Dynamic Decision Support in the Internet Marketing Management

  • Paweł ZiembaEmail author
  • Jarosław Jankowski
  • Jarosław Wątróbski
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10840)


The article deals with the problem of selecting an advertisement variant on the basis of dynamically-changing values of evaluation criteria. Therefore, a framework, used in an online environment, of a dynamic multi-criteria decision analysis (DMCDA) has been prepared. The framework was based on the PROMETHEE method which makes it possible to carry out a very detailed analysis of a decision process and obtained solutions. While applying the prepared framework, a number of ad variants were considered on the basis of the data collected during a subjective study and a field experiment. In the course of solving the decision problem, the advertiser’s and website operator’s perspectives as well as two aggregation strategies of dynamic data were considered. As a result, the following was obtained: partial rankings of variants, global rankings considering the advertiser’s and publisher’s points of view, GDSS rankings pointing to compromise solutions by merging the two points of view. The obtained solutions were verified by means of: examining correlation coefficients, a GAIA analysis and an analysis of ranking robustness to preference changes. The end result was that the most satisfying advertiser and publisher were determined.


Internet marketing management DMCDA PROMETHEE GAIA 


  1. 1.
    Du, H., Xu, Y.: Research on multi-objective optimization decision model of web advertising - takes recruitment advertisement as an example. Int. J. Adv. Comput. Technol. 4(10), 329–336 (2012)Google Scholar
  2. 2.
    Langheinrich, M., Nakamura, A., Abe, N., Kamba, T., Koseki, Y.: Unintrusive customization techniques for web advertising. Comput. Netw. 31(11–16), 1259–1272 (1999)CrossRefGoogle Scholar
  3. 3.
    Kazienko, P., Adamski, M.: AdROSA - adaptive personalization of web advertising. Inf. Sci. 177(11), 2269–2295 (2007)CrossRefGoogle Scholar
  4. 4.
    Chickering, D.M., Heckerman, D.: Targeted advertising with inventory management. In: Proceedings of 2nd ACM Conference on Electronic Commerce, pp. 145–149 (2000)Google Scholar
  5. 5.
    Nakamura, A., Abe, N.: Improvements to the linear programming based scheduling of web advertisements. Electron. Commer. Res. 5, 75–98 (2005)CrossRefGoogle Scholar
  6. 6.
    Zha, W., Wu, H.D.: The impact of online disruptive ads on users’ comprehension, evaluation of site credibility, and sentiment of intrusiveness. Am. Commun. J. 16(2), 15–28 (2014)Google Scholar
  7. 7.
    Goldstein, D.G., McAfee, R.P., Suri, S.: The cost of annoying ads. In: Proceedings of 22nd International Conference on World Wide Web, pp. 459–470 (2013)Google Scholar
  8. 8.
    Brajnik, G., Gabrielli, S.: A review of online advertising effects on the user experience. Int. J. Hum.-Comput. Interact. 26(10), 971–997 (2010)CrossRefGoogle Scholar
  9. 9.
    Kelly, L., Kerr, G., Drennan, J.: Avoidance of advertising in social networking sites. The teenage perspective. J. Interact. Advert. 10(2), 16–27 (2010)CrossRefGoogle Scholar
  10. 10.
    Jankowski, J., Ziemba, P., Wątróbski, J., Kazienko, P.: Towards the tradeoff between online marketing resources exploitation and the user experience with the use of eye tracking. In: Nguyen, N.T., Trawiński, B., Fujita, H., Hong, T.-P. (eds.) ACIIDS 2016. LNCS (LNAI), vol. 9621, pp. 330–343. Springer, Heidelberg (2016). Scholar
  11. 11.
    Jankowski, J., Wątróbski, J., Ziemba, P.: Modeling the impact of visual components on verbal communication in online advertising. In: Núñez, M., Nguyen, N.T., Camacho, D., Trawiński, B. (eds.) ICCCI 2015. LNCS (LNAI), vol. 9330, pp. 44–53. Springer, Cham (2015). Scholar
  12. 12.
    Jankowski, J., Wątróbski, J., Ziemba, P.: Dynamic MCDA approach to multilevel decision support in online environment. In: Nguyen, N.-T., Manolopoulos, Y., Iliadis, L., Trawiński, B. (eds.) ICCCI 2016. LNCS (LNAI), vol. 9875, pp. 553–564. Springer, Cham (2016). Scholar
  13. 13.
    Campanella, G., Ribeiro, R.A.: A framework for dynamic multiple-criteria decision making. Decis. Support Syst. 52(1), 52–60 (2011)CrossRefGoogle Scholar
  14. 14.
    Hashemkhani Zolfani, S., Maknoon, R., Zavadskas, E.K.: An introduction to Prospective Multiple Attribute Decision Making (PMADM). Technolog. Econ. Dev. Econ. 22(2), 309–326 (2016)CrossRefGoogle Scholar
  15. 15.
    Novak, T.P., Hoffman, D.L.: New metrics for new media: toward the development of web measurement standards. World Wide Web J. 2(1), 213–246 (1997)Google Scholar
  16. 16.
    Pavlou, P.A., Stewart, D.W.: Measuring the effects and effectiveness of interactive advertising: a research agenda. J. Interact. Advert. 1(1), 61–77 (2000)CrossRefGoogle Scholar
  17. 17.
    Hoffman, D.L., Novak, T.P.: When exposure-based advertising stops making sense (And what CDNOW did about it). Accessed 31 May 2017
  18. 18.
    Wu, G.: Applying the Rossiter-Percy grid to online advertising planning. The role of product/brand type in previsit intentions. J. Interact. Advert. 8(1), 15–22 (2007)CrossRefGoogle Scholar
  19. 19.
    Kim, C., Park, S., Kwon, K., Chang, W.: How to select search keywords for online advertising depending on consumer involvement: an empirical investigation. Expert Syst. Appl. 39(1), 594–610 (2012)CrossRefGoogle Scholar
  20. 20.
    Chakrabarti, D., Kumar, R., Radlinski, F., Upfal, E.: Mortal multi-armed bandits. In: Koller, D., Schuurmans, D., Bengio, Y. (eds.) Advances in Neural Information Processing Systems, vol. 21, pp. 273–280 (2008)Google Scholar
  21. 21.
    Chakrabarti, D., Agarwal, D., Josifovski, V.: Contextual advertising by combining relevance with click feedback. In: Proceeding of 17th International Conference on World Wide Web, pp. 417–426 (2008)Google Scholar
  22. 22.
    Fan, T.K., Chang, C.H.: Blogger-centric contextual advertising. Expert Syst. Appl. 38(3), 1777–1788 (2011)CrossRefGoogle Scholar
  23. 23.
    Amiri, A., Menon, S.: Efficient scheduling of internet banner advertisements. ACM Trans. Internet Technol. 3(4), 334–346 (2003)CrossRefGoogle Scholar
  24. 24.
    Gupta, N., Khurana, U., Lee, T., Nawathe, S.: Optimizing display advertisements based on historic user trails. In: Proceedings of ACM SIGIR, Workshop: Internet Advertising (2011)Google Scholar
  25. 25.
    Giuffrida, G., Reforgiato, D., Tribulato, G., Zarba, C.: A banner recommendation system based on web navigation history. In: Proceedings of IEEE Symposium on Computational Intelligence and Data Mining (CIDM), pp. 291–296 (2011)Google Scholar
  26. 26.
    Urban, G.L., Liberali, G., MacDonald, E., Bordley, R., Hauser, J.R.: Morphing banner advertising. Mark. Sci. 33(1), 27–46 (2014)CrossRefGoogle Scholar
  27. 27.
    Zorn, S., Olaru, D., Veheim, T., Zhao, S., Murphy, J.: Impact of animation and language on banner click-through rates. J. Electron. Commer. Res. 13(2), 173–183 (2012)Google Scholar
  28. 28.
    Yoo, C.Y., Kim, K.: Processing of animation in online banner advertising: the roles of cognitive and emotional responses. J. Interact. Mark. 19(4), 18–34 (2005)CrossRefGoogle Scholar
  29. 29.
    Lang, A.: The limited capacity model of mediated message processing. J. Commun. 50(1), 46–70 (2000)CrossRefGoogle Scholar
  30. 30.
    Turatto, M., Galfano, G.: Color, form and luminance capture attention in visual search. Vis. Res. 40(13), 1639–1643 (2000)CrossRefGoogle Scholar
  31. 31.
    Rosenkrans, G.: The creativeness and effectiveness of online interactive rich media advertising. J. Interact. Advert. 9(2), 18–31 (2009)CrossRefGoogle Scholar
  32. 32.
    Yoo, C.Y., Kim, K., Stout, P.A.: Assessing the effects of animation in online banner advertising. hierarchy of effects model. J. Interact. Advert. 4(2), 49–60 (2004)CrossRefGoogle Scholar
  33. 33.
    Ziemba, P., Jankowski, J., Wątróbski, J., Piwowarski, M.: Web projects evaluation using the method of significant website assessment criteria detection. In: Nguyen, N.T., Kowalczyk, R. (eds.) Transactions on Computational Collective Intelligence XXII. LNCS, vol. 9655, pp. 167–188. Springer, Heidelberg (2016). Scholar
  34. 34.
    Ziemba, P., Wątróbski, J., Jankowski, J., Wolski, W.: Construction and restructuring of the knowledge repository of website evaluation methods. In: Ziemba, E. (ed.) Information Technology for Management. LNBIP, vol. 243, pp. 29–52. Springer, Cham (2016). Scholar
  35. 35.
    Tsafarakis, S., Lakiotaki, K., Matsatsinis, N.: Applications of MCDA in marketing and e-Commerce. In: Zopounidis, C., Pardalos, P.M. (eds.) Handbook of Multicriteria Analysis, pp. 425–448. Springer, Heidelberg (2010). Scholar
  36. 36.
    Celik, M., Deha Er, I.: Fuzzy axiomatic design extension for managing model selection paradigm in decision science. Expert Syst. Appl. 36(3), 6477–6484 (2009)CrossRefGoogle Scholar
  37. 37.
    Wątróbski, J., Jankowski, J., Ziemba, P.: Multistage performance modelling in digital marketing management. Econ. Sociol. 9(2), 101–125 (2016)CrossRefGoogle Scholar
  38. 38.
    Wątróbski, J., Ziemba, P., Jankowski, J., Zioło, M.: Green energy for a green city - a multi-perspective model approach. Sustainability 8(8), 702 (2016)CrossRefGoogle Scholar
  39. 39.
    Brans, J.P., Mareschal, B.: PROMETHEE methods. In: Figueira, J., Greco, S., Ehrgott, M. (eds.) Multiple Criteria Decision Analysis: State of the Art Surveys. International Series in Operations Research & Management Science, vol. 78, pp. 163–195. Springer, Boston (2005). Scholar
  40. 40.
    Saltelli, A., Tarantola, S., Chan, K.: A role for sensitivity analysis in presenting the results from MCDA studies to decision makers. J. Multi-Criter. Decis. Anal. 8, 139–145 (1999)CrossRefGoogle Scholar
  41. 41.
    Mareschal, B., Brans, J.P.: Geometrical representations for MCDA. Eur. J. Oper. Res. 34, 69–77 (1988)MathSciNetCrossRefGoogle Scholar
  42. 42.
    Yu, P.L., Chen, Y.C.: Dynamic MCDM, habitual domains and competence set analysis for effective decision making in changeable spaces. In: Ehrgott, M., Figueira, J.R., Greco, S. (eds.) Trends in Multiple Criteria Decision Analysis. International Series in Operations Research & Management Science, vol. 142, pp. 1–35. Springer, New York (2010). Scholar
  43. 43.
    Zulueta, Y., Martell, V., Martínez, J., Martínez, L.: A dynamic multi-expert multi-criteria decision making model for risk analysis. In: Castro, F., Gelbukh, A., González, M. (eds.) MICAI 2013. LNCS (LNAI), vol. 8265, pp. 132–143. Springer, Heidelberg (2013). Scholar
  44. 44.
    Jassbi, J.J., Ribeiro, R.A., Varela, L.R.: Dynamic MCDM with future knowledge for supplier selection. J. Decis. Syst. 23(3), 232–248 (2014)CrossRefGoogle Scholar
  45. 45.
    Chen, Y., Li, K.W., He, S.: Dynamic multiple criteria decision analysis with application in emergency management assessment. In: IEEE International Conference on Systems Man and Cybernetics (SMC), pp. 3513–3517 (2010)Google Scholar
  46. 46.
    Agrell, P.J., Wikner, J.: An MCDM framework for dynamic systems. Int. J. Prod. Econ. 45(1–3), 279–292 (1996)CrossRefGoogle Scholar
  47. 47.
    Kornbluth, J.S.H.: Dynamic multi-criteria decision making. J. Multi-Criter. Decis. Anal. 1(2), 81–92 (1992)CrossRefGoogle Scholar
  48. 48.
    Guitouni, A., Martel, J.M., Vincke, P.: A framework to choose a discrete multicriterion aggregation procedure. Defence Research Establishment Valcatier (1998)Google Scholar
  49. 49.
    Zenebe, A., Zhou, L., Norcio, F.: User preferences discovery using fuzzy models. Fuzzy Sets Syst. 161(23), 3044–3063 (2010)MathSciNetCrossRefGoogle Scholar
  50. 50.
    Johnson, T.: The 2016 Amazon Average CPC by Category Report. Accessed 21 May 2017
  51. 51.
    Jankowski, J., Kazienko, P., Wątróbski, J., Lewandowska, A., Ziemba, P., Zioło, M.: Fuzzy multi-objective modeling of effectiveness and user experience in online advertising. Expert Syst. Appl. 65, 315–331 (2016)CrossRefGoogle Scholar
  52. 52.
    Podvezko, V., Podviezko, A.: Dependence of multi-criteria evaluation result on choice of preference functions and their parameters. Technolog. Econ. Dev. Econ. 16(1), 143–158 (2010)CrossRefGoogle Scholar
  53. 53.
    Deshmukh, S.C.: Preference ranking organization method of enrichment evaluation (PROMETHEE). Int. J. Eng. Sci. Invent. 2(11), 28–34 (2013)Google Scholar
  54. 54.
    Roy, B.: The outranking approach and the foundations of electre methods. In: Bana e Costa, C.A. (ed.) Readings in Multiple Criteria Decision Aid, pp. 155–183. Springer, Heidelberg (1990). Scholar
  55. 55.
    Wątróbski, J., Ziemba, P., Jankowski, J., Wolski, W.: PEQUAL – e-Commerce websites quality evaluation methodology. In: Ganzha, M., Maciaszek, L., Paprzycki, M. (eds.) Proceedings of 2016 Federated Conference on Computer Science and Information Systems. ACSIS, vol. 8, pp. 1317–1327 (2016).
  56. 56.
    Chmielarz, W., Zborowski, M.: Aspects of mobility in e-Marketing from the perspective of a customer. In: Ganzha, M., Maciaszek, L., Paprzycki, M. (eds.) Proceedings of 2016 Federated Conference on Computer Science and Information Systems. ACSIS, vol. 8, pp. 1329–1333 (2016).
  57. 57.
    Ziemba, P., Wątróbski, J., Karczmarczyk, A., Jankowski, J., Wolski, W.: Integrated approach to e-commerce websites evaluation with the use of surveys and eye tracking based experiments. In: Proceedings of 2017 Federated Conference on Computer Science and Information Systems. ACSIS, vol. 11, pp. 1019–1030 (2017).

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Paweł Ziemba
    • 1
    Email author
  • Jarosław Jankowski
    • 2
  • Jarosław Wątróbski
    • 3
  1. 1.The Jacob of Paradies UniversityGorzów WielkopolskiPoland
  2. 2.West Pomeranian University of TechnologySzczecinPoland
  3. 3.University of SzczecinSzczecinPoland

Personalised recommendations