Animal Models of REM Sleep Behavior Disorder

  • Yuan-Yang LaiEmail author
  • Kung-Chiao Hsieh
  • Jerome M. Siegel


Evidence from animal studies indicates the importance of the dorsomedial and medial pontine tegmentum and the ventromedial medulla in maintaining muscle tone inhibition during REM sleep; however, the symptoms in animals with lesions in these areas do not fully mimic the symptoms of human REM sleep behavior disorder (RBD). This chapter summarizes the findings in our laboratory and offers a hypothesis on the neural network involved in the modulation of motor activity in sleep, the neural structures participating in the generation of RBD, and a hypothetical link between RBD and Parkinsonism.


Periodic leg movement Ventral mesopontine junction Inferior colliculus Microinfusion 


  1. 1.
    Fernandez-Arcos A, Iranzo A, Serradell M, Gaig C, Santamaria J. The clinical phenotype of idiopathic rapid eye movement sleep behavior disorder at presentation: a study in 203 consecutive patients. Sleep. 2016;39(1):121–32.CrossRefGoogle Scholar
  2. 2.
    Schenck CH, Bundlie SR, Ettinger MG, Mahowald MW. Chronic behavioral disorders of human REM sleep: a new category of parasomnia. Sleep. 1986;9(2):293–308.CrossRefGoogle Scholar
  3. 3.
    Jouvet M, Delorme F. Locus coeruleus et sommeil paradoxal. Compt Rend Soc Biol. 1965;159:895–9.Google Scholar
  4. 4.
    Magoun HW, Rhines R. An inhibitory mechanism in the bulbar reticular formation. J Neurophysiol. 1946;9:165–71.CrossRefGoogle Scholar
  5. 5.
    Lai YY, Siegel JM. Muscle tone suppression and stepping produced by stimulation of midbrain and rostral pontine reticular formation. J Neurosci. 1990;10(8):2727–34.CrossRefGoogle Scholar
  6. 6.
    Lai YY, Clements JR, Wu XY, Shalita T, Wu JP, Kuo JS, Siegel JM. Brainstem projections to the ventromedial medulla in cat: retrograde transport horseradish peroxidase and immunohistochemical studies. J Comp Neurol. 1999;408(3):419–36.CrossRefGoogle Scholar
  7. 7.
    Shiromani PJ, Lai YY, Siegel JM. Descending projections from the dorsolateral pontine tegmentum to the paramedian reticular nucleus of the caudal medulla in the cat. Brain Res. 1990;517(1–2):224–8.CrossRefGoogle Scholar
  8. 8.
    Lai YY, Siegel JM. Pontomedullary glutamate receptors mediating locomotion and muscle tone suppression. J Neurosci. 1991;11(9):2931–7.CrossRefGoogle Scholar
  9. 9.
    Hajnik T, Lai YY, Siegel JM. Atonia-related regions in the rodent pons and medulla. J Neurophysiol. 2000;84(4):1942–8.CrossRefGoogle Scholar
  10. 10.
    Lai YY, Siegel JM. Medullary regions mediating atonia. J Neurosci. 1988;8(12):4790–6.CrossRefGoogle Scholar
  11. 11.
    Siegel JM, Wheeler RL, McGinty DJ. Activity of medullary reticular formation neurons in the unrestrained cat during waking and sleep. Brain Res. 1979;179(1):49–60.CrossRefGoogle Scholar
  12. 12.
    Lai YY, Clements JR, Siegel JM. Glutamatergic and cholinergic projections to the pontine inhibitory area identified with horseradish peroxidase retrograde transport and immunohistochemistry. J Comp Neurol. 1993;336(3):321–30.CrossRefGoogle Scholar
  13. 13.
    Sakai K, Kanamori N, Jouvet M. [Neuronal activity specific to paradoxical sleep in the bulbar reticular formation in the unrestrained cat]. C R Seances Acad Sci D. 1979;289(6):557–61.Google Scholar
  14. 14.
    Schenkel E, Siegel JM. REM sleep without atonia after lesions of the medial medulla. Neurosci Lett. 1989;98(2):159–65.CrossRefGoogle Scholar
  15. 15.
    Kodama T, Lai YY, Siegel JM. Suppression of muscle tone by the medulla: distinct roles of nucleus gigantocellularis and magnocellularis. Program No. 300, Soc Neurosci Abstract; 2010.Google Scholar
  16. 16.
    White SR, Neuman RS. Facilitation of spinal motoneurone excitability by 5-hydroxytryptamine and noradrenaline. Brain Res. 1980;188(1):119–27.CrossRefGoogle Scholar
  17. 17.
    Lai YY, Strahlendorf HK, Fung SJ, Barnes CD. The actions of two monoamines on spinal motoneurons from stimulation of the locus coeruleus in the cat. Brain Res. 1989;484(1–2):268–72.CrossRefGoogle Scholar
  18. 18.
    Wu MF, Gulyani SA, Yau E, Mignot E, Phan B, Siegel JM. Locus coeruleus neurons: cessation of activity during cataplexy. Neuroscience. 1999;91(4):1389–99.CrossRefGoogle Scholar
  19. 19.
    Lai YY, Kodama T, Siegel JM. Changes in monoamine release in the ventral horn and hypoglossal nucleus linked to pontine inhibition of muscle tone: an in vivo microdialysis study. J Neurosci. 2001;21(18):7384–91.CrossRefGoogle Scholar
  20. 20.
    Lai YY, Kodama T, Schenkel E, Siegel JM. Behavioral response and transmitter release during atonia elicited by medial medullary stimulation. J Neurophysiol. 2010;104(4):2024–33.CrossRefGoogle Scholar
  21. 21.
    Kodama T, Lai YY, Siegel JM. Changes in inhibitory amino acid release linked to pontine-induced atonia: an in vivo microdialysis study. J Neurosci. 2003;23(4):1548–54.CrossRefGoogle Scholar
  22. 22.
    Holstege JC, Bongers CM. A glycinergic projection from the ventromedial lower brainstem to spinal motoneurons. An ultrastructural double labeling study in rat. Brain Res. 1991;566(1–2):308–15.CrossRefGoogle Scholar
  23. 23.
    Mileykovskiy BY, Kiyashchenko LI, Kodama T, Lai YY, Siegel JM. Activation of pontine and medullary motor inhibitory regions reduces discharge in neurons located in the locus coeruleus and the anatomical equivalent of the midbrain locomotor region. J Neurosci. 2000;20(22):8551–8.CrossRefGoogle Scholar
  24. 24.
    Sanford LD, Morrison AR, Mann GL, Harris JS, Yoo L, Ross RJ. Sleep patterning and behaviour in cats with pontine lesions creating REM without atonia. J Sleep Res. 1994;3(4):233–40.CrossRefGoogle Scholar
  25. 25.
    Shouse MN, Siegel JM. Pontine regulation of REM sleep components in cats: integrity of the pedunculopontine tegmentum (PPT) is important for phasic events but unnecessary for atonia during REM sleep. Brain Res. 1992;571(1):50–63.CrossRefGoogle Scholar
  26. 26.
    Schenck CH, MW M. A polysomnographic, neurologic, psychiatric, and clinical outcome report on 70 consecutive cases with REM sleep behavior disorder (RBD): sustained clonazepam efficacy in 89.5% of 57 treated patients. Clev Clin J Med. 1990;57(Suppl):S9–S23.Google Scholar
  27. 27.
    Lai YY, Siegel JM. Brainstem-mediated locomotion and myoclonic jerks. I. Neural substrates. Brain Res. 1997;745(1–2):257–64.CrossRefGoogle Scholar
  28. 28.
    Lai YY, Siegel JM. Brainstem-mediated locomotion and myoclonic jerks. II. Pharmacological effects. Brain Res. 1997;745(1–2):265–70.CrossRefGoogle Scholar
  29. 29.
    Lai YY, Hsieh KC, Nguyen D, Peever J, Siegel JM. Neurotoxic lesions at the ventral mesopontine junction change sleep time and muscle activity during sleep: an animal model of motor disorders in sleep. Neuroscience. 2008;154(2):431–43.CrossRefGoogle Scholar
  30. 30.
    Mazza S, Soucy JP, Gravel P, Michaud M, Postuma R, Massicotte-Marquez J, Decary A, Montplaisir J. Assessing whole brain perfusion changes in patients with REM sleep behavior disorder. Neurology. 2006;67(9):1618–22.CrossRefGoogle Scholar
  31. 31.
    Salva MA, Guilleminault C. Olivopontocerebellar degeneration, abnormal sleep, and REM sleep without atonia. Neurology. 1986;36(4):576–7.CrossRefGoogle Scholar
  32. 32.
    Coleman JR, Clerici WJ. Sources of projections to subdivisions of the inferior colliculus in the rat. J Comp Neurol. 1987;262(2):215–26.CrossRefGoogle Scholar
  33. 33.
    Yasui Y, Nakano K, Kayahara T, Mizuno N. Non-dopaminergic projections from the substantia nigra pars lateralis to the inferior colliculus in the rat. Brain Res. 1991;559(1):139–44.CrossRefGoogle Scholar
  34. 34.
    Sugiyama Y, Shiba K, Nakazawa K, Suzuki T, Hisa Y. Brainstem vocalization area in guinea pigs. Neurosci Res. 2010;66(4):359–65.CrossRefGoogle Scholar
  35. 35.
    Juch PJ, Schaafsma A, van Willigen JD. Brainstem influences on biceps reflex activity and muscle tone in the anaesthetized rat. Neurosci Lett. 1992;140(1):37–41.CrossRefGoogle Scholar
  36. 36.
    Hsieh KC, Nguyen D, Siegel JM, Lai YY. New pathways and data on rapid eye movement sleep behaviour disorder in a rat model. Sleep Med. 2013;14(8):719–28.CrossRefGoogle Scholar
  37. 37.
    Valencia Garcia S, Libourel P-A, Lazarus M, Grassi D, Luppi P-H, Fort P. Genetic inactivation of glutamate neurons in the rat sublaterodorsal tegmental nucleus recapitulates REM sleep behavior disorder. Brain. 2017;140:414–28.CrossRefGoogle Scholar
  38. 38.
    Plazzi G, Corsini R, Provini F, Pierangeli G, Martinelli P, Montagna P, Lugaresi E, Cortelli P. REM sleep behavior disorders in multiple system atrophy. Neurology. 1997;48(4):1094–7.CrossRefGoogle Scholar
  39. 39.
    Wetter TC, Collado-Seidel V, Pollmacher T, Yassouridis A, Trenkwalder C. Sleep and periodic leg movement patterns in drug-free patients with Parkinson’s disease and multiple system atrophy. Sleep. 2000;23(3):361–7.CrossRefGoogle Scholar
  40. 40.
    Schenck CH, Bundlie SR, Mahowald MW. Delayed emergence of a Parkinsonian disorder in 38% of 29 older men initially diagnosed with idiopathic rapid eye movement sleep behaviour disorder. Neurology. 1996;46(2):388–93.CrossRefGoogle Scholar
  41. 41.
    Shalash AS, Hassan DM, Elrassas HH, Salama MM, Mendez-Hernandez E, Salas-Pacheco JM, Arias-Carrion O. Auditory- and vestibular-evoked potentials correlate with motor and non-motor features of Parkinson’s disease. Front Neurol. 2017;8:55.PubMedPubMedCentralGoogle Scholar
  42. 42.
    Kodama Y, Ieda T, Hirayama M, Koike Y, Ito H, Sobue G. Auditory brainstem responses in patients with autonomic failure with Parkinson’s disease and multiple system atrophy. J Auton Nerv Syst. 1999;77(2–3):184–9.CrossRefGoogle Scholar
  43. 43.
    Shin HY, Joo EY, Kim ST, Dhong HJ, Cho JW. Comparison study of olfactory function and substantia nigra hyperechogenicity in idiopathic REM sleep behavior disorder, Parkinson’s disease and normal control. Neurol Sci. 2013;34(6):935–40.CrossRefGoogle Scholar
  44. 44.
    Walker Z, Costa DC, Walker RW, Lee L, Livingston G, Jaros E, Perry R, McKeith I, Katona CL. Striatal dopamine transporter in dementia with Lewy bodies and Parkinson disease: a comparison. Neurology. 2004;62(9):1568–72.CrossRefGoogle Scholar
  45. 45.
    Murphy DD, Rueter SM, Trojanowski JQ, Lee VM. Synucleins are developmentally expressed, and alpha-synuclein regulates the size of the presynaptic vesicular pool in primary hippocampal neurons. J Neurosci. 2000;20(9):3214–20.CrossRefGoogle Scholar
  46. 46.
    Volpicelli-Daley LA, Luk KC, Patel TP, Tanik SA, Riddle DM, Stieber A, Meaney DF, Trojanowski JQ, Lee VM. Exogenous alpha-synuclein fibrils induce Lewy body pathology leading to synaptic dysfunction and neuron death. Neuron. 2011;72(1):57–71.CrossRefGoogle Scholar
  47. 47.
    Luk KC, Kehm V, Carroll J, Zhang B, O’Brien P, Trojanowski JQ, Lee VM. Pathological alpha-synuclein transmission initiates Parkinson-like neurodegeneration in nontransgenic mice. Science. 2012;338(6109):949–53.CrossRefGoogle Scholar
  48. 48.
    Ulusoy A, Rusconi R, Perez-Revuelta BI, Musgrove RE, Helwig M, Winzen-Reichert B, Di Monte DA. Caudo-rostral brain spreading of alpha-synuclein through vagal connections. EMBO Mol Med. 2013;5(7):1119–27.CrossRefGoogle Scholar
  49. 49.
    Manaker S, Fogarty PF. Raphespinal and reticulospinal neurons project to the dorsal vagal complex in the rat. Exp Brain Res. 1995;106(1):79–92.CrossRefGoogle Scholar
  50. 50.
    Rinaman L. Ascending projections from the caudal visceral nucleus of the solitary tract to brain regions involved in food intake and energy expenditure. Brain Res. 2010;1350:18–34.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • Yuan-Yang Lai
    • 1
    • 2
    Email author
  • Kung-Chiao Hsieh
    • 2
  • Jerome M. Siegel
    • 1
    • 2
  1. 1.Department of Psychiatry and Biobehavior SciencesDavid Geffen School of Medicine, University of California, Los AngelesLos AngelesUSA
  2. 2.Department of Veterans AffairsVA Greater Los Angeles HealthCare System, SepulvedaNorth HillsUSA

Personalised recommendations