Acute Kidney Injury in Children: Definition and Epidemiology

  • Scott M. SutherlandEmail author
  • Stuart L. Goldstein


Acute kidney injury (AKI) is the contemporary term used to describe an abrupt decline in kidney function characterized by reduced excretion of waste products, deranged electrolytes, and disrupted fluid homeostasis. The last two decades have seen tremendous advances in our ability to identify and diagnose AKI events. This culminated in the development of the Kidney Disease: Improving Global Outcomes (KDIGO) AKI criteria, a consensus definition which harmonized preceding approaches and is equally applicable to adults and children. From this, we have seen transformative epidemiologic advances which we hope will pave the way for innovative approaches to care and treatment.


Acute kidney injury AKI definition AKI epidemiology Children 


  1. 1.
    Kaddourah A, Basu RK, Bagshaw SM, Goldstein SL, Investigators A. Epidemiology of acute kidney injury in critically ill children and young adults. N Engl J Med. 2017;376(1):11–20.CrossRefPubMedGoogle Scholar
  2. 2.
    Hoste EA, Bagshaw SM, Bellomo R, Cely CM, Colman R, Cruz DN, et al. Epidemiology of acute kidney injury in critically ill patients: the multinational AKI-EPI study. Intensive Care Med. 2015;41(8):1411–23.CrossRefPubMedGoogle Scholar
  3. 3.
    Kidney Disease: Improving Global Outcomes (KDIGO) Acute Kidney Injury Work Group. KDIGO clinical practice guideline for acute kidney injury. Kidney Int. 2012;2:1–138.CrossRefGoogle Scholar
  4. 4.
    Akcan-Arikan A, Zappitelli M, Loftis LL, Washburn KK, Jefferson LS, Goldstein SL. Modified RIFLE criteria in critically ill children with acute kidney injury. Kidney Int. 2007;71(10):1028–35.CrossRefGoogle Scholar
  5. 5.
    Bellomo R, Ronco C, Kellum JA, Mehta RL, Palevsky P, Acute Dialysis Quality Initiative workgroup. Acute renal failure – definition, outcome measures, animal models, fluid therapy and information technology needs: the second international consensus conference of the acute Dialysis quality initiative (ADQI) group. Crit Care. 2004;8(4):R204–12.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Mehta RL, Kellum JA, Shah SV, Molitoris BA, Ronco C, Warnock DG, et al. Acute kidney injury network: report of an initiative to improve outcomes in acute kidney injury. Crit Care. 2007;11(2):R31.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Sutherland SM, Byrnes JJ, Kothari M, Longhurst CA, Dutta S, Garcia P, et al. AKI in hospitalized children: comparing the pRIFLE, AKIN, and KDIGO definitions. Clin J Am Soc Nephrol. 2015;10(4):554–61.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Li S, Krawczeski CD, Zappitelli M, Devarajan P, Thiessen-Philbrook H, Coca SG, et al. Incidence, risk factors, and outcomes of acute kidney injury after pediatric cardiac surgery: a prospective multicenter study. Crit Care Med. 2011;39(6):1493–9.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Blinder JJ, Goldstein SL, Lee VV, Baycroft A, Fraser CD, Nelson D, et al. Congenital heart surgery in infants: effects of acute kidney injury on outcomes. J Thorac Cardiovasc Surg. 2012;143(2):368–74.CrossRefPubMedGoogle Scholar
  10. 10.
    Greenberg JH, Zappitelli M, Devarajan P, Thiessen-Philbrook HR, Krawczeski C, Li S, et al. Kidney outcomes 5 years after pediatric cardiac surgery: the TRIBE-AKI study. JAMA Pediatr. 2016;170:1071.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Hari P, Bagga A, Mahajan P, Lakshmy R. Effect of malnutrition on serum creatinine and cystatin C levels. Pediatr Nephrol. 2007;22(10):1757–61.CrossRefPubMedGoogle Scholar
  12. 12.
    Basu RK, Andrews A, Krawczeski C, Manning P, Wheeler DS, Goldstein SL. Acute kidney injury based on corrected serum creatinine is associated with increased morbidity in children following the arterial switch operation. Pediatr Crit Care Med. 2013;14(5):e218–e24.CrossRefPubMedGoogle Scholar
  13. 13.
    Viollet L, Gailey S, Thornton DJ, Friedman NR, Flanigan KM, Mahan JD, et al. Utility of cystatin C to monitor renal function in Duchenne muscular dystrophy. Muscle Nerve. 2009;40(3):438–42.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Krawczeski CD, Goldstein SL, Woo JG, Wang Y, Piyaphanee N, Ma Q, et al. Temporal relationship and predictive value of urinary acute kidney injury biomarkers after pediatric cardiopulmonary bypass. J Am Coll Cardiol. 2011;58(22):2301–9.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Bennett M, Dent CL, Ma Q, Dastrala S, Grenier F, Workman R, et al. Urine NGAL predicts severity of acute kidney injury after cardiac surgery: a prospective study. Clin J Am Soc Nephrol. 2008;3(3):665–73.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Wheeler DS, Devarajan P, Ma Q, Harmon K, Monaco M, Cvijanovich N, et al. Serum neutrophil gelatinase-associated lipocalin (NGAL) as a marker of acute kidney injury in critically ill children with septic shock. Crit Care Med. 2008;36(4):1297.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Hirsch R, Dent C, Pfriem H, Allen J, Beekman RH, Ma Q, et al. NGAL is an early predictive biomarker of contrast-induced nephropathy in children. Pediatr Nephrol. 2007;22(12):2089.CrossRefPubMedGoogle Scholar
  18. 18.
    Mishra J, Ma Q, Kelly C, Mitsnefes M, Mori K, Barasch J, et al. Kidney NGAL is a novel early marker of acute injury following transplantation. Pediatr Nephrol. 2006;21(6):856–63.CrossRefPubMedGoogle Scholar
  19. 19.
    Sirota JC, Walcher A, Faubel S, Jani A, McFann K, Devarajan P, et al. Urine IL-18, NGAL, IL-8 and serum IL-8 are biomarkers of acute kidney injury following liver transplantation. BMC Nephrol. 2013;14(1):17.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Meersch M, Schmidt C, Van Aken H, Rossaint J, Gorlich D, Stege D, et al. Validation of cell-cycle arrest biomarkers for acute kidney injury after pediatric cardiac surgery. PLoS One. 2014;9(10):e110865.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Gist KM, Goldstein SL, Wrona J, Alten JA, Basu RK, Cooper DS, et al. Kinetics of the cell cycle arrest biomarkers (TIMP-2*IGFBP-7) for prediction of acute kidney injury in infants after cardiac surgery. Pediatr Nephrol. 2017;32:1611.CrossRefPubMedGoogle Scholar
  22. 22.
    Westhoff JH, Tönshoff B, Waldherr S, Pöschl J, Teufel U, Westhoff TH, et al. Urinary tissue inhibitor of metalloproteinase-2 (TIMP-2)• insulin-like growth factor-binding protein 7 (IGFBP7) predicts adverse outcome in pediatric acute kidney injury. PLoS One. 2015;10(11):e0143628.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    James MT, Hobson CE, Darmon M, Mohan S, Hudson D, Goldstein SL, et al. Applications for detection of acute kidney injury using electronic medical records and clinical information systems: workgroup statements from the 15(th) ADQI consensus conference. Can J Kidney Health Dis. 2016;3:9.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Zappitelli M, Parikh CR, Akcan-Arikan A, Washburn KK, Moffett BS, Goldstein SL. Ascertainment and epidemiology of acute kidney injury varies with definition interpretation. Clin J Am Soc Nephrol. 2008;3(4):948–54.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Siew ED, Matheny ME, Ikizler TA, Lewis JB, Miller RA, Waitman LR, et al. Commonly used surrogates for baseline renal function affect the classification and prognosis of acute kidney injury. Kidney Int. 2010;77(6):536–42.CrossRefPubMedGoogle Scholar
  26. 26.
    Bagshaw SM, Uchino S, Cruz D, Bellomo R, Morimatsu H, Morgera S, et al. A comparison of observed versus estimated baseline creatinine for determination of RIFLE class in patients with acute kidney injury. Nephrol Dial Transplant. 2009;24(9):2739–44.CrossRefPubMedGoogle Scholar
  27. 27.
    Selewski DT, Cornell TT, Heung M, Troost JP, Ehrmann BJ, Lombel RM, et al. Validation of the KDIGO acute kidney injury criteria in a pediatric critical care population. Intensive Care Med. 2014;40(10):1481–8.CrossRefGoogle Scholar
  28. 28.
    Last JM. Dictionary of epidemiology. New York: Oxford University; 2001.Google Scholar
  29. 29.
    McGregor TL, Jones DP, Wang L, Danciu I, Bridges BC, Fleming GM, et al. Acute kidney injury incidence in noncritically ill hospitalized children, adolescents, and young adults: a retrospective observational study. Am J Kidney Dis. 2016;67(3):384–90.CrossRefPubMedGoogle Scholar
  30. 30.
    Hsu CN, Lee CT, Su CH, Wang YC, Chen HL, Chuang JH, et al. Incidence, outcomes, and risk factors of community-acquired and hospital-acquired acute kidney injury: a retrospective cohort study. Medicine. 2016;95(19):e3674.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Sawhney S, Fluck N, Fraser SD, Marks A, Prescott GJ, Roderick PJ, et al. KDIGO-based acute kidney injury criteria operate differently in hospitals and the community-findings from a large population cohort. Nephrol Dial Transplant. 2016;31(6):922–9.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Lopes JA, Jorge S, Resina C, Santos C, Pereira A, Neves J, et al. Acute kidney injury in patients with sepsis: a contemporary analysis. Int J Infect Dis. 2009;13(2):176–81.CrossRefPubMedGoogle Scholar
  33. 33.
    Hollander SA, Montez-Rath ME, Axelrod DM, Krawczeski CD, May LJ, Maeda K, et al. Recovery from acute kidney injury and CKD following heart transplantation in children, adolescents, and young adults: a retrospective cohort study. Am J Kidney Dis. 2016;68(2):212–8.CrossRefPubMedGoogle Scholar
  34. 34.
    MacDonald C, Norris C, Alton GY, Urschel S, Joffe AR, Morgan CJ, et al. Acute kidney injury after heart transplant in young children: risk factors and outcomes. Pediatr Nephrol. 2016;31(4):671–8.CrossRefPubMedGoogle Scholar
  35. 35.
    Cantais A, Hammouda Z, Mory O, Patural H, Stephan JL, Gulyaeva L, et al. Incidence of contrast-induced acute kidney injury in a pediatric setting: a cohort study. Pediatr Nephrol. 2016;31(8):1355–62.CrossRefPubMedGoogle Scholar
  36. 36.
    Sutherland SM. AKI in hospitalized children: epidemiology and clinical associations in a national cohort. J Pediatr. 2013;8(10):1661–9.Google Scholar
  37. 37.
    Xue JL, Daniels F, Star RA, Kimmel PL, Eggers PW, Molitoris BA, et al. Incidence and mortality of acute renal failure in Medicare beneficiaries, 1992 to 2001. J Am Soc Nephrol. 2006;17(4):1135–42.CrossRefPubMedGoogle Scholar
  38. 38.
    Waikar SS, Curhan GC, Ayanian JZ, Chertow GM. Race and mortality after acute renal failure. J Am Soc Nephrol. 2007;18(10):2740–8.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Hui-Stickle S, Brewer ED, Goldstein SL. Pediatric ARF epidemiology at a tertiary care center from 1999 to 2001. Am J Kidney Dis. 2005;45(1):96–101.CrossRefGoogle Scholar
  40. 40.
    Goldstein SL. Acute kidney injury in children: prevention, treatment and rehabilitation. Contrib Nephrol. 2011;174:163–72.CrossRefPubMedGoogle Scholar
  41. 41.
    Williams DM, Sreedhar SS, Mickell JJ, Chan JC. Acute kidney failure: a pediatric experience over 20 years. Arch Pediatr Adolesc Med. 2002;156(9):893–900.CrossRefPubMedGoogle Scholar
  42. 42.
    Goldstein SL, Kirkendall E, Nguyen H, Schaffzin JK, Bucuvalas J, Bracke T, et al. Electronic health record identification of nephrotoxin exposure and associated acute kidney injury. Pediatrics. 2013;132(3):e756–67.CrossRefPubMedGoogle Scholar
  43. 43.
    Vachvanichsanong P, Dissaneewate P, Lim A, McNeil E. Childhood acute renal failure: 22-year experience in a university hospital in southern Thailand. Pediatrics. 2006;118(3):e786–91.CrossRefPubMedGoogle Scholar
  44. 44.
    Sinha R, Nandi M, Tullus K, Marks SD, Taraphder A. Ten-year follow-up of children after acute renal failure from a developing country. Nephrol Dial Transplant. 2009;24(3):829–33.CrossRefPubMedGoogle Scholar
  45. 45.
    Hayes LW, Oster RA, Tofil NM, Tolwani AJ. Outcomes of critically ill children requiring continuous renal replacement therapy. J Crit Care. 2009;24(3):394–400.CrossRefPubMedGoogle Scholar
  46. 46.
    Santiago MJ, Lopez-Herce J, Urbano J, Solana MJ, del Castillo J, Ballestero Y, et al. Complications of continuous renal replacement therapy in critically ill children: a prospective observational evaluation study. Crit Care. 2009;13(6):R184.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Hamada M, Matsukawa S, Shimizu S, Kai S, Mizota T. Acute kidney injury after pediatric liver transplantation: incidence, risk factors, and association with outcome. J Anesth. 2017;31(5):758–63.CrossRefPubMedGoogle Scholar
  48. 48.
    Valavi E, Amuri P, Ahmadzadeh A, Cheraghian B, Ahankoob E. Acute kidney injury in Hemiscorpius lepturus scorpion stung children: risk factors and clinical features. Saudi J Kidney Dis Transpl. 2016;27(5):936–41.CrossRefPubMedGoogle Scholar
  49. 49.
    Jayakrishnan MP, Geeta MG, Krishnakumar P, Rajesh TV, George B. Snake bite mortality in children: beyond bite to needle time. Arch Dis Child. 2017;102(5):445–9.CrossRefPubMedGoogle Scholar
  50. 50.
    Nishimura H, Enokida H, Kawahira S, Kagara I, Hayami H, Nakagawa M. Acute kidney injury and rhabdomyolysis after Protobothrops flavoviridis bite: a retrospective survey of 86 patients in a tertiary care center. Am J Trop Med Hyg. 2016;94(2):474–9.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Hursh BE, Ronsley R, Islam N, Mammen C, Panagiotopoulos C. Acute kidney injury in children with type 1 diabetes hospitalized for diabetic ketoacidosis. JAMA Pediatr. 2017;171(5):e170020.CrossRefPubMedGoogle Scholar
  52. 52.
    Hirano D, Ito A, Yamada A, Kakegawa D, Miwa S, Umeda C, et al. Independent risk factors and 2-year outcomes of acute kidney injury after surgery for congenital heart disease. Am J Nephrol. 2017;46(3):204–9.CrossRefPubMedGoogle Scholar
  53. 53.
    Alkandari O, Eddington KA, Hyder A, Gauvin F, Ducruet T, Gottesman R, et al. Acute kidney injury is an independent risk factor for pediatric intensive care unit mortality, longer length of stay and prolonged mechanical ventilation in critically ill children: a two-center retrospective cohort study. Crit Care. 2011;15(3):R146.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Bailey D, Phan V, Litalien C, Ducruet T, Merouani A, Lacroix J, et al. Risk factors of acute renal failure in critically ill children: a prospective descriptive epidemiological study. Pediatr Crit Care Med. 2007;8(1):29–35.CrossRefGoogle Scholar
  55. 55.
    Slater MB, Gruneir A, Rochon PA, Howard AW, Koren G, Parshuram CS. Risk factors of acute kidney injury in critically ill children. Pediatr Crit Care Med. 2016;17(9):e391–8.CrossRefPubMedGoogle Scholar
  56. 56.
    Hsu CN, Chen HL, Tain YL. Epidemiology and outcomes of community-acquired and hospital-acquired acute kidney injury in children and adolescents. Pediatr Res. 2018, 83(3):622–9.Google Scholar
  57. 57.
    Terano C, Ishikura K, Miura M, Hamada R, Harada R, Sakai T, et al. Incidence of and risk factors for severe acute kidney injury in children with heart failure treated with renin-angiotensin system inhibitors. Eur J Pediatr. 2016;175(5):631–7.CrossRefPubMedGoogle Scholar
  58. 58.
    Totapally BR, Machado J, Lee H, Paredes A, Raszynski A. Acute kidney injury during vancomycin therapy in critically ill children. Pharmacotherapy. 2013;33(6):598–602.CrossRefPubMedGoogle Scholar
  59. 59.
    Zappitelli M, Moffett BS, Hyder A, Goldstein SL. Acute kidney injury in non-critically ill children treated with aminoglycoside antibiotics in a tertiary healthcare Centre: a retrospective cohort study. Nephrol Dial Transplant. 2011;26(1):144–50.CrossRefPubMedGoogle Scholar
  60. 60.
    Downes KJ, Cowden C, Laskin BL, Huang YS, Gong W, Bryan M, et al. Association of Acute Kidney Injury with Concomitant Vancomycin and Piperacillin/Tazobactam treatment among hospitalized children. JAMA Pediatr. 2017;171:e173219.CrossRefPubMedGoogle Scholar
  61. 61.
    Rheault MN, Zhang L, Selewski DT, Kallash M, Tran CL, Seamon M, et al. AKI in children hospitalized with nephrotic syndrome. Clin J Am Soc Nephrol. 2015;10(12):2110–8.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Pediatrics, Division of NephrologyStanford UniversityStanfordUSA
  2. 2.Center for Acute Care NephrologyCincinnati Children’s Hospital Medical CenterCincinnatiUSA

Personalised recommendations