Oxidative Stress and Nitric Oxide in Cerebral Ischemic Reperfusion Injury

  • Junning Ma
  • Zhong Liu
  • Zhongsong ShiEmail author
Part of the Springer Series in Translational Stroke Research book series (SSTSR)


Cerebral ischemic reperfusion injury is a heterogeneous phenomenon with a multi-factorial etiology, and characterized as a cascade of neurochemical processes evolving in time and space after restriction or sudden interruption of cerebral blood flow. It has been suggested that oxidative stress and nitrosative stress are important mechanisms in cerebral ischemic reperfusion. The concept of oxidative and nitrosative stress stem from the generation of the reactive oxygen species (ROS) involving the nicotinamide adenine dinucleotide phosphate (NADPH) oxidases (NOX) family and the reactive nitrogen species (RNS) including nitric oxide (NO) and peroxynitrite (ONOO) at rates which exceed the capacity of natural antioxidant and anti-nitrification defense mechanisms to detoxify these toxic products. This review is focusing on the role of oxidative and nitrosavtive stress in cerebral ischemic reperfusion injury by discussing the concepts, the mechanisms, and the pharmacological approaches of ROS and RNS modulation for preventing cerebral ischemic reperfusion injury.


Cerebral ischemic reperfusion injury Oxidative stress 



This work was supported by National Natural Science Foundation of China (8171001013).


  1. 1.
    Pan J, Konstas AA, Bateman B, Ortolano GA, Pile-Spellman J. Reperfusion injury following cerebral ischemia: pathophysiology, MR imaging, and potential therapies. Neuroradiology. 2007;49(2):93–102.CrossRefPubMedGoogle Scholar
  2. 2.
    Chomova M, Zitnanova I. Look into brain energy crisis and membrane pathophysiology in ischemia and reperfusion. Stress. 2016;19(4):341–8.CrossRefPubMedGoogle Scholar
  3. 3.
    Chamorro A, Dirnagl U, Urra X, Planas AM. Neuroprotection in acute stroke: targeting excitotoxicity, oxidative and nitrosative stress, and inflammation. Lancet Neurol. 2016;15(8):869–81.CrossRefPubMedGoogle Scholar
  4. 4.
    Fukuyama N, Takizawa S, Ishida H, Hoshiai K, Shinohara Y, Nakazawa H. Peroxynitrite formation in focal cerebral ischemia-reperfusion in rats occurs predominantly in the peri-infarct region. J Cereb Blood Flow Metab. 1998;18(2):123–9.CrossRefPubMedGoogle Scholar
  5. 5.
    Pacher P, Beckman JS, Liaudet L. Nitric oxide and peroxynitrite in health and disease. Physiol Rev. 2007;87(1):315–424.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Deng ZF, Rui Q, Yin X, Liu HQ, Tian Y. In vivo detection of superoxide anion in bean sprout based on ZnO nanodisks with facilitated activity for direct electron transfer of superoxide dismutase. Anal Chem. 2008;80(15):5839–46.CrossRefPubMedGoogle Scholar
  7. 7.
    Nayernia Z, Jaquet V, Krause KH. New insights on NOX enzymes in the central nervous system. Antioxid Redox Signal. 2014;20(17):2815–37.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    D'Autreaux B, Toledano MB. ROS as signalling molecules: mechanisms that generate specificity in ROS homeostasis. Nat Rev Mol Cell Biol. 2007;8(10):813–24.CrossRefPubMedGoogle Scholar
  9. 9.
    Carbone F, Teixeira PC, Braunersreuther V, Mach F, Vuilleumier N, Montecucco F. Pathophysiology and treatments of oxidative injury in ischemic stroke: focus on the phagocytic NADPH oxidase 2. Antioxid Redox Signal. 2015;23(5):460–89.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    De Silva TM, Faraci FM. Effects of angiotensin II on the cerebral circulation: role of oxidative stress. Front Physiol. 2012;3:484.CrossRefPubMedGoogle Scholar
  11. 11.
    Kvietys PR, Granger DN. Role of reactive oxygen and nitrogen species in the vascular responses to inflammation. Free Radic Biol Med. 2012;52(3):556–92.CrossRefPubMedGoogle Scholar
  12. 12.
    Harman D. Aging: a theory based on free radical and radiation chemistry. J Gerontol. 1956;11(3):298–300.CrossRefPubMedGoogle Scholar
  13. 13.
    Mann PJ, Quastel JH. Toxic effects of oxygen and of hydrogen peroxide on brain metabolism. Biochem J. 1946;40(1):139–44.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Burgoyne JR, Mongue-Din H, Eaton P, Shah AM. Redox signaling in cardiac physiology and pathology. Circ Res. 2012;111(8):1091–106.CrossRefPubMedGoogle Scholar
  15. 15.
    Milton VJ, Sweeney ST. Oxidative stress in synapse development and function. Dev Neurobiol. 2012;72(1):100–10.CrossRefPubMedGoogle Scholar
  16. 16.
    Radermacher KA, Wingler K, Langhauser F, Altenhofer S, Kleikers P, Hermans JJR, de Angelis MH, Kleinschnitz C, Schmidt HHHW. Neuroprotection after stroke by targeting NOX4 as a source of oxidative stress. Antioxid Redox Sign. 2013;18(12):1418–27.CrossRefGoogle Scholar
  17. 17.
    Radermacher KA, Wingler K, Langhauser F, Altenhofer S, Kleikers P, Hermans JJ, Hrabe de Angelis M, Kleinschnitz C, Schmidt HH. Neuroprotection after stroke by targeting NOX4 as a source of oxidative stress. Antioxid Redox Signal. 2013;18(12):1418–27.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Halliwell B. Phagocyte-derived reactive species: salvation or suicide? Trends Biochem Sci. 2006;31(9):509–15.CrossRefPubMedGoogle Scholar
  19. 19.
    Bagenholm R, Nilsson UA, Gotborg CW, Kjellmer I. Free radicals are formed in the brain of fetal sheep during reperfusion after cerebral ischemia. Pediatr Res. 1998;43(2):271–5.CrossRefPubMedGoogle Scholar
  20. 20.
    Chan PH. Reactive oxygen radicals in signaling and damage in the ischemic brain. J Cereb Blood Flow Metab. 2001;21(1):2–14.CrossRefPubMedGoogle Scholar
  21. 21.
    Geng X, Li F, Yip J, Peng C, Elmadhoun O, Shen J, Ji X, Ding Y. Neuroprotection by chlorpromazine and promethazine in severe transient and permanent ischemic stroke. Mol Neurobiol. 2017;54(10):8140–50.CrossRefPubMedGoogle Scholar
  22. 22.
    Cai L, Thibodeau A, Peng C, Ji X, Rastogi R, Xin R, Singh S, Geng X, Rafols JA, Ding Y. Combination therapy of normobaric oxygen with hypothermia or ethanol modulates pyruvate dehydrogenase complex in thromboembolic cerebral ischemia. J Neurosci Res. 2016;94(8):749–58.CrossRefPubMedGoogle Scholar
  23. 23.
    Jung YS, Lee SW, Park JH, Seo HB, Choi BT, Shin HK. Electroacupuncture preconditioning reduces ROS generation with NOX4 down-regulation and ameliorates blood-brain barrier disruption after ischemic stroke. J Biomed Sci. 2016;23:32.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Green SP, Cairns B, Rae J, Errett-Baroncini C, Hongo JA, Erickson RW, Curnutte JT. Induction of gp91-phox, a component of the phagocyte NADPH oxidase, in microglial cells during central nervous system inflammation. J Cereb Blood Flow Metab. 2001;21(4):374–84.CrossRefPubMedGoogle Scholar
  25. 25.
    Kahles T, Luedike P, Endres M, Galla HJ, Steinmetz H, Busse R, Neumann-Haefelin T, Brandes RP. NADPH oxidase plays a central role in blood-brain barrier damage in experimental stroke. Stroke. 2007;38(11):3000–6.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Vallet P, Charnay Y, Steger K, Ogier-Denis E, Kovari E, Herrmann F, Michel JP, Szanto I. Neuronal expression of the NADPH oxidase NOX4, and its regulation in mouse experimental brain ischemia. Neuroscience. 2005;132(2):233–8.CrossRefPubMedGoogle Scholar
  27. 27.
    Flamm ES, Demopoulos HB, Seligman ML, Poser RG, Ransohoff J. Free radicals in cerebral ischemia. Stroke. 1978;9(5):445–7.CrossRefPubMedGoogle Scholar
  28. 28.
    Chan PH. Role of oxidants in ischemic brain damage. Stroke. 1996;27(6):1124–9.CrossRefPubMedGoogle Scholar
  29. 29.
    Shuaib A, Lees KR, Lyden P, Grotta J, Davalos A, Davis SM, Diener HC, Ashwood T, Wasiewski WW, Emeribe U, et al. NXY-059 for the treatment of acute ischemic stroke. N Engl J Med. 2007;357(6):562–71.CrossRefPubMedGoogle Scholar
  30. 30.
    Lees KR, Zivin JA, Ashwood T, Davalos A, Davis SM, Diener HC, Grotta J, Lyden P, Shuaib A, Hardemark HG, et al. NXY-059 for acute ischemic stroke. N Engl J Med. 2006;354(6):588–600.CrossRefPubMedGoogle Scholar
  31. 31.
    Diener HC, Lees KR, Lyden P, Grotta J, Davalos A, Davis SM, Shuaib A, Ashwood T, Wasiewski W, Alderfer V, et al. NXY-059 for the treatment of acute stroke: pooled analysis of the SAINT I and II Trials. Stroke. 2008;39(6):1751–8.CrossRefPubMedGoogle Scholar
  32. 32.
    Wingler K, Hermans JJ, Schiffers P, Moens A, Paul M, Schmidt HH. NOX1, 2, 4, 5: counting out oxidative stress. Br J Pharmacol. 2011;164(3):866–83.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Sas K, Robotka H, Toldi J, Vecsei L. Mitochondria, metabolic disturbances, oxidative stress and the kynurenine system, with focus on neurodegenerative disorders. J Neurol Sci. 2007;257(1–2):221–39.CrossRefPubMedGoogle Scholar
  34. 34.
    Federico A, Cardaioli E, Da Pozzo P, Formichi P, Gallus GN, Radi E. Mitochondria, oxidative stress and neurodegeneration. J Neurol Sci. 2012;322(1–2):254–62.CrossRefPubMedGoogle Scholar
  35. 35.
    Gomez-Cabrera MC, Sanchis-Gomar F, Garcia-Valles R, Pareja-Galeano H, Gambini J, Borras C, Vina J. Mitochondria as sources and targets of damage in cellular aging. Clin Chem Lab Med. 2012;50(8):1287–95.CrossRefPubMedGoogle Scholar
  36. 36.
    Beal MF. Energetics in the pathogenesis of neurodegenerative diseases. Trends Neurosci. 2000;23(7):298–304.CrossRefPubMedGoogle Scholar
  37. 37.
    Didion SP, Hathaway CA, Faraci FM. Superoxide levels and function of cerebral blood vessels after inhibition of CuZn-SOD. Am J Phys Heart Circ Phys. 2001;281(4):H1697–703.Google Scholar
  38. 38.
    Niwa K, Haensel C, Ross ME, Iadecola C. Cyclooxygenase-1 participates in selected vasodilator responses of the cerebral circulation. Circ Res. 2001;88(6):600–8.CrossRefPubMedGoogle Scholar
  39. 39.
    Vasquez-Vivar J, Martasek P, Hogg N, Masters BS, Pritchard KA Jr, Kalyanaraman B. Endothelial nitric oxide synthase-dependent superoxide generation from adriamycin. Biochemistry. 1997;36(38):11293–7.CrossRefPubMedGoogle Scholar
  40. 40.
    Santhanam AV, d'Uscio LV, Smith LA, Katusic ZS. Uncoupling of eNOS causes superoxide anion production and impairs NO signaling in the cerebral microvessels of hph-1 mice. J Neurochem. 2012;122(6):1211–8.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Narayanan D, Xi Q, Pfeffer LM, Jaggar JH. Mitochondria control functional CaV1.2 expression in smooth muscle cells of cerebral arteries. Circ Res. 2010;107(5):631–41.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Warner DS, Sheng H, Batinic-Haberle I. Oxidants, antioxidants and the ischemic brain. J Exp Biol. 2004;207(Pt 18):3221–31.CrossRefPubMedGoogle Scholar
  43. 43.
    Kinugawa S, Huang H, Wang Z, Kaminski PM, Wolin MS, Hintze TH. A defect of neuronal nitric oxide synthase increases xanthine oxidase-derived superoxide anion and attenuates the control of myocardial oxygen consumption by nitric oxide derived from endothelial nitric oxide synthase. Circ Res. 2005;96(3):355–62.CrossRefPubMedGoogle Scholar
  44. 44.
    Braunersreuther V, Jaquet V. Reactive oxygen species in myocardial reperfusion injury: from physiopathology to therapeutic approaches. Curr Pharm Biotechnol. 2012;13(1):97–114.CrossRefPubMedGoogle Scholar
  45. 45.
    Drummond GR, Selemidis S, Griendling KK, Sobey CG. Combating oxidative stress in vascular disease: NADPH oxidases as therapeutic targets. Nat Rev Drug Discov. 2011;10(6):453–71.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Faraci FM, Lamping KG, Modrick ML, Ryan MJ, Sigmund CD, Didion SP. Cerebral vascular effects of angiotensin II: new insights from genetic models. J Cerebr Blood F Met. 2006;26(4):449–55.CrossRefGoogle Scholar
  47. 47.
    Selemidis S, Sobey CG, Wingler K, Schmidt HHHW, Drummond GR. NADPH oxidases in the vasculature: molecular features, roles in disease and pharmacological inhibition. Pharmacol Ther. 2008;120(3):254–91.CrossRefPubMedGoogle Scholar
  48. 48.
    Bedard K, Krause KH. The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol Rev. 2007;87(1):245–313.CrossRefPubMedGoogle Scholar
  49. 49.
    Schappi MG, Jaquet V, Belli DC, Krause KH. Hyperinflammation in chronic granulomatous disease and anti-inflammatory role of the phagocyte NADPH oxidase. Semin Immunopathol. 2008;30(3):255–71.CrossRefPubMedGoogle Scholar
  50. 50.
    Miller AA, Drummond GR, Sobey CG. Novel isoforms of NADPH-oxidase in cerebral vascular control. Pharmacol Ther. 2006;111(3):928–48.CrossRefPubMedGoogle Scholar
  51. 51.
    Infanger DW, Sharma RV, Davisson RL. NADPH oxidases of the brain: distribution, regulation, and function. Antioxid Redox Sign. 2006;8(9–10):1583–96.CrossRefGoogle Scholar
  52. 52.
    Ago T, Kitazono T, Kuroda J, Kumai Y, Kamouchi M, Ooboshi H, Wakisaka M, Kawahara T, Rokutan K, Ibayashi S, et al. NAD(P)H oxidases in rat basilar arterial endothelial cells. Stroke. 2005;36(5):1040–6.CrossRefPubMedGoogle Scholar
  53. 53.
    Paravicini TM, Chrissobolis S, Drummond GR, Sobey CG. Increased NADPH-oxidase activity and nox4 expression during chronic hypertension is associated with enhanced cerebral vasodilatation to NADPH in vivo. Stroke. 2004;35(2):584–9.CrossRefPubMedGoogle Scholar
  54. 54.
    Sorce S, Krause KH. NOX enzymes in the central nervous system: from signaling to disease. Antioxid Redox Signal. 2009;11(10):2481–504.CrossRefPubMedGoogle Scholar
  55. 55.
    Antony S, Wu Y, Hewitt SM, Anver MR, Butcher D, Jiang G, Meitzler JL, Liu H, Juhasz A, Lu J, et al. Characterization of NADPH oxidase 5 expression in human tumors and tumor cell lines with a novel mouse monoclonal antibody. Free Radic Biol Med. 2013;65:497–508.CrossRefPubMedGoogle Scholar
  56. 56.
    Kazama K, Anrather J, Zhou P, Girouard H, Frys K, Milner TA, Iadecola C. Angiotensin II impairs neurovascular coupling in neocortex through NADPH oxidase-derived radicals. Circ Res. 2004;95(10):1019–26.CrossRefPubMedGoogle Scholar
  57. 57.
    De Silva TM, Broughton BR, Drummond GR, Sobey CG, Miller AA. Gender influences cerebral vascular responses to angiotensin II through Nox2-derived reactive oxygen species. Stroke. 2009;40(4):1091–7.CrossRefPubMedGoogle Scholar
  58. 58.
    Miller AA, Drummond GR, De Silva TM, Mast AE, Hickey H, Williams JP, Broughton BRS, Sobey CG. NADPH oxidase activity is higher in cerebral versus systemic arteries of four animal species: role of Nox2. Am J Physiol Heart C. 2009;296(1):H220–5.CrossRefGoogle Scholar
  59. 59.
    Wu DC, Re DB, Nagai M, Ischiropoulo H, Przedborski S. The inflammatory NADPH oxidase enzyme modulates motor neuron degeneration in amyotrophic lateral sclerosis mice. Proc Natl Acad Sci U S A. 2006;103(32):12132–7.CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Fischer MT, Sharma R, Lim JL, Haider L, Frischer JM, Drexhage J, Mahad D, Bradl M, van Horssen J, Lassmann H. NADPH oxidase expression in active multiple sclerosis lesions in relation to oxidative tissue damage and mitochondrial injury. Brain J Neurol. 2012;135:886–99.CrossRefGoogle Scholar
  61. 61.
    Cheret C, Gervais A, Lelli A, Colin C, Amar L, Ravassard P, Mallet J, Cumano A, Krause KH, Mallat M. Neurotoxic activation of microglia is promoted by a Nox1-dependent NADPH oxidase. J Neurosci. 2008;28(46):12039–51.CrossRefPubMedGoogle Scholar
  62. 62.
    Li B, Bedard K, Sorce S, Hinz B, Dubois-Dauphin M, Krause KH. NOX4 expression in human microglia leads to constitutive generation of reactive oxygen species and to constitutive IL-6 expression. J Innate Immun. 2009;1(6):570–81.CrossRefPubMedGoogle Scholar
  63. 63.
    Hilenski LL, Clempus RE, Quinn MT, Lambeth JD, Griendling KK. Distinct subcellular localizations of Nox1 and Nox4 in vascular smooth muscle cells. Arterioscl Throm Vas. 2004;24(4):677–83.CrossRefGoogle Scholar
  64. 64.
    Zhang AY, Yi F, Zhang G, Gulbins E, Li PL. Lipid raft clustering and redox signaling platform formation in coronary arterial endothelial cells. Hypertension. 2006;47(1):74–80.CrossRefPubMedGoogle Scholar
  65. 65.
    Gianni D, Diaz B, Taulet N, Fowler B, Courtneidge SA, Bokoch GM. Novel p47(phox)-related organizers regulate localized NADPH oxidase 1 (Nox1) activity. Sci Signal. 2009;2(88):ra54.CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Altenhofer S, Kleikers PWM, Radermacher KA, Scheurer P, Hermans JJR, Schiffers P, Ho HD, Wingler K, Schmidt HHHW. The NOX toolbox: validating the role of NADPH oxidases in physiology and disease. Cell Mol Life Sci. 2012;69(14):2327–43.CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Chen K, Kirber MT, Xiao H, Yang Y, Keaney JF. Regulation of ROS signal transduction by NADPH oxidase 4 localization. J Cell Biol. 2008;181(7):1129–39.CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Wu RF, Ma ZY, Liu Z, Terada LS. Nox4-derived H2O2 mediates endoplasmic reticulum signaling through local Ras activation. Mol Cell Biol. 2010;30(14):3553–68.CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Boucherie C, Schafer S, Lavand'homme P, Maloteaux JM, Hermans E. Chimerization of astroglial population in the lumbar spinal cord after mesenchymal stem cell transplantation prolongs survival in a rat model of amyotrophic lateral sclerosis. J Neurosci Res. 2009;87(9):2034–46.CrossRefPubMedGoogle Scholar
  70. 70.
    Koziel R, Pircher H, Kratochwil M, Lener B, Hermann M, Dencher NA, Jansen-Durr P. Mitochondrial respiratory chain complex I is inactivated by NADPH oxidase Nox4. Biochem J. 2013;452:231–9.CrossRefPubMedGoogle Scholar
  71. 71.
    Kleinschnitz C, Grund H, Wingler K, Armitage ME, Jones E, Mittal M, Barit D, Schwarz T, Geis C, Kraft P, et al. Post-stroke inhibition of induced NADPH oxidase type 4 prevents oxidative stress and neurodegeneration. PLoS Biol. 2010;8(9):e1000479.CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    McCann SK, Dusting GJ, Roulston CL. Early increase of Nox4 NADPH oxidase and superoxide generation following endothelin-1-induced stroke in conscious rats. J Neurosci Res. 2008;86(11):2524–34.CrossRefPubMedGoogle Scholar
  73. 73.
    Miller AA, Drummond GR, Schmidt HHHW, Sobey CG. NADPH oxidase activity and function are profoundly greater in cerebral versus systemic arteries. Circ Res. 2005;97(10):1055–62.CrossRefPubMedGoogle Scholar
  74. 74.
    Tuo YH, Liu Z, Chen JW, Wang QY, Li SL, Li MC, Dai G, Wang JS, Zhang YL, Feng L, Shi ZS. NADPH oxidase inhibitor improves outcome of mechanical reperfusion by suppressing hemorrhagic transformation. J Neurointerv Surg. 2017;9(5):492–8.CrossRefPubMedGoogle Scholar
  75. 75.
    Chen H, Song YS, Chan PH. Inhibition of NADPH oxidase is neuroprotective after ischemia-reperfusion. J Cereb Blood Flow Metab. 2009;29(7):1262–72.CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Jackman KA, Miller AA, De Silva TM, Crack PJ, Drummond GR, Sobey CG. Reduction of cerebral infarct volume by apocynin requires pretreatment and is absent in Nox2-deficient mice. Br J Pharmacol. 2009;156(4):680–8.CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Kahles T, Kohnen A, Heumueller S, Rappert A, Bechmann I, Liebner S, Wittko IM, Neumann-Haefelin T, Steinmetz H, Schroeder K, et al. NADPH oxidase Nox1 contributes to ischemic injury in experimental stroke in mice. Neurobiol Dis. 2010;40(1):185–92.CrossRefPubMedGoogle Scholar
  78. 78.
    Sutherland BA, Minnerup J, Balami JS, Arba F, Buchan AM, Kleinschnitz C. Neuroprotection for ischaemic stroke: translation from the bench to the bedside. Int J Stroke. 2012;7(5):407–18.CrossRefPubMedGoogle Scholar
  79. 79.
    Miller ER, Pastor-Barriuso R, Dalal D, Riemersma RA, Appel LJ, Guallar E. Meta-analysis: high-dosage vitamin E supplementation may increase all-cause mortality. Ann Intern Med. 2005;142(1):37–46.CrossRefPubMedGoogle Scholar
  80. 80.
    Kubota Y, Iso H, Date C, Kikuchi S, Watanabe Y, Wada Y, Inaba Y, Tamakoshi A, Group JS. Dietary intakes of antioxidant vitamins and mortality from cardiovascular disease: the Japan Collaborative Cohort Study (JACC) study. Stroke. 2011;42(6):1665–72.CrossRefPubMedGoogle Scholar
  81. 81.
    Myint PK, Luben RN, Welch AA, Bingham SA, Wareham NJ, Khaw KT. Plasma vitamin C concentrations predict risk of incident stroke over 10 y in 20 649 participants of the European Prospective Investigation into Cancer Norfolk prospective population study. Am J Clin Nutr. 2008;87(1):64–9.CrossRefPubMedGoogle Scholar
  82. 82.
    Yokoyama T, Date C, Kokubo Y, Yoshiike N, Matsumura Y, Tanaka H. Serum vitamin C concentration was inversely associated with subsequent 20-year incidence of stroke in a Japanese rural community – the Shibata study. Stroke. 2000;31(10):2287–94.CrossRefPubMedGoogle Scholar
  83. 83.
    Schiavone S, Sorce S, Dubois-Dauphin M, Jaquet V, Colaianna M, Zotti M, Cuomo V, Trabace L, Krause KH. Involvement of NOX2 in the development of behavioral and pathologic alterations in isolated rats. Biol Psychiatry. 2009;66(4):384–92.CrossRefPubMedGoogle Scholar
  84. 84.
    Heumuller SWS, Barbosa-Sicard E, Schmidt HH, Busse R, Schroder K, Brandes RP. Apocynin is not an inhibitor of vascular NADPH oxidases but an antioxidant. Hypertension. 2008;51:211–7.CrossRefPubMedGoogle Scholar
  85. 85.
    Schluter T, Steinbach AC, Steffen A, Rettig R, Grisk O. Apocynin-induced vasodilation involves Rho kinase inhibition but not NADPH oxidase inhibition. Cardiovasc Res. 2008;80(2):271–9.CrossRefPubMedGoogle Scholar
  86. 86.
    Bardutzky J, Meng X, Bouley J, Duong TQ, Ratan R, Fisher M. Effects of intravenous dimethyl sulfoxide on ischemia evolution in a rat permanent occlusion model. J Cereb Blood Flow Metab. 2005;25(8):968–77.CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Shimizu S, Simon RP, Graham SH. Dimethylsulfoxide (DMSO) treatment reduces infarction volume after permanent focal cerebral ischemia in rats. Neurosci Lett. 1997;239(2–3):125–7.CrossRefPubMedGoogle Scholar
  88. 88.
    O'Donnell BV, Tew DG, Jones OT, England PJ. Studies on the inhibitory mechanism of iodonium compounds with special reference to neutrophil NADPH oxidase. Biochem J. 1993;290(Pt 1):41–9.CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    Ishikawa M, Cooper D, Arumugam TV, Zhang TH, Nanda A, Granger DN. Platelet-leukocyte-endothelial cell interactions after middle cerebral artery occlusion and reperfusion. J Cereb Blood Flow Metab. 2004;24(8):907–15.CrossRefPubMedGoogle Scholar
  90. 90.
    Nagel S, Genius J, Heiland S, Horstmann S, Gardner H, Wagner S. Diphenyleneiodonium and dimethylsulfoxide for treatment of reperfusion injury in cerebral ischemia of the rat. Brain Res. 2007;1132(1):210–7.CrossRefPubMedGoogle Scholar
  91. 91.
    Wang TG, Qin L, Liu B, Liu YX, Wilson B, Eling TE, Langenbach R, Taniura S, Hong JS. Role of reactive oxygen species in LPS-induced production of prostaglandin E-2 in microglia. J Neurochem. 2004;88(4):939–47.CrossRefPubMedGoogle Scholar
  92. 92.
    Nagel S, Hadley G, Pfleger K, Grond-Ginsbach C, Buchan AM, Wagner S, Papadakis M. Suppression of the inflammatory response by diphenyleneiodonium after transient focal cerebral ischemia. J Neurochem. 2012;123:98–107.CrossRefPubMedGoogle Scholar
  93. 93.
    Wind S, Beuerlein K, Eucker T, Muller H, Scheurer P, Armitage ME, Ho H, Schmidt HHHW, Wingler K. Comparative pharmacology of chemically distinct NADPH oxidase inhibitors. Br J Pharmacol. 2010;161(4):885–98.CrossRefPubMedPubMedCentralGoogle Scholar
  94. 94.
    Jaquet V, Scapozza L, Clark RA, Krause KH, Lambeth JD. Small-molecule NOX inhibitors: ROS-generating NADPH oxidases as therapeutic targets. Antioxid Redox Sign. 2009;11(10):2535–52.CrossRefGoogle Scholar
  95. 95.
    Stielow C, Catar RA, Muller G, Wingler K, Scheurer P, Schmidt HHHW, Morawietz H. Novel Nox inhibitor of oxLDL-induced reactive oxygen species formation in human endothelial cells. Biochem Bioph Res Co. 2006;344(1):200–5.CrossRefGoogle Scholar
  96. 96.
    Niethammer P, Grabher C, Look AT, Mitchison TJ. A tissue-scale gradient of hydrogen peroxide mediates rapid wound detection in zebrafish. Nature. 2009;459(7249):996–U123.CrossRefPubMedPubMedCentralGoogle Scholar
  97. 97.
    ten Freyhaus H, Huntgeburth M, Wingler K, Schnitker J, Baumer AT, Vander M, Bekhite MM, Wartenberg M, Sauer H, Rosenkranz S. Novel Nox inhibitor VAS2870 attenuates PDGF-dependent smooth muscle cell chemotaxis, but not proliferation. Cardiovasc Res. 2006;71(2):331–41.CrossRefPubMedGoogle Scholar
  98. 98.
    Galli S, Arciuch VGA, Poderoso C, Converso DP, Zhou QQ, Joffe EBD, Cadenas E, Boczkowski J, Carreras MC, Poderoso JJ. Tumor cell phenotype is sustained by selective MAPK oxidation in mitochondria. PLoS One. 2008;3(6):e2379.CrossRefPubMedPubMedCentralGoogle Scholar
  99. 99.
    Sedeek M, Callera G, Montezano A, Gutsol A, Heitz F, Szyndralewiez C, Page P, Kennedy CRJ, Burns KD, Touyz RM, et al. Critical role of Nox4-based NADPH oxidase in glucose-induced oxidative stress in the kidney: implications in type 2 diabetic nephropathy. Am J Physiol Renal. 2010;299(6):F1348–58.CrossRefGoogle Scholar
  100. 100.
    Vendrov AE, Madamanchi NR, Niu XL, Molnar KC, Runge M, Szyndralewiez C, Page P, Runge MS. NADPH oxidases regulate CD44 and hyaluronic acid expression in thrombin-treated vascular smooth muscle cells and in atherosclerosis. J Biol Chem. 2010;285(34):26545–57.CrossRefPubMedPubMedCentralGoogle Scholar
  101. 101.
    Smith SM, Min J, Ganesh T, Diebold B, Kawahara T, Zhu Y, McCoy J, Sun A, Snyder JP, Fu H, et al. Ebselen and congeners inhibit NADPH oxidase 2-dependent superoxide generation by interrupting the binding of regulatory subunits. Chem Biol. 2012;19(6):752–63.CrossRefPubMedPubMedCentralGoogle Scholar
  102. 102.
    Verbeuren TJ, Bouskela E, Cohen RA, Vanhoutte PM. Regulation of adhesion molecules: a new target for the treatment of chronic venous insufficiency. Microcirculation. 2000;7(6 Pt 2):S41–8.CrossRefPubMedGoogle Scholar
  103. 103.
    Gianni D, Taulet N, Zhang H, DerMardirossian C, Kister J, Martinez L, Roush WR, Brown SJ, Bokoch GM, Rosen H. A novel and specific NADPH oxidase-1 (Nox1) small-molecule inhibitor blocks the formation of functional invadopodia in human colon cancer cells. ACS Chem Biol. 2010;5(10):981–93.CrossRefPubMedPubMedCentralGoogle Scholar
  104. 104.
    Bhandarkar SS, Jaconi M, Fried LE, Bonner MY, Lefkove B, Govindarajan B, Perry BN, Parhar R, Mackelfresh J, Sohn A, et al. Fulvene-5 potently inhibits NADPH oxidase 4 and blocks the growth of endothelial tumors in mice. J Clin Invest. 2009;119(8):2359–65.PubMedPubMedCentralGoogle Scholar
  105. 105.
    Daiber A, Frein D, Namgaladze D, Ullrich V. Oxidation and nitrosation in the nitrogen monoxide/superoxide system. J Biol Chem. 2002;277(14):11882–8.CrossRefPubMedGoogle Scholar
  106. 106.
    Cipak Gasparovic A, Zarkovic N, Zarkovic K, Semen K, Kaminskyy D, Yelisyeyeva O, Bottari SP. Biomarkers of oxidative and nitro-oxidative stress: conventional and novel approaches. Br J Pharmacol. 2017;174(12):1771–83.CrossRefPubMedPubMedCentralGoogle Scholar
  107. 107.
    Chen XM, Chen HS, Xu MJ, Shen JG. Targeting reactive nitrogen species: a promising therapeutic strategy for cerebral ischemia-reperfusion injury. Acta Pharmacol Sin. 2013;34(1):67–77.CrossRefPubMedGoogle Scholar
  108. 108.
    Furchgott RF, Zawadzki JV. The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature. 1980;288(5789):373–6.CrossRefPubMedGoogle Scholar
  109. 109.
    Moncada S, Palmer RM, Higgs EA. Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol Rev. 1991;43(2):109–42.PubMedGoogle Scholar
  110. 110.
    Toda N, Ayajiki K, Okamura T. Cerebral blood flow regulation by nitric oxide: recent advances. Pharmacol Rev. 2009;61(1):62–97.CrossRefPubMedGoogle Scholar
  111. 111.
    Broos K, Feys HB, De Meyer SF, Vanhoorelbeke K, Deckmyn H. Platelets at work in primary hemostasis. Blood Rev. 2011;25(4):155–67.CrossRefPubMedGoogle Scholar
  112. 112.
    Schuman EM, Madison DV. Nitric oxide and synaptic function. Annu Rev Neurosci. 1994;17:153–83.CrossRefPubMedGoogle Scholar
  113. 113.
    Iadecola C, Zhang F, Xu X. Inhibition of inducible nitric oxide synthase ameliorates cerebral ischemic damage. Am J Phys. 1995;268(1 Pt 2):R286–92.Google Scholar
  114. 114.
    Iadecola C, Zhang F, Casey R, Nagayama M, Ross ME. Delayed reduction of ischemic brain injury and neurological deficits in mice lacking the inducible nitric oxide synthase gene. J Neurosci. 1997;17(23):9157–64.CrossRefPubMedGoogle Scholar
  115. 115.
    Clark RS, Kochanek PM, Obrist WD, Wong HR, Billiar TR, Wisniewski SR, Marion DW. Cerebrospinal fluid and plasma nitrite and nitrate concentrations after head injury in humans. Crit Care Med. 1996;24(7):1243–51.CrossRefPubMedGoogle Scholar
  116. 116.
    Pautz A, Art J, Hahn S, Nowag S, Voss C, Kleinert H. Regulation of the expression of inducible nitric oxide synthase. Nitric Oxide. 2010;23(2):75–93.CrossRefPubMedGoogle Scholar
  117. 117.
    Lundberg JO, Weitzberg E, Gladwin MT. The nitrate-nitrite-nitric oxide pathway in physiology and therapeutics. Nat Rev Drug Discov. 2008;7(2):156–67.CrossRefPubMedGoogle Scholar
  118. 118.
    Kiss JP, Vizi ES. Nitric oxide: a novel link between synaptic and nonsynaptic transmission. Trends Neurosci. 2001;24(4):211–5.CrossRefPubMedGoogle Scholar
  119. 119.
    Forstermann U. Nitric oxide and oxidative stress in vascular disease. Pflug Arch Eur J Phy. 2010;459(6):923–39.CrossRefGoogle Scholar
  120. 120.
    Bolanos JP, Almeida A. Roles of nitric oxide in brain hypoxia-ischemia. Biochim Biophys Acta. 1999;1411(2–3):415–36.CrossRefPubMedGoogle Scholar
  121. 121.
    Grandati M, Verrecchia C, Revaud ML, Allix M, Boulu RG, Plotkine M. Calcium-independent NO-synthase activity and nitrites/nitrates production in transient focal cerebral ischaemia in mice. Br J Pharmacol. 1997;122(4):625–30.CrossRefPubMedPubMedCentralGoogle Scholar
  122. 122.
    Iadecola C, Xu X, Zhang F, el-Fakahany EE, Ross ME. Marked induction of calcium-independent nitric oxide synthase activity after focal cerebral ischemia. J Cereb Blood Flow Metab. 1995;15(1):52–9.CrossRefPubMedGoogle Scholar
  123. 123.
    Shen JG, Ma S, Chan PS, Lee W, Fung PCW, Cheung RTF, Tong Y, Liu KJ. Nitric oxide down-regulates caveolin-1 expression in rat brains during focal cerebral ischemia and reperfusion injury. J Neurochem. 2006;96(4):1078–89.CrossRefPubMedGoogle Scholar
  124. 124.
    Huang Z, Huang PL, Ma J, Meng W, Ayata C, Fishman MC, Moskowitz MA. Enlarged infarcts in endothelial nitric oxide synthase knockout mice are attenuated by nitro-L-arginine. J Cereb Blood Flow Metab. 1996;16(5):981–7.CrossRefPubMedGoogle Scholar
  125. 125.
    Rudic RD, Sessa WC. Nitric oxide in endothelial dysfunction and vascular remodeling: clinical correlates and experimental links. Am J Hum Genet. 1999;64(3):673–7.CrossRefPubMedPubMedCentralGoogle Scholar
  126. 126.
    Iadecola C. Bright and dark sides of nitric oxide in ischemic brain injury. Trends Neurosci. 1997;20(3):132–9.CrossRefPubMedGoogle Scholar
  127. 127.
    Fabian RH, DeWitt DS, Kent TA. In vivo detection of superoxide anion production by the brain using a cytochrome c electrode. J Cereb Blood Flow Metab. 1995;15(2):242–7.CrossRefPubMedGoogle Scholar
  128. 128.
    Peters O, Back T, Lindauer U, Busch C, Megow D, Dreier J, Dirnagl U. Increased formation of reactive oxygen species after permanent and reversible middle cerebral artery occlusion in the rat. J Cereb Blood Flow Metab. 1998;18(2):196–205.CrossRefPubMedGoogle Scholar
  129. 129.
    Kim GW, Kondo T, Noshita N, Chan PH. Manganese superoxide dismutase deficiency exacerbates cerebral infarction after focal cerebral ischemia/reperfusion in mice: implications for the production and role of superoxide radicals. Stroke. 2002;33(3):809–15.CrossRefPubMedGoogle Scholar
  130. 130.
    Peter B, Van Waarde MA, Vissink A, s-Gravenmade EJ, Konings AW. The role of secretory granules in radiation-induced dysfunction of rat salivary glands. Radiat Res. 1995;141(2):176–82.CrossRefPubMedGoogle Scholar
  131. 131.
    Al-Nimer MS, Al-Mahdawi AM, Sakeni RA. Assessment of nitrosative oxidative stress in patients with middle cerebral artery occlusion. Neurosciences. 2007;12(1):31–4.PubMedGoogle Scholar
  132. 132.
    Nanetti L, Taffi R, Vignini A, Moroni C, Raffaelli F, Bacchetti T, Silvestrini M, Provinciali L, Mazzanti L. Reactive oxygen species plasmatic levels in ischemic stroke. Mol Cell Biochem. 2007;303(1–2):19–25.CrossRefPubMedGoogle Scholar
  133. 133.
    Moro MA, Almeida A, Bolanos JP, Lizasoain I. Mitochondrial respiratory chain and free radical generation in stroke. Free Radical Biol Med. 2005;39(10):1291–304.CrossRefGoogle Scholar
  134. 134.
    Greenacre SA, Ischiropoulos H. Tyrosine nitration: localisation, quantification, consequences for protein function and signal transduction. Free Radic Res. 2001;34(6):541–81.CrossRefPubMedGoogle Scholar
  135. 135.
    Suzuki M, Tabuchi M, Ikeda M, Tomita T. Concurrent formation of peroxynitrite with the expression of inducible nitric oxide synthase in the brain during middle cerebral artery occlusion and reperfusion in rats. Brain Res. 2002;951(1):113–20.CrossRefPubMedGoogle Scholar
  136. 136.
    Schopfer FJ, Baker PR, Freeman BA. NO-dependent protein nitration: a cell signaling event or an oxidative inflammatory response? Trends Biochem Sci. 2003;28(12):646–54.CrossRefPubMedGoogle Scholar
  137. 137.
    Viappiani S, Nicolescu AC, Holt A, Sawicki G, Crawford BD, Leon H, van Mulligen T, Schulz R. Activation and modulation of 72 kDa matrix metalloproteinase-2 by peroxynitrite and glutathione. Biochem Pharmacol. 2009;77(5):826–34.CrossRefPubMedGoogle Scholar
  138. 138.
    Rajagopalan S, Meng XP, Ramasamy S, Harrison DG, Galis ZS. Reactive oxygen species produced by macrophage-derived foam cells regulate the activity of vascular matrix metalloproteinases in vitro. Implications for atherosclerotic plaque stability. J Clin Invest. 1996;98(11):2572–9.CrossRefPubMedPubMedCentralGoogle Scholar
  139. 139.
    Migita K, Maeda Y, Abiru S, Komori A, Yokoyama T, Takii Y, Nakamura M, Yatsuhashi H, Eguchi K, Ishibashi H. Peroxynitrite-mediated matrix metalloproteinase-2 activation in human hepatic stellate cells. FEBS Lett. 2005;579(14):3119–25.CrossRefPubMedGoogle Scholar
  140. 140.
    Donnini S, Monti M, Roncone R, Morbidelli L, Rocchigiani M, Oliviero S, Casella L, Giachetti A, Schulz R, Ziche M. Peroxynitrite inactivates human-tissue inhibitor of metalloproteinase-4. FEBS Lett. 2008;582(7):1135–40.CrossRefPubMedGoogle Scholar
  141. 141.
    Tan KH, Harrington S, Purcell WM, Hurst RD. Peroxynitrite mediates nitric oxide-induced blood-brain barrier damage. Neurochem Res. 2004;29(3):579–87.CrossRefPubMedGoogle Scholar
  142. 142.
    Laufs U, Liao JK. Post-transcriptional regulation of endothelial nitric oxide synthase mRNA stability by Rho GTPase. J Biol Chem. 1998;273(37):24266–71.CrossRefPubMedGoogle Scholar
  143. 143.
    Laufs U. Beyond lipid-lowering: effects of statins on endothelial nitric oxide. Eur J Clin Pharmacol. 2003;58(11):719–31.CrossRefPubMedGoogle Scholar
  144. 144.
    Sironi L, Cimino M, Guerrini U, Calvio AM, Lodetti B, Asdente M, Balduini W, Paoletti R, Tremoli E. Treatment with statins after induction of focal ischemia in rats reduces the extent of brain damage. Arterioscler Thromb Vasc Biol. 2003;23(2):322–7.CrossRefPubMedGoogle Scholar
  145. 145.
    Prinz V, Laufs U, Gertz K, Kronenberg G, Balkaya M, Leithner C, Lindauer U, Endres M. Intravenous rosuvastatin for acute stroke treatment: an animal study. Stroke. 2008;39(2):433–8.CrossRefPubMedGoogle Scholar
  146. 146.
    Endres M, Laufs U, Huang Z, Nakamura T, Huang P, Moskowitz MA, Liao JK. Stroke protection by 3-hydroxy-3-methylglutaryl (HMG)-CoA reductase inhibitors mediated by endothelial nitric oxide synthase. Proc Natl Acad Sci U S A. 1998;95(15):8880–5.CrossRefPubMedPubMedCentralGoogle Scholar
  147. 147.
    Di Napoli M, Papa F. Inflammation, statins, and outcome after ischemic stroke. Stroke. 2001;32(10):2446–7.PubMedGoogle Scholar
  148. 148.
    Heart Protection Study Collaborative G. MRC/BHF Heart Protection Study of cholesterol lowering with simvastatin in 20,536 high-risk individuals: a randomised placebo-controlled trial. Lancet. 2002;360(9326):7–22.CrossRefGoogle Scholar
  149. 149.
    Adams HP Jr, del Zoppo G, Alberts MJ, Bhatt DL, Brass L, Furlan A, Grubb RL, Higashida RT, Jauch EC, Kidwell C, et al. Guidelines for the early management of adults with ischemic stroke: a guideline from the American Heart Association/American Stroke Association Stroke Council, Clinical Cardiology Council, Cardiovascular Radiology and Intervention Council, and the Atherosclerotic Peripheral Vascular Disease and Quality of Care Outcomes in Research Interdisciplinary Working Groups: the American Academy of Neurology affirms the value of this guideline as an educational tool for neurologists. Stroke. 2007;38(5):1655–711.CrossRefPubMedGoogle Scholar
  150. 150.
    Vaughan CJ, Delanty N. Neuroprotective properties of statins in cerebral ischemia and stroke. Stroke. 1999;30(9):1969–73.CrossRefPubMedGoogle Scholar
  151. 151.
    Collins R, Armitage J, Parish S, Sleight P, Peto R, Heart Protection Study Collaborative G. Effects of cholesterol-lowering with simvastatin on stroke and other major vascular events in 20536 people with cerebrovascular disease or other high-risk conditions. Lancet. 2004;363(9411):757–67.CrossRefPubMedGoogle Scholar
  152. 152.
    Vergouwen MD, de Haan RJ, Vermeulen M, Roos YB. Statin treatment and the occurrence of hemorrhagic stroke in patients with a history of cerebrovascular disease. Stroke. 2008;39(2):497–502.CrossRefPubMedGoogle Scholar
  153. 153.
    Becker K, Tanzi P, Kalil A, Shibata D, Cain K. Early statin use is associated with increased risk of infection after stroke. J Stroke Cerebrovasc. 2013;22(1):66–71.CrossRefGoogle Scholar
  154. 154.
    Ding-Zhou L, Marchand-Verrecchia C, Croci N, Plotkine M, Margaill I. L-NAME reduces infarction, neurological deficit and blood-brain barrier disruption following cerebral ischemia in mice. Eur J Pharmacol. 2002;457(2–3):137–46.CrossRefPubMedGoogle Scholar
  155. 155.
    Nakagawa H, Ikota N, Ozawa T, Kotake Y. Dose- and time-dependence of radiation-induced nitric oxide formation in mice as quantified with electron paramagnetic resonance. Nitric Oxide Biol Ch. 2001;5(1):47–52.CrossRefGoogle Scholar
  156. 156.
    Nagafuji T, Sugiyama M, Muto A, Makino T, Miyauchi T, Nabata H. The neuroprotective effect of a potent and selective inhibitor of type I NOS (L-MIN) in a rat model of focal cerebral ischaemia. Neuroreport. 1995;6(11):1541–5.CrossRefPubMedGoogle Scholar
  157. 157.
    Palmer C, Roberts RL. Reduction in hypoxic-ischemic brain swelling following delayed inhibition of inducible nitric oxide synthase in 7 day old rats. Pediatr Res. 2002;51(4):446a.Google Scholar
  158. 158.
    Yoshida T, Limmroth V, Irikura K, Moskowitz MA. The NOS inhibitor, 7-nitroindazole, decreases focal infarct volume but not the response to topical acetylcholine in pial vessels. J Cereb Blood Flow Metab. 1994;14(6):924–9.CrossRefPubMedGoogle Scholar
  159. 159.
    del Pilar Fernandez Rodriguez M, Belmonte A, Meizoso MJ, Garcia-Novio M, Garcia-Iglesias E. Effect of tirilazad on brain nitric oxide synthase activity during cerebral ischemia in rats. Pharmacology. 1997;54(2):108–12.CrossRefPubMedGoogle Scholar
  160. 160.
    Chabrier PE, Auguet M, Spinnewyn B, Auvin S, Cornet S, Demerle-Pallardy C, Guilmard-Favre C, Marin JG, Pignol B, Gillard-Roubert V, et al. BN 80933, a dual inhibitor of neuronal nitric oxide synthase and lipid peroxidation: a promising neuroprotective strategy. Proc Natl Acad Sci U S A. 1999;96(19):10824–9.CrossRefPubMedPubMedCentralGoogle Scholar
  161. 161.
    Goyagi T, Goto S, Bhardwaj A, Dawson VL, Hurn PD, Kirsch JR. Neuroprotective effect of sigma(1)-receptor ligand 4-phenyl-1-(4-phenylbutyl) piperidine (PPBP) is linked to reduced neuronal nitric oxide production. Stroke. 2001;32(7):1613–20.CrossRefPubMedGoogle Scholar
  162. 162.
    Forster C, Clark HB, Ross ME, Iadecola C. Inducible nitric oxide synthase expression in human cerebral infarcts. Acta Neuropathol. 1999;97(3):215–20.CrossRefPubMedPubMedCentralGoogle Scholar
  163. 163.
    Morikawa E, Moskowitz MA, Huang Z, Yoshida T, Irikura K, Dalkara T. L-Arginine infusion promotes nitric oxide-dependent vasodilation, increases regional cerebral blood flow, and reduces infarction volume in the rat. Stroke. 1994;25(2):429–35.CrossRefPubMedPubMedCentralGoogle Scholar
  164. 164.
    Willmot M, Gray L, Gibson C, Murphy S, Bath PM. A systematic review of nitric oxide donors and L-arginine in experimental stroke; effects on infarct size and cerebral blood flow. Nitric Oxide. 2005;12(3):141–9.CrossRefPubMedPubMedCentralGoogle Scholar
  165. 165.
    Bath PM, Willmot M, Leonardi-Bee J, Bath FJ. Nitric oxide donors (nitrates), L-arginine, or nitric oxide synthase inhibitors for acute stroke. Cochrane Database Syst Rev. 2002;4:CD000398.Google Scholar
  166. 166.
    Heron M. Deaths: leading causes for 2007. Natl Vital Stat Rep. 2011;59(8):1–95.PubMedPubMedCentralGoogle Scholar
  167. 167.
    Kunz A, Park L, Abe T, Gallo EF, Anrather J, Zhou P, Iadecola C. Neurovascular protection by ischemic tolerance: role of nitric oxide and reactive oxygen species. J Neurosci. 2007;27(27):7083–93.CrossRefPubMedGoogle Scholar
  168. 168.
    Maneen MJ, Cipolla MJ. Peroxynitrite diminishes myogenic tone in cerebral arteries: role of nitrotyrosine and F-actin. Am J Phys Heart Circ Phys. 2007;292(2):H1042–50.Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of NeurosurgerySun Yat-sen Memorial Hospital of Sun Yat-sen UniversityGuangzhouChina

Personalised recommendations