Advertisement

Simulating Trade in Economic Networks with TrEcSim

  • Gabriel BarinaEmail author
  • Calin Sicoe
  • Mihai Udrescu
  • Mircea Vladutiu
Chapter
Part of the Lecture Notes in Social Networks book series (LNSN)

Abstract

Motivated by the large-scale applicability of complex networks, we propose a novel socioeconomic simulator inspired by empirical observations and state-of-the-art economic models. As such, our Trade and Economic Simulator (TrEcSim) is able to use any fundamental complex network topology as an underlying exchange network, and it also introduces a novel heuristic approach to drive the behavior of economic agents, according to theories pertaining to main schools of economic thought. Our simulation results indicate that TrEcSim is a valuable tool for simulating the dynamics of trade in economic networks. Indeed, our simulation results indicate a correlation between the topological properties of the economic exchange networks and the distribution of total payoff: for random and small-world the distribution is meritocratic, whereas for scale-free networks it is topocratic.

Keywords

TrEcSim Simulator Heuristic Economic agents Complex networks 

Notes

Acknowledgements

The authors would like to the thank Alexandru Stana for his contributions to the development of TrEcSim’s first version. We also want to express our gratitude to both Alexandru Topirceanu and Alexandru Iovanovici for their insights and constant support throughout the development phases of our simulator.

References

  1. 1.
    Almende, B.V.: vis.js - a dynamic, browser based visualization library. http://visjs.org/ (2016)
  2. 2.
    Almende, B.V., Thieurmel, B.: visnetwork: network visualization using ‘vis.js’ library. https://cran.r-project.org/web/packages/visNetwork/index.html (2016), r package version 0.2 1
  3. 3.
    Arthur, W.B.: Complexity and the Economy. Oxford University Press, New York (2015)Google Scholar
  4. 4.
    Avila, R., Broed, R., Pereira, A.: Ecolego-a toolbox for radioecological risk assessment. No. IAEA-CN–109 (VER. 3) (2003)Google Scholar
  5. 5.
    Bastian, M., Heymann, S., Jacomy, M.: Gephi: an open source software for exploring and manipulating networks. In: Proceedings of the 3rd International Conference on Weblogs and Social Media, pp. 361–362. AAAI, Menlo Park (2009)Google Scholar
  6. 6.
    Blume, L.E., Durlauf, S.N.E.: The Economy as an Evolving Complex System III: Current Perspectives and Future Directions. Oxford University Press, New York (2005)CrossRefGoogle Scholar
  7. 7.
    Borondo, J., Borondo, F., Rodriguez-Sickert, C., Hidalgo, C.A.: To each according to its degree: the meritocracy and topocracy of embedded markets. Sci. Rep. 4, 3784 (2014)CrossRefGoogle Scholar
  8. 8.
    Broed, R., Xu, S.: User’s Manual for Ecolego Toolbox and the Discretization Block. Swedish Radiation Protection Authority, no. SSI–2008-10. edn. (2008)Google Scholar
  9. 9.
    Chatterjee, A., Chakrabarti, B.K.E.: Econophysics of Markets and Business Networks. Springer, Berlin (2007)CrossRefGoogle Scholar
  10. 10.
    Dawid, H., Gemkow, S., Harting, P., van der Hoog, S., Neugart, M.: Agent-based macroeconomic modeling and policy analysis: the eurace@ unibi model. In: Chen, S.H., Kaboudan, M. (eds.) Handbook on Computational Economics and Finance. Oxford University Press, Oxford (2014)Google Scholar
  11. 11.
    Deissenberg, C., van der Hoog, S., Dawid, H.: EURACE: a massively parallel agent-based model of the european economy. Appl. Math. Comput. 204(2), 541–552 (2008)Google Scholar
  12. 12.
    Duval, J.S.: Version 3.0 of eminers-economic mineral resource simulator. US Gelogical Survey No. 2004–1344 (2012)Google Scholar
  13. 13.
    Easley, D., Kleinberg, J.: Networks Crowds, and Markets, vol. 8. Cambridge University Press, Cambridge (2010)CrossRefGoogle Scholar
  14. 14.
    Gartman, D.: Marx and the labor process: an interpretation. Insurg. Soc. 8(2–3), 97–108 (1978)Google Scholar
  15. 15.
    Heer, J., Boyd, D.: Vizster: visualizing online social networks. In: Proceedings of the 2005 IEEE Symposium on Information Visualization (INFOVIS), pp. 32–39. IEEE, New York (2005)Google Scholar
  16. 16.
    Jackson, M.O.: Social and Economic Networks. Princeton University Press, Princeton (2008)Google Scholar
  17. 17.
    Jacomy, M., Venturini, T., Heymann, S., Bastian, M.: Forceatlas2, a continuous graph layout algorithm for handy network visualization designed for the gephi software. PLoS One 9(6), e98679 (2014)CrossRefGoogle Scholar
  18. 18.
    Keen, S.: Finance and economic breakdown: modeling minsky’s ‘financial instability hypothesis’. J. Post Keynesian Econ. 17(4), 607–635 (1995)CrossRefGoogle Scholar
  19. 19.
    Marshall, A.: Principles of Economics: Unabridged Eighth Edition. Cosimo, New York (2009)Google Scholar
  20. 20.
    Marx, K.: Value, Price and Profit. International Publishers, New York (1865/1969)Google Scholar
  21. 21.
    Menger, K.: On the origin of money. Econ. J. 2(6), 239–255 (1892)CrossRefGoogle Scholar
  22. 22.
    Newman, M.E.: The structure and and function of complex networks. SIAM Rev. 45(2), 167–256 (2003)CrossRefGoogle Scholar
  23. 23.
    Topirceanu, A., Barina, G., Udrescu, M.: Musenet: collaboration in the music artists industry. In: Proceedings of the 1st European Network Intelligence Conference (ENIC). IEEE, New York (2014)Google Scholar
  24. 24.
    Xiang, L., Yu, Y.J., Guanrong, C.: On the topology of the world exchange arrangements web. Phys. A Stat. Mech. Appl. 343, 573–582 (2004)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Gabriel Barina
    • 1
    • 2
    Email author
  • Calin Sicoe
    • 1
  • Mihai Udrescu
    • 1
  • Mircea Vladutiu
    • 1
  1. 1.Department of Computers and Information Technology“Politehnica” University of TimişoaraTimişoaraRomania
  2. 2.Faculty of Automation and ComputersUniversity Politehnica of TimisoaraTimisoaraRomania

Personalised recommendations