Advertisement

Management Considerations for the Delivery of CRRT in Children

  • Francisco X. Flores
Chapter

Abstract

Physicians providing continuous renal replacement therapy (CRRT) in children face multiple challenges to be able to deliver a safe and efficient therapy. Many of these challenges are related to the specific patient’s condition and others, to some technical aspects of the therapy. Other special considerations to keep in mind when prescribing the therapy are the changes in the electrolyte and fluid balance that the patient experiences, the difference in nutritional needs, and the changes in the drug delivery during the course of therapy.

Keywords

Continuous renal replacement therapy Vascular access Hemofilter Modality CRRT dose Ultrafiltration 

References

  1. 1.
    Depner TA. Catheter performance. Semin Dial. 2001;14(6):425–31.CrossRefPubMedGoogle Scholar
  2. 2.
    Hackbarth R, Bunchman TE, Chua AN, Somers MJ, Baum M, Symons JM, et al. The effect of vascular access location and size on circuit survival in pediatric continuous renal replacement therapy: a report from the PPCRRT registry. Int J Artif Organs. 2007;30(12):1116–21.CrossRefPubMedGoogle Scholar
  3. 3.
    Khwaja A. KDIGO clinical practice guidelines for acute kidney injury. Nephron Clin Pract. 2012;120(4):c179–84.PubMedGoogle Scholar
  4. 4.
    Raymakers-Janssen P, Lilien M, van Kessel IA, Veldhoen ES, Wosten-van Asperen RM, van Gestel JPJ. Citrate versus heparin anticoagulation in continuous renal replacement therapy in small children. Pediatr Nephrol. 2017;32(10):1971–8.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Brophy PD, Somers MJ, Baum MA, Symons JM, McAfee N, Fortenberry JD, et al. Multi-Centre evaluation of anticoagulation in patients receiving continuous renal replacement therapy (CRRT). Nephrol Dial Transplant. 2005;20(7):1416–21.CrossRefPubMedGoogle Scholar
  6. 6.
    Ostermann M, Dickie H, Tovey L, Treacher D. Management of sodium disorders during continuous haemofiltration. Crit Care. 2010;14(3):418.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Davenport A, Will EJ, Davison AM. Hyperlactataemia and metabolic acidosis during haemofiltration using lactate-buffered fluids. Nephron. 1991;59(3):461–5.CrossRefPubMedGoogle Scholar
  8. 8.
    Zimmerman D, Cotman P, Ting R, Karanicolas S, Tobe SW. Continuous veno-venous haemodialysis with a novel bicarbonate dialysis solution: prospective cross-over comparison with a lactate buffered solution. Nephrol Dial Transplant. 1999;14(10):2387–91.CrossRefPubMedGoogle Scholar
  9. 9.
    Barenbrock M, Hausberg M, Matzkies F, de la Motte S, Schaefer RM. Effects of bicarbonate- and lactate-buffered replacement fluids on cardiovascular outcome in CVVH patients. Kidney Int. 2000;58(4):1751–7.CrossRefPubMedGoogle Scholar
  10. 10.
    Symons JM, Chua AN, Somers MJ, Baum MA, Bunchman TE, Benfield MR, et al. Demographic characteristics of pediatric continuous renal replacement therapy: a report of the prospective pediatric continuous renal replacement therapy registry. Clin J Am Soc Nephrol. 2007;2(4):732–8.CrossRefGoogle Scholar
  11. 11.
    Peng Y, Yuan Z, Li H. Removal of inflammatory cytokines and endotoxin by veno-venous continuous renal replacement therapy for burned patients with sepsis. Burns. 2005;31(5):623–8.CrossRefPubMedGoogle Scholar
  12. 12.
    Bellomo R, Tipping P, Boyce N. Continuous veno-venous hemofiltration with dialysis removes cytokines from the circulation of septic patients. Crit Care Med. 1993;21(4):522–6.CrossRefPubMedGoogle Scholar
  13. 13.
    Stoves J, Goode NP, Visvanathan R, Jones CH, Shires M, Will EJ, et al. The bradykinin response and early hypotension at the introduction of continuous renal replacement therapy in the intensive care unit. Artif Organs. 2001;25(12):1009–13.CrossRefPubMedGoogle Scholar
  14. 14.
    Liu ID, Ng KH, Lau PY, Yeo WS, Koh PL, Yap HK. Use of HF20 membrane in critically ill unstable low-body-weight infants on inotropic support. Pediatr Nephrol. 2013;28(5):819–22.CrossRefPubMedGoogle Scholar
  15. 15.
    Brophy PD, Mottes TA, Kudelka TL, McBryde KD, Gardner JJ, Maxvold NJ, et al. AN-69 membrane reactions are pH-dependent and preventable. Am J Kidney Dis. 2001;38(1):173–8.CrossRefPubMedGoogle Scholar
  16. 16.
    Pasko DA, Mottes TA, Mueller BA. Pre dialysis of blood prime in continuous hemodialysis normalizes pH and electrolytes. Pediatr Nephrol. 2003;18(11):1177–83.CrossRefPubMedGoogle Scholar
  17. 17.
    Bunchman TE, Brophy PD, Goldstein SL. Technical considerations for renal replacement therapy in children. Semin Nephrol. 2008;28(5):488–92.CrossRefPubMedGoogle Scholar
  18. 18.
    Jeffrey RF, Khan AA, Prabhu P, Todd N, Goutcher E, Will EJ, et al. A comparison of molecular clearance rates during continuous hemofiltration and hemodialysis with a novel volumetric continuous renal replacement system. Artif Organs. 1994;18(6):425–8.CrossRefPubMedGoogle Scholar
  19. 19.
    Ronco C, Bellomo R, Homel P, Brendolan A, Dan M, Piccinni P, et al. Effects of different doses in continuous veno-venous haemofiltration on outcomes of acute renal failure: a prospective randomised trial. Lancet. 2000;356(9223):26–30.CrossRefPubMedGoogle Scholar
  20. 20.
    Network VNARFT, Palevsky PM, Zhang JH, O’Connor TZ, Chertow GM, Crowley ST, et al. Intensity of renal support in critically ill patients with acute kidney injury. N Engl J Med. 2008;359(1):7–20.CrossRefGoogle Scholar
  21. 21.
    Investigators RRTS, Bellomo R, Cass A, Cole L, Finfer S, Gallagher M, et al. Intensity of continuous renal-replacement therapy in critically ill patients. N Engl J Med. 2009;361(17):1627–38.CrossRefGoogle Scholar
  22. 22.
    Spinale JM, Laskin BL, Sondheimer N, Swartz SJ, Goldstein SL. High-dose continuous renal replacement therapy for neonatal hyperammonemia. Pediatr Nephrol. 2013;28(6):983–6.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Barletta JF, Barletta GM, Brophy PD, Maxvold NJ, Hackbarth RM, Bunchman TE. Medication errors and patient complications with continuous renal replacement therapy. Pediatr Nephrol. 2006;21(6):842–5.CrossRefPubMedGoogle Scholar
  24. 24.
    Meier-Kriesche HU, Gitomer J, Finkel K, DuBose T. Increased total to ionized calcium ratio during continuous venovenous hemodialysis with regional citrate anticoagulation. Crit Care Med. 2001;29(4):748–52.CrossRefPubMedGoogle Scholar
  25. 25.
    Santiago MJ, Lopez-Herce J, Urbano J, Bellon JM, del Castillo J, Carrillo A. Hypophosphatemia and phosphate supplementation during continuous renal replacement therapy in children. Kidney Int. 2009;75(3):312–6.CrossRefPubMedGoogle Scholar
  26. 26.
    Godaly G, Carlsson O, Broman M. Phoxilium((R)) reduces hypophosphataemia and magnesium supplementation during continuous renal replacement therapy. Clin Kidney J. 2016;9(2):205–10.CrossRefPubMedGoogle Scholar
  27. 27.
    Zappitelli M, Goldstein SL, Symons JM, Somers MJ, Baum MA, Brophy PD, et al. Protein and calorie prescription for children and young adults receiving continuous renal replacement therapy: a report from the prospective pediatric continuous renal replacement therapy registry group. Crit Care Med. 2008;36(12):3239–45.CrossRefPubMedGoogle Scholar
  28. 28.
    Mueller BA, Smoyer WE. Challenges in developing evidence-based drug dosing guidelines for adults and children receiving renal replacement therapy. Clin Pharmacol Ther. 2009;86(5):479–82.CrossRefPubMedGoogle Scholar
  29. 29.
    Nehus EJ, Mouksassi S, Vinks AA, Goldstein S. Meropenem in children receiving continuous renal replacement therapy: clinical trial simulations using realistic covariates. J Clin Pharmacol. 2014;54(12):1421–8.CrossRefPubMedGoogle Scholar
  30. 30.
    Nehus EJ, Mizuno T, Cox S, Goldstein SL, Vinks AA. Pharmacokinetics of meropenem in children receiving continuous renal replacement therapy: validation of clinical trial simulations. J Clin Pharmacol. 2016;56(3):291–7.CrossRefPubMedGoogle Scholar
  31. 31.
    Goldstein SL, Nolin TD. Lack of drug dosing guidelines for critically ill patients receiving continuous renal replacement therapy. Clin Pharmacol Ther. 2014;96(2):159–61.CrossRefPubMedGoogle Scholar
  32. 32.
    Nolin TD, Aronoff GR, Fissell WH, Jain L, Madabushi R, Reynolds K, et al. Pharmacokinetic assessment in patients receiving continuous RRT: perspectives from the kidney health initiative. Clin J Am Soc Nephrol. 2015;10(1):159–64.CrossRefPubMedGoogle Scholar
  33. 33.
    Schetz M. Drug dosing in continuous renal replacement therapy: general rules. Curr Opin Crit Care. 2007;13(6):645–51.CrossRefPubMedGoogle Scholar
  34. 34.
    Jiang SP, Zhu ZY, Wu XL, Lu XY, Zhang XG, Wu BH. Effectiveness of pharmacist dosing adjustment for critically ill patients receiving continuous renal replacement therapy: a comparative study. Ther Clin Risk Manag. 2014;10:405–12.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Jiang SP, Zhu ZY, Ma KF, Zheng X, Lu XY. Impact of pharmacist antimicrobial dosing adjustments in septic patients on continuous renal replacement therapy in an intensive care unit. Scand J Infect Dis. 2013;45(12):891–9.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Division of Nephrology and HypertensionCincinnati Children’s Hospital Medical CenterCincinnatiUSA

Personalised recommendations