Advertisement

Blood Pressure and Cerebral Ischemic Reperfusion Injury

  • Weijian Jiang
  • Chen Li
  • Mohamad Orabi
  • Wuwei Feng
Chapter
Part of the Springer Series in Translational Stroke Research book series (SSTSR)

Abstract

Recanalization and reperfusion injury in ischemic stroke patients casts shadows on current stroke management. The potential mechanisms of reperfusion injury remain obscure and need further investigation. This article summarized several clinically important mechanisms and especially discussed a potential role of blood pressure control in reperfusion injury.

Keywords

Stroke Blood Pressure Reperfusion 

References

  1. 1.
    van Mook WN, Rennenberg RJ, Schurink GW, et al. Cerebral hyperperfusion syndrome. Lancet Neurol. 2005;4:877–88.CrossRefPubMedGoogle Scholar
  2. 2.
    Farooq MU, Goshgarian C, Min J, Gorelick PB. Pathophysiology and management of reperfusion injury and hyperperfusion syndrome after carotid endarterectomy and carotid artery stenting. Exp Transl Stroke Med. 2016;8:7.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Ogasawara K, Yukawa H, Kobayashi M, et al. Prediction and monitoring of cerebral hyperperfusion after carotid endarterectomy by using single-photon emission computerized tomography scanning. J Neurosurg. 2003;99:504–10.CrossRefPubMedGoogle Scholar
  4. 4.
    Rose JC, Mayer SA. Optimizing blood pressure in neurological emergencies. Neurocrit Care. 2006;4:98.CrossRefPubMedGoogle Scholar
  5. 5.
    Waltz AG. Effect of blood pressure on blood flow in ischemic and in nonischemic cerebral cortex. The phenomena of autoregulation and luxury perfusion. Neurology. 1968;18:613–21.CrossRefPubMedGoogle Scholar
  6. 6.
    Markus HS. Cerebral perfusion and stroke. J Neurol Neurosurg Psychiatry. 2004;75:353–61.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Strandgaard S, Olesen J, Skinhoj E, Lassen NA. Autoregulation of brain circulation in severe arterial hypertension. Br Med J. 1973;1:507–10.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Dawson SL, Panerai RB, Potter JF. Serial changes in static and dynamic cerebral autoregulation after acute ischaemic stroke. Cerebrovasc Dis. 2003;16:69–75.CrossRefPubMedGoogle Scholar
  9. 9.
    Pryds O, Edwards AD. Cerebral blood flow in the newborn infant. Arch Dis Child Fetal Neonatal Ed. 1996;74:F63–9.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Tyszczuk L, Meek J, Elwell C, Wyatt JS. Cerebral blood flow is independent of mean arterial blood pressure in preterm infants undergoing intensive care. Pediatrics. 1998;102:337–41.CrossRefPubMedGoogle Scholar
  11. 11.
    Pan J, Konstas AA, Bateman B, Ortolano GA, Pile-Spellman J. Reperfusion injury following cerebral ischemia: pathophysiology, MR imaging, and potential therapies. Neuroradiology. 2007;49:93–102.CrossRefPubMedGoogle Scholar
  12. 12.
    Symon L, Branston NM, Strong AJ. Autoregulation in acute focal ischemia. An experimental study. Stroke. 1976;7:547–54.CrossRefPubMedGoogle Scholar
  13. 13.
    Jiang WJ. Cerebral perfusion imaging. The carotid and supra-aortic trunks: diagnosis, angioplasty and stenting. 2nd ed. Chichester: John Wiley & Sons, Ltd; 2011. p. 76–85.CrossRefGoogle Scholar
  14. 14.
    Jorgensen LG, Schroeder TV. Defective cerebrovascular autoregulation after carotid endarterectomy. Eur J Vasc Surg. 1993;7:370–9.CrossRefPubMedGoogle Scholar
  15. 15.
    Vaughan CJ, Delanty N. Hypertensive emergencies. Lancet. 2000;356:411–7.CrossRefPubMedGoogle Scholar
  16. 16.
    Bernstein M, Fleming JF, Deck JH. Cerebral hyperperfusion after carotid endarterectomy: a cause of cerebral hemorrhage. Neurosurgery. 1984;15:50-6.PubMedGoogle Scholar
  17. 17.
    Janigro D, West GA, Nguyen TS, Winn HR. Regulation of blood-brain barrier endothelial cells by nitric oxide. Circ Res. 1994;75:528–38.CrossRefPubMedGoogle Scholar
  18. 18.
    Ogasawara K, Inoue T, Kobayashi M, Endo H, Fukuda T, Ogawa A. Pretreatment with the free radical scavenger edaravone prevents cerebral hyperperfusion after carotid endarterectomy. Neurosurgery. 2004;55:1060–7.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Timmers HJ, Wieling W, Karemaker JM, Lenders JW. Baroreflex failure: a neglected type of secondary hypertension. Neth J Med. 2004;62:151–5.PubMedPubMedCentralGoogle Scholar
  20. 20.
    Macfarlane R, Moskowitz MA, Sakas DE, Tasdemiroglu E, Wei EP, Kontos HA. The role of neuroeffector mechanisms in cerebral hyperperfusion syndromes. J Neurosurg. 1991;75:845–55.CrossRefPubMedGoogle Scholar
  21. 21.
    Edvinsson L, McCulloch J, Kingman T, Uddman R. On the functional role of the trigemino-cerebrovascular system in the regulation of cerebral circulation. In: Neural regulation of the brain cerebral circulation. New York, NY: Elsevier; 1986. p. 407–18.Google Scholar
  22. 22.
    Sundt TM Jr, Sharbrough FW, Piepgras DG, Kearns TP, Messick JM Jr, O’Fallon WM. Correlation of cerebral blood flow and electroencephalographic changes during carotid endarterectomy: with results of surgery and hemodynamics of cerebral ischemia. Mayo Clin Proc. 1981;56:533–43.PubMedGoogle Scholar
  23. 23.
    Sbarigia E, Speziale F, Giannoni MF, Colonna M, Panico MA, Fiorani P. Post-carotid endarterectomy hyperperfusion syndrome: preliminary observations for identifying at risk patients by transcranial Doppler sonography and the acetazolamide test. Eur J Vasc Surg. 1993;7:252–6.CrossRefPubMedGoogle Scholar
  24. 24.
    Hosoda K, Kawaguchi T, Shibata Y, et al. Cerebral vasoreactivity and internal carotid artery flow help to identify patients at risk for hyperperfusion after carotid endarterectomy. Stroke. 2001;32:1567–73.CrossRefPubMedGoogle Scholar
  25. 25.
    Nielsen MY, Sillesen HH, Jorgensen LG, Schroeder TV. The haemodynamic effect of carotid endarterectomy. Eur J Vasc Endovasc Surg. 2002;24:53–8.CrossRefPubMedGoogle Scholar
  26. 26.
    Ascher E, Markevich N, Schutzer RW, Kallakuri S, Jacob T, Hingorani AP. Cerebral hyperperfusion syndrome after carotid endarterectomy: predictive factors and hemodynamic changes. J Vasc Surg. 2003;37:769–77.CrossRefPubMedGoogle Scholar
  27. 27.
    Yoshimoto T, Houkin K, Kuroda S, Abe H, Kashiwaba T. Low cerebral blood flow and perfusion reserve induce hyperperfusion after surgical revascularization: case reports and analysis of cerebral hemodynamics. Surg Neurol. 1997;48:132–8. discussion 8–9.CrossRefPubMedGoogle Scholar
  28. 28.
    Byrom FB. The pathogenesis of hypertensive encephalopathy and its relation to the malignant phase of hypertension; experimental evidence from the hypertensive rat. Lancet. 1954;267:201–11.CrossRefPubMedGoogle Scholar
  29. 29.
    Schwartz RB. Hyperperfusion encephalopathies: hypertensive encephalopathy and related conditions. Neurologist. 2002;8:22–34.CrossRefPubMedGoogle Scholar
  30. 30.
    Okazaki H. Fundamentals of neuropathology. Morphologic basics of neurologic disorders. New York, NY: Igaku-Shoin; 1989.Google Scholar
  31. 31.
    Moncada S, Higgs A. The L-arginine-nitric oxide pathway. N Engl J Med. 1993;329:2002–12.CrossRefPubMedGoogle Scholar
  32. 32.
    Busija DW, Heistad DD. Factors involved in the physiological regulation of the cerebral circulation. Rev Physiol Biochem Pharmacol. 1984;101:161–211.CrossRefPubMedGoogle Scholar
  33. 33.
    Beausang-Linder M, Bill A. Cerebral circulation in acute arterial hypertension--protective effects of sympathetic nervous activity. Acta Physiol Scand. 1981;111:193–9.CrossRefPubMedGoogle Scholar
  34. 34.
    Dacey RG Jr, Duling BR. A study of rat intracerebral arterioles: methods, morphology, and reactivity. Am J Phys. 1982;243:H598–606.Google Scholar
  35. 35.
    Ngai AC, Winn HR. Modulation of cerebral arteriolar diameter by intraluminal flow and pressure. Circ Res. 1995;77:832–40.CrossRefPubMedGoogle Scholar
  36. 36.
    Edvinsson L, Owman C, Sjoberg NO. Autonomic nerves, mast cells, and amine receptors in human brain vessels. A histochemical and pharmacological study. Brain Res. 1976;115:377–93.CrossRefPubMedGoogle Scholar
  37. 37.
    Neal CR, Michel CC. Openings in frog microvascular endothelium induced by high intravascular pressures. J Physiol. 1996;492(Pt 1):39–52.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Johansson BB. Hypertension mechanisms causing stroke. Clin Exp Pharmacol Physiol. 1999;26:563–5.CrossRefPubMedGoogle Scholar
  39. 39.
    Wardlaw JM, Doubal F, Armitage P, et al. Lacunar stroke is associated with diffuse blood-brain barrier dysfunction. Ann Neurol. 2009;65:194–202.CrossRefPubMedGoogle Scholar
  40. 40.
    Yoshimoto T, Shirasaka T, Yoshizumi T, Fujimoto S, Kaneko S, Kashiwaba T. Evaluation of carotid distal pressure for prevention of hyperperfusion after carotid endarterectomy. Surg Neurol. 2005;63:554–7. discussion 7–8.CrossRefPubMedGoogle Scholar
  41. 41.
    Coutts SB, Hill MD, Hu WY. Hyperperfusion syndrome: toward a stricter definition. Neurosurgery. 2003;53:1053–8. discussion 8–60.CrossRefPubMedGoogle Scholar
  42. 42.
    Dalman JE, Beenakkers IC, Moll FL, Leusink JA, Ackerstaff RG. Transcranial Doppler monitoring during carotid endarterectomy helps to identify patients at risk of postoperative hyperperfusion. Eur J Vasc Endovasc Surg. 1999;18:222–7.CrossRefPubMedGoogle Scholar
  43. 43.
    Sacco RL, Adams R, Albers G, et al. Guidelines for prevention of stroke in patients with ischemic stroke or transient ischemic attack: a statement for healthcare professionals from the American Heart Association/American Stroke Association Council on Stroke: co-sponsored by the Council on Cardiovascular Radiology and Intervention: the American Academy of Neurology affirms the value of this guideline. Circulation. 2006;113:e409–49.PubMedGoogle Scholar
  44. 44.
    Tietjen CS, Hurn PD, Ulatowski JA, Kirsch JR. Treatment modalities for hypertensive patients with intracranial pathology: options and risks. Crit Care Med. 1996;24:311–22.CrossRefPubMedGoogle Scholar
  45. 45.
    Muzzi DA, Black S, Losasso TJ, Cucchiara RF. Labetalol and esmolol in the control of hypertension after intracranial surgery. Anesth Analg. 1990;70:68-71.PubMedGoogle Scholar
  46. 46.
    Ahn SS, Marcus DR, Moore WS. Post-carotid endarterectomy hypertension: association with elevated cranial norepinephrine. J Vasc Surg. 1989;9:351–60.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Weijian Jiang
    • 1
  • Chen Li
    • 1
  • Mohamad Orabi
    • 2
  • Wuwei Feng
    • 2
  1. 1.Vascular Neurosurgery Department of New Era Stroke Care and Research InstituteThe PLA Rocket Force General HospitalBeijingChina
  2. 2.MUSC Stroke Center, Department of NeurologyMedical University of South CarolinaCharlestonUSA

Personalised recommendations