Google Scholar
  28. Gama PBS, Inanaga S, Tanaka K, Nakazawa R (2007) Physiological response of common bean (Phaseolus vulgaris L.) seedlings to salinity stress. Afr J Biotechnol 6:79–88Google Scholar
  29. Gunes A, Inal A, Bagci EG, Coban S, Sahin O (2007) Silicon increases boron tolerance and reduces oxidative damage of wheat grown in soil with excess boron. Biol Plant 51:571–574CrossRefGoogle Scholar
  30. Ha E, Ikhajiagba B, Bamidele JF, Ogic-odia E (2008) Salinity effects on young healthy seedling of kyllingia peruviana collected from escravos, Delta state. Glob J Environ Res 2:74–88Google Scholar
  31. Haghighi M, Afifipour Z, Mozafarian M (2012) The effect of N-Si on tomato seed germination under salinity levels. J Biol Environ Sci 6:87–90Google Scholar
  32. Hasegawa PM, Bressen RA, Zhu JK, Bohnert HJ (2000) Plant cellular and molecular responses to high salinity. Ann Rev Plant Physiol 51:463–499CrossRefGoogle Scholar
  33. Hatami M, Ghorbanpour M (2013) Effect of nanosilver on physiological performance of pelargonium plants exposed to dark storage. J Hortic Res 21:15–20CrossRefGoogle Scholar
  34. Houimli SIM, Denden M, Elhadj SB (2008) Induction of salt tolerance in pepper (B0 or Hbt 10mmtt1) by 24-epibrassinolide. Eurasia J Biol Sci 2:83–90Google Scholar
  35. Jafari M (1994) Salinity and halophytes, Bulletin No. 90. Research Institute of Forests and Rangelands, TehranGoogle Scholar
  36. Jamil M, Lee CC, Rehman SU, Lee DB, Ashraf M, Rha ES (2005) Salinity (NaCl) tolerance of brassica species at germination and early seedling growth. Electron J Environ Agric Food Chem 4:970–976Google Scholar
  37. Jamil M, Lee KB, Jung KY, Lee DB, Han MS, Rha ES (2007) Salt stress inhibits germination and early seedling growth in cabbage (Brassica oleracea L.). Pak J Biol Sci 10:910–914PubMedCrossRefPubMedCentralGoogle Scholar
  38. Jouyban Z (2012) The effects of salt stress on plant growth. Tech J Eng App Sci 2:7–10Google Scholar
  39. Kalteh M, Alipour ZT, Ashraf S, Aliabadi MM, Nosratabadi AF (2014) Effect of silica nanoparticles on basil (Ocimum basilicum) under salinity stress. J Chem Health Risk 4:49–55Google Scholar
  40. Kaveh R, Li YS, Ranjbar S, Tehrani R, Brueck CL, Van Aken B (2013) Changes in Arabidopsis thaliana gene expression in response to silver nanoparticles and silver ions. Environ Sci Technol 47:10637–10644PubMedCrossRefGoogle Scholar
  41. Kaya C, Higgs D (2002) Response of tomato (Lycopersicon esculentum L.) cultivars to foliar application of zinc when grown in sand culture at low zinc. Sci Hortic 93:53–64CrossRefGoogle Scholar
  42. Khan MA, Duke NC (2001) Halophytes- a resource for the future. Wetl Ecol Manag 6:455–456CrossRefGoogle Scholar
  43. Lamsal K, Kim SW, Jung JH, Kim YS, Kim KS, Lee YS (2011) Application of silver nanoparticles for the control of Colletotrichum species in vitro and pepper anthracnose disease in field. Mycobiology 39:194–199PubMedPubMedCentralCrossRefGoogle Scholar
  44. Latef AAHA, Alhmad MFA, Abdelfattah KE (2017) The possible roles of priming with ZnO nanoparticles in mitigation of salinity stress in lupine (Lupinus termis) plants. J Plant Growth Regul 36:60–70CrossRefGoogle Scholar
  45. Lee WM, An YJ, Yoon H, Kweon HS (2008) Toxicity and bioavailability of copper nanoparticles to the terrestrial plants mung bean (Phaseolus radiatus) and wheat (Triticum aestivum): plant agar test for water-insoluble nanoparticles. Environ Toxicol Chem 27:1915–1921PubMedCrossRefGoogle Scholar
  46. Liang Y, Zhang W, Qin C, Youliang L, Ruixing D (2006) Effect of exogenous silicon (Si) on H+-ATPase activity, phospholipids and fluidity of plasma membrane in leaves of salt-stressed barley ( Hordeum vulgare L.). Environ Exp Bot 57:212–219CrossRefGoogle Scholar
  47. Liang Y, Sun W, Zhu YG, Christie P (2007) Mechanisms of silicon- mediated alleviation of abiotic stresses in higher plants: a review. Environ Pollut 147:422–428PubMedCrossRefGoogle Scholar
  48. Lopez-Moreno ML, de la Rosa G, Hernandez-Viezcas JA, Castillo-Michel H, Botez CE, Peralta-Videa JR, Gardea-Torresdey JL (2010a) Evidence of the differential biotransformation and genotoxicity of ZnO and CeO2 nanoparticles on soybean (Glycine max) plants. Environ Sci Technol 44:7315–7320PubMedPubMedCentralCrossRefGoogle Scholar
  49. Lopez-Moreno ML, de la Rosa G, Hernandez-Viezcas JA, Peralta-Videa JR, Gardea-Torresdey JL (2010b) X-ray absorption spectroscopy (XAS) corroboration of the uptake and storage of CeO2 nanoparticles and assessment of their differential toxicity in four edible plant species. J Agric Food Chem 58:3689–3693PubMedPubMedCentralCrossRefGoogle Scholar
  50. Ma JF (2004) Role of silicon in enhancing the resistance of plants to biotic and abiotic stresses. Soil Sci Plant Nutr 50:11–18CrossRefGoogle Scholar
  51. Ma JF, Yamaji N (2004) Role of silicon in enhancing the resistance of plants to biotic and abiotic stresses. Soil Sci Plant Nutr 50:11–18CrossRefGoogle Scholar
  52. Ma JF, Yamaji N (2006) Silicon uptake and accumulation in higher plants. Trends Plant Sci 11:392–397PubMedCrossRefGoogle Scholar
  53. Ma X, Geiser-Lee J, Deng Y, Kolmakov A (2010) Interactions between engineered nanoparticles (ENPs) and plants: phytotoxicity, uptake and accumulation. Sci Total Environ 408:30533061CrossRefGoogle Scholar
  54. Ma X, Wang Q, Rossi L, Zhang W (2015) Cerium oxide nanoparticles and bulk cerium oxide leading to different physiological and biochemical responses in Brassica rapa. Environ Sci Technol 5:6793–6802Google Scholar
  55. Ma X, Wang Q, Rossi L, Ebbs SD, White JC (2016) Multigenerational exposure to cerium oxide nanoparticles: physiological and biochemical analysis reveals transmissible changes in rapid cycling Brassica rapa. NanoImpact 1:46–54CrossRefGoogle Scholar
  56. Manceau A, Nagy KL, Marcus MA et al (2008) Formation of metallic copper nanoparticles at the soil-root interface. Environ Sci Technol 42:1766–1772PubMedCrossRefGoogle Scholar
  57. Marschner H (1995) Mineral nutrition of higher plants. Academic Press, Hartcourt Brace and Company, New YorkGoogle Scholar
  58. Martinez-Ballesta MC, Zapata L, Chalbi N, Carvajal M (2016) Multiwalled carbon nanotubes enter broccoli cells enhancing growth and water uptake of plants exposed to salinity. J Nanobiotechnol 14:42CrossRefGoogle Scholar
  59. Massoud FI (1977) The use of satellite imagery in detecting and delineating salt affected soils. Pedologie teledetection, AISS-ISSS, RomaGoogle Scholar
  60. Mathur N, Singh J, Bohra S, Bohra A, Vyas A (2006) Biomass production, productivity and physiological changes in moth bean genotypes at different salinity levels. Am J Plant Physiol 1:210–213CrossRefGoogle Scholar
  61. Memon SA, Hou X, Wang LJ (2010) Morphological analysis of salt stress response of pak Choi. EJEAFChe 9:248–254Google Scholar
  62. Mohamed AKSH, Qayyum MF, Abdel-Hadi AM, Rehman RA, Ali S, Rizwan M (2017) Interactive effect of salinity and silver nanoparticles on photosynthetic and biochemical parameters of wheat. Arch Agron Soil Sci 63:1736–1747CrossRefGoogle Scholar
  63. Mozafari AA, Asl AG, Ghaderi N (2017) Grape response to salinity stress and role of iron nanoparticle and potassium silicate to mitigate salt induced damage under in vitro conditions. Physiol Mol Biol Plants 24:25–35PubMedCrossRefGoogle Scholar
  64. Munns R (1993) Physiological processes limiting plant growth in saline soil: some dogmas and hypotheses. Plant Cell Environ 16:15–24CrossRefGoogle Scholar
  65. Munns R (2002) Comparative physiology of salt and water stress. Plant Cell Environ 25:239–250CrossRefPubMedGoogle Scholar
  66. Munns R, Tester M (2008) Mechanisms of salinity tolerance. Ann Rev Plant Biol 59:651–681CrossRefGoogle Scholar
  67. Munns R, James RA, Xu B, Athman A, Conn SJ, Jordans C, Byrt CS, Hare RA, Tyerman SD, Tester M, Plett D, Gilliham M (2012) Wheat grain yield on saline soils is improved by an ancestral Naþ transporter gene. Nat Biotechnol 30:360–364CrossRefPubMedGoogle Scholar
  68. Musante C, White JC (2012) Toxicity of silver and copper to Cucurbita pepo: differential effects of nano and bulk-size particles. Environ Toxicol 27:510–517PubMedCrossRefGoogle Scholar
  69. Mustard J, Renault S (2006) Response of red-osier dogwood (Cornus sericea) seedling to NaCl during the onset of bud break. Can J Bot 84:844–851CrossRefGoogle Scholar
  70. Nair R, Varghese SH, Nair BG, Maekawa T, Yoshida Y, Kumar DS (2010) Nanoparticulate material delivery to plants. Plant Sci 179:154–163CrossRefGoogle Scholar
  71. Netondo GW, Onyango JC, Beck E (2004) Sorghum and salinity. II. Gas exchange and chlorophyll fluorescence of sorghum under salt stress. Crop Sci 44:806–811CrossRefGoogle Scholar
  72. Neumann P (1997) Salinity resistance and plant growth revisited. Plant Cell Environ 20:1193–1198CrossRefGoogle Scholar
  73. Ni BR, Bradford KJ (1992) Quantitative models characterizing seed germination responses to abscisic acid and osmoticum. Plant Physiol 98:1057–1068PubMedPubMedCentralCrossRefGoogle Scholar
  74. Niaz BH, Athar M, Salim M, Rozema J (2005) Growth and ionic relations of fodder beet and sea beet under saline. CEERS 2:113–120Google Scholar
  75. Pandey N, Pathak GC, Sharma CP (2006) Zinc is critically required for pollen function and fertilisation in lentil. J Trace Elem Med Biol 20:89–96PubMedCrossRefGoogle Scholar
  76. Pei ZF, Ming DF, Liu D, Wan GL, Geng XX, Gong HJ, Zhou WJ (2010) Silicon improves the tolerance to water-deficit stress induced by polyethylene glycol in wheat (Triticum aestivum L.) seedlings. J Plant Growth Regul 29:106–115CrossRefGoogle Scholar
  77. Qadir M, Sharma BR, Bruggeman A, Choukr-Allah R, Karajeh F (2007) Nonconventional water resources and opportunities for water augmentation to achieve food security in water scarce countries. Agric Water Manag 87:2–22CrossRefGoogle Scholar
  78. Qados AMSA (2011) Effect of salt stress on plant growth and metabolism of bean plant Vicia faba (L.). J Saudi Soc Agric Sci 10:7–15Google Scholar
  79. Qados AMSA (2015) Mechanism of nanosilicon-mediated alleviation of salinity stress in faba bean (Vicia faba L.) plants. AJEA 7:78–95CrossRefGoogle Scholar
  80. Rahimi R, Mohammakhani A, Roohi V, Armand N (2012) Effects of salt stress and silicon nutrition on cholorophyll content, yield and yield components in fennel (Foeniculum vulgar Mill.). Int J Agric Crop Sci 4:1591–1595Google Scholar
  81. Rajoriya P, Misra P, Shukla PK, Ramteke PW (2016) Light regulatory effect on the phytosynthesis of silver nanoparticles using aqueous extract of garlic (Allium sativum) and onion (Allium cepa) bulb. Curr Sci 111:1364–1368CrossRefGoogle Scholar
  82. Rajoriya P, Misra P, Singh VK, Shukla PK, Ramteke PW (2017) Green synthesis of silver nanoparticles. Biotech Today 7:7–20CrossRefGoogle Scholar
  83. Raul L, Andres O, Armado L, Bernardo M, Enrique T (2003) Response to salinity of three grain legumes for potential cultivation in arid areas (plant nutrition). Soil Sci Plant Nutr 49:329–336CrossRefGoogle Scholar
  84. Raven JA, Evans MC, Korb RE (1999) The role of trace metals in photosynthetic electron transport in O2 – evolving organisms. Photosynth Res 60:111–150CrossRefGoogle Scholar
  85. Rengasamy P (2010) Soil processes affecting crop production in salt-affected soils. Funct Plant Biol 37:613–620CrossRefGoogle Scholar
  86. Richmond KE, Sussman M (2003) Got silicon? The non-essential beneficial plant nutrient. Curr Opin Plant Biol 6:268–272PubMedCrossRefGoogle Scholar
  87. Roco MC (2003) Nanotechnology convergence with modern biology and medicine. Curr Opin Biotechnol 14:337–346PubMedCrossRefGoogle Scholar
  88. Roohizadeh G, Majd A, Arbabian S (2015) The effect of sodium silicate and silica nanoparticles on seed germination and growth in the Vicia faba L. STPR 2:85–89Google Scholar
  89. Rossi L, Zhang W, Lombardini L, Ma X (2016) The impact of cerium oxide nanoparticles on the salt stress responses of Brassica napus L. Environ Pollut 219:28–36PubMedCrossRefGoogle Scholar
  90. Rossi L, Zhang W, Ma X (2017) Cerium oxide nanoparticles alter the salt stress tolerance of Brassica napus L. by modifying the formation of root apoplastic barriers. Environ Pollut 229:132–138PubMedCrossRefGoogle Scholar
  91. Ruffini CM, Cremonini R (2009) Nanoparticles and higher plants. Caryologia 62:161–165CrossRefGoogle Scholar
  92. Rui L, Wei S, Mu-Xiang C, Cheng-Jun J, Min W, Bo-Ping Y (2009) Leaf anatomical changes of Bruguiera gymnorrhiza seedlings under salt stress. J Trop Subtrop Bot 17:169–175Google Scholar
  93. Rui M, Ma C, Hao Y, Guo J, Rui Y, Tang X, Zhao Q, Fan X, Zhang Z, Hou T, Zhu S (2016) Iron oxide nanoparticles as a potential iron fertilizer for peanut (Arachis hypogaea). Front Plant Sci 7:815PubMedPubMedCentralCrossRefGoogle Scholar
  94. Sabaghnia N, Janmohammadi M (2015) Effect of nano silicon particles application on salinity tolerance in early growth of some lentil genotypes. Ann UMCS Biol 69:39–55Google Scholar
  95. Saffan SE (2008) Effect of salinity and osmotic stresses on some economic plants. Res J Agric Biol Sci 4:159–166Google Scholar
  96. Sairam RK, Srivastava GC (2002) Changes in antioxidant activity in subcellular fraction of tolerant and susceptible wheat genotypes in response to long term salt stress. Plant Sci 162:897–904CrossRefGoogle Scholar
  97. Salama HMH (2012) Effects of silver nanoparticles in some crop plants, common bean (Phaseolus vulgaris L.) and corn (Zea mays L.). Int Res J Biotech 3:190–197Google Scholar
  98. Sanoubar R, Cellini A, Veroni AM, Spinelli F, Masia A, Vittori Antisari L, Orsini F, Gianquinto G (2016) Salinity thresholds and genotypic variability of cabbage (Brassica oleracea L.) grown under saline stress. J Sci Food Agric 96:319–330PubMedCrossRefGoogle Scholar
  99. Saqib M, Zorb C, Schubert S (2006) Salt resistant and salt-sensitive wheat genotypes show similar biochemical reaction at protein level in the first phase of salt stress. J Plant Nutr Soil Sci 169:542–548CrossRefGoogle Scholar
  100. Sedghi M, Hadi M, Toluie SG (2013) Effect of nano zinc oxide on the germination parameters of soybean seeds under drought stress. Ann WUT Ser Biol XVI:73–78Google Scholar
  101. Shabala S (2009) Salinity and programmed cell death: unravelling mechanisms for ion specific signalling. J Exp Bot 60:709–712CrossRefPubMedGoogle Scholar
  102. Shabala S, Cuin TA (2008) Potassium transport and plant salt tolerance. Physiol Plant 133:651–669PubMedCrossRefGoogle Scholar
  103. Shabala S, Demidchik V, Shabala L, Cuin TA, Smith SJ, Miller AJ, Davies JM, Newman IA (2006) Extracellular Ca2+ ameliorates NaCl-induced K+ loss from Arabidopsis root and leaf cells by controlling plasma membrane K+-permeable channels. Plant Physiol 141:1653–1665PubMedPubMedCentralCrossRefGoogle Scholar
  104. Shanon MC (1986) New insights in plant breeding efforts for improved salt tolerance. Hortic Technol 6:96–99Google Scholar
  105. Shi XH, Zhang CC, Wang H, Zhang FS (2005) Effect of Si on the distribution of Cd in rice seedling. Plant Soil 273:53–60CrossRefGoogle Scholar
  106. Shi G, Cai Q, Liu C, Wu L (2010) Silicon alleviates cadmium toxicity in peanut plants in relation to cadmium distribution and stimulation of antioxidative enzymes. J Plant Growth Regul 61:45–52CrossRefGoogle Scholar
  107. Siddiqui MH, Al-Whaibi MH, Faisal M, Al Sahli AA (2014) Nano silicon dioxide mitigates the adverse effects of salt stress on Cucurbita pepo L. Environ Toxicol Chem 33:2429–2437PubMedCrossRefGoogle Scholar
  108. Soliman AS, El-feky SA, Darwish E (2015) Alleviation of salt stress on Moringa peregrine using foliar application of nanofertilizers. JHF 7:36–47Google Scholar
  109. Solymosi K, Bertrand M (2012) Soil metals, chloroplasts, and secure crop production: a review. Agron Sustain Dev 32:245–272CrossRefGoogle Scholar
  110. Stampoulis D, Sinha SK, White JC (2009) Assay-Dependent Phytotoxicity of Nanoparticles to Plants. Environmental Science & Technology 43 (24):9473–9479CrossRefGoogle Scholar
  111. Taffouo VD, Kouamou JK, Ngalangue LMT, Ndjeudji BAN, Akoa A (2009) Effects of salinity stress on growth, ions partitioning and yield of some cowpea (Vigna unguiculata L., walp) cultivars. Int J Bot 5:135–143CrossRefGoogle Scholar
  112. Taffouo VD, Wamba OF, Yombi E, Nono GV, Akoe A (2010) Growth, yield, water status and ionic distribution response of three bambara groundnut (Vigna subterranean (L.) verdc.) landraces grown under saline conditions. Int J Bot 6:53–58CrossRefGoogle Scholar
  113. Tantawy AS, Salama YAM, El-Nemr MA, Abdel-Mawgoud AMR, Ghoname AA (2014) Comparison of chelated calcium with nano calcium on alleviation of salinity negative effects on tomato plants. Middle East J Agric Res 3:912–916Google Scholar
  114. Tantawy AS, Salama YAM, El-Nemr MA, Abdel-Mawgoud AMR (2015) Nano silicon application improves salinity tolerance of sweet pepper plants. Int J ChemTech Res 8:11–17Google Scholar
  115. Tilman D, Balzer C, Hill J, Befort BL (2011) Global food demand and the sustainable intensification of agriculture. Proc Natl Acad Sci U S A 108:20260–20264PubMedPubMedCentralCrossRefGoogle Scholar
  116. Torabian S, Zahedi M, Khoshgoftarmanesh A (2016) Effect of foliar spray of zinc oxide on some antioxidant enzymes activity of Sunflower under salt stress. J Agric Sci Technol 18:1013–1025Google Scholar
  117. Turan MA, Kalkat V, Taban S (2007) Salinity-induced stomatal resistance, proline, chlorophyll and Ion concentrations of bean. Int J Agric Res 2:483–488CrossRefGoogle Scholar
  118. Vaculik M, Landberg T, Greger M, Luxová M, Stoláriková M, Lux A (2012) Silicon modifies root anatomy, and uptake and subcellular distribution of cadmium in young maize plants. Ann Bot 110:433–443PubMedPubMedCentralCrossRefGoogle Scholar
  119. Vannini C, Domingo G, Onelli E, Prinsi B, Marsoni M, Espen L, Bracale M (2013) Morphological and proteomic responses of Eruca sativa exposed to silver nanoparticles or silver nitrate. PLoS One 8:e68752PubMedPubMedCentralCrossRefGoogle Scholar
  120. Wang W, Vinocur B, Altman A (2003) Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta 218:1–14PubMedPubMedCentralCrossRefGoogle Scholar
  121. Wang Q, Ma X, Zhang W, Pei H, Chen Y (2012) The impact of cerium oxide nanoparticles on tomato (Solanum lycopersicum L.) and its implications for food safety. Metallomics 4:1105e–1112eCrossRefGoogle Scholar
  122. Yao AR (1998) Molecular biology of salt tolerance in the context of whole plant physiology. J Exp Bot 49:915–929Google Scholar
  123. Yilmaz H, Kina A (2008) The influence of NaCl salinity on some vegetative and chemical changes of strawberries (Fragaria x ananassa L.). Afr J Biotechnol 7:3299–3305Google Scholar
  124. Younes NA, Nassef DMT (2015) Effect of silver nanoparticles on salt tolerancy of tomato transplants (Solanum lycopersicom L. Mill.). Assiut J Agric Sci 46:76–85Google Scholar
  125. Yruela I (2005) Copper in plants. Braz J Plant Physiol 17:145–156CrossRefGoogle Scholar
  126. Zhao GQ, Ma BL, Ren CZ (2007) Growth, gas exchange, chlorophyll fluorescence and ion content of naked oat in response to salinity. Crop Sci 47:123–131CrossRefGoogle Scholar
  127. Zhao L, Peralta-Videa JR, Rico CM, Hernandez-Viezcas JA, Sun Y, Niu G, Servin A, Nunez JE, Duarte-Gardea M, Gardea-Torresdey JL (2014) CeO(2) and ZnO nanoparticles change the nutritional qualities of cucumber (Cucumis sativus). J Agric Food Chem 62:2752–2759PubMedCrossRefPubMedCentralGoogle Scholar
  128. Zhu ZJ, Wei GQ, Li J, Qian QQ, Yu JQ (2004) Silicon alleviates salt stress and increases antioxidant enzymes activity in leaves of salt-stressed cucumber (Cucumis sativus L.). Plant Sci 167:527–533CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Pradeep Kumar Shukla
    • 1
  • Saumya Shukla
    • 1
  • Preeti Rajoriya
    • 2
  • Pragati Misra
    • 2
  1. 1.Department of Biological Sciences, Faculty of ScienceSam Higginbottom University of Agriculture, Technology and SciencesAllahabadIndia
  2. 2.Department of Molecular and Cellular Engineering, Jacob Institute of Biotechnology and BioengineeringSam Higginbottom University of Agriculture, Technology and SciencesAllahabadIndia

Personalised recommendations