Current Understanding of Genetic Factors in Idiopathic Scoliosis

  • Carol A. WiseEmail author
  • Shiro Ikegawa


Adolescent idiopathic scoliosis (AIS) is a common spinal deformity affecting 2–3% of children worldwide, yet its biologic origins are poorly understood. Epidemiology studies predict that susceptibility to AIS is mostly due to genetic factors that may differ between the sexes, as girls are at significantly greater risk of progressive disease than boys. The advent of affordable yet powerful next-generation sequencing technologies, very large reference datasets, and other publicly available tools and resources is essential for solving the complex genetic architecture of AIS. A small fraction of the total genetic risk in AIS has been discovered to date, mostly by population-based genome-wide association studies (GWAS) that correlate common polymorphisms with disease. Several validated loci point to noncoding regulatory elements that may regulate early spinal development. Rare variants are also expected to contribute to disease risk and are discoverable by well-powered sequence-based approaches. The ability to scale genetic studies through emerging technologies and consortium-sponsored collaboration will be key to defining the full genetic architecture of AIS and identifying biologic networks that may be therapeutically targetable. A second important goal of AIS research is to leverage genetic and clinical information to predict individual disease risk, risk of progression, and response to treatment.


Idiopathic scoliosis Musculoskeletal disorder Genomics GWAS WGS Epigenetics Systems biology Therapeutics 



We thank the patients, families, and other individuals who have participated in AIS genetic research studies. We also thank Sarah Lassen from the Media Department at Texas Scottish Rite Hospital for Children for helping with figures.


  1. 1.
    Appleby J, Mitchell PD, Robinson C, Brough A, Rutty G, Harris RA, et al. The scoliosis of Richard III, last Plantagenet King of England: diagnosis and clinical significance. Lancet. 2014;383(9932):1944.CrossRefPubMedGoogle Scholar
  2. 2.
    Herring J, editor. Tachdjian’s Pediatric Orthopaedics. 5th ed. Philadelphia: WB Saunders; 2013.Google Scholar
  3. 3.
    Hresko MT. Clinical practice. Idiopathic scoliosis in adolescents. N Engl J Med. 2013;368(9):834–41.CrossRefPubMedGoogle Scholar
  4. 4.
    Carter CO, Evans KA. Inheritance of congenital pyloric stenosis. J Med Genet. 1969;6(3):233–54.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Kruse LM, Buchan JG, Gurnett CA, Dobbs MB. Polygenic threshold model with sex dimorphism in adolescent idiopathic scoliosis: the Carter effect. J Bone Joint Surg Am. 2012;94(16):1485–91.CrossRefPubMedGoogle Scholar
  6. 6.
    Antonarakis SE, Chakravarti A, Cohen JC, Hardy J. Mendelian disorders and multifactorial traits: the big divide or one for all? Nat Rev Genet. 2010;11(5):380–4.CrossRefPubMedGoogle Scholar
  7. 7.
    Altshuler D, Daly MJ, Lander ES. Genetic mapping in human disease. Science. 2008;322(5903):881–8.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Spielman RS, Ewens WJ. The TDT and other family-based tests for linkage disequilibrium and association. Am J Hum Genet. 1996;59(5):983–9.PubMedPubMedCentralGoogle Scholar
  9. 9.
    Mailman MD, Feolo M, Jin Y, Kimura M, Tryka K, Bagoutdinov R, et al. The NCBI dbGaP database of genotypes and phenotypes. Nat Genet. 2007;39(10):1181–6.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Tryka KA, Hao L, Sturcke A, Jin Y, Wang ZY, Ziyabari L, et al. NCBI's Database of Genotypes and Phenotypes: dbGaP. Nucleic Acids Res. 2014;42(Database issue):D975–9.CrossRefGoogle Scholar
  11. 11.
    Freathy RM, Mook-Kanamori DO, Sovio U, Prokopenko I, Timpson NJ, Berry DJ, et al. Variants in ADCY5 and near CCNL1 are associated with fetal growth and birth weight. Nat Genet. 2010;42(5):430–5.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Hirata MNA, Kamatani Y, Ninomiya T, Tamakoshi A, Yamagata Z, Kubo M, Muto K, Kiyohara Y, Mushiroda T, Murakami Y, Yuji K, Furukawa Y, Zembutsu H, Tanaka T, Ohnishi Y, Nakamura Y, BioBank Japan Coperative Hospital Group, Matsuda K. Overview of BioBank Japan follow-up data in 32 diseases. J Epidemiol. 2017;27(3S):S22–S8.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Fuchsberger C, Flannick J, Teslovich TM, Mahajan A, Agarwala V, Gaulton KJ, et al. The genetic architecture of type 2 diabetes. Nature. 2016;536(7614):41–7.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Pasaniuc B, Price AL. Dissecting the genetics of complex traits using summary association statistics. Nat Rev Genet. 2017;18(2):117–27.CrossRefPubMedGoogle Scholar
  15. 15.
    Hindorff LA, Junkins H.A, Mehta JP, Manolio TA. A Catalog of Published Genome-Wide Association Studies. Available at: Accessed [date of access].
  16. 16.
    Hindorff LA, Morales J (European Bioinformatics Institute), Junkins HA, Hall PN, Klemm AK, and Manolio TA. A Catalog of Published Genome-Wide Association Studies. Available from:
  17. 17.
    Takahashi Y, Kou I, Takahashi A, Johnson TA, Kono K, Kawakami N, et al. A genome-wide association study identifies common variants near LBX1 associated with adolescent idiopathic scoliosis. Nat Genet. 2011;43(12):1237–40.CrossRefPubMedGoogle Scholar
  18. 18.
    Jiang H, Qiu X, Dai J, Yan H, Zhu Z, Qian B, et al. Association of rs11190870 near LBX1 with adolescent idiopathic scoliosis susceptibility in a Han Chinese population. Eur Spine J. 2013;22(2):282–6.CrossRefPubMedGoogle Scholar
  19. 19.
    Gao W, Peng Y, Liang G, Liang A, Ye W, Zhang L, et al. Association between common variants near LBX1 and adolescent idiopathic scoliosis replicated in the Chinese Han Population. PLoS One. 2013;8(1):e53234.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Londono D, et al. A meta-analysis identifies adolescent idiopathic scoliosis association with LBX1 locus in multiple ethnic groups. J Med Genet. 2014;6:401–6.CrossRefGoogle Scholar
  21. 21.
    Jagla K, Frasch M, Jagla T, Dretzen G, Bellard F, Bellard M. Ladybird, a new component of the cardiogenic pathway in Drosophila required for diversification of heart precursors. Development. 1997;124(18):3471–9.PubMedGoogle Scholar
  22. 22.
    Jagla K, Jagla T, Heitzler P, Dretzen G, Bellard F, Bellard M. Ladybird, a tandem of homeobox genes that maintain late wingless expression in terminal and dorsal epidermis of the Drosophila embryo. Development. 1997;124(1):91–100.PubMedGoogle Scholar
  23. 23.
    Jagla K, Dolle P, Mattei MG, Jagla T, Schuhbaur B, Dretzen G, et al. Mouse Lbx1 and human LBX1 define a novel mammalian homeobox gene family related to the Drosophila lady bird genes. Mech Dev. 1995;53(3):345–56.CrossRefPubMedGoogle Scholar
  24. 24.
    Gross MK, Moran-Rivard L, Velasquez T, Nakatsu MN, Jagla K, Goulding M. Lbx1 is required for muscle precursor migration along a lateral pathway into the limb. Development. 2000;127(2):413–24.PubMedGoogle Scholar
  25. 25.
    Brohmann H, Jagla K, Birchmeier C. The role of Lbx1 in migration of muscle precursor cells. Development. 2000;127(2):437–45.PubMedGoogle Scholar
  26. 26.
    Schafer K, Neuhaus P, Kruse J, Braun T. The homeobox gene Lbx1 specifies a subpopulation of cardiac neural crest necessary for normal heart development. Circ Res. 2003;92(1):73–80.CrossRefPubMedGoogle Scholar
  27. 27.
    Gross MK, Dottori M, Goulding M. Lbx1 specifies somatosensory association interneurons in the dorsal spinal cord. Neuron. 2002;34(4):535–49.CrossRefPubMedGoogle Scholar
  28. 28.
    Muller T, Brohmann H, Pierani A, Heppenstall PA, Lewin GR, Jessell TM, et al. The homeodomain factor lbx1 distinguishes two major programs of neuronal differentiation in the dorsal spinal cord. Neuron. 2002;34(4):551–62.CrossRefPubMedGoogle Scholar
  29. 29.
    Guo L, Yamashita H, Kou I, Takimoto A, Meguro-Horike M, Horike S, et al. Functional investigation of a non-coding variant associated with adolescent idiopathic scoliosis in zebrafish: elevated expression of the ladybird homeobox gene causes body axis deformation. PLoS Genet. 2016;12(1):e1005802.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Kou I, Takahashi Y, Johnson TA, Takahashi A, Guo L, Dai J, et al. Genetic variants in GPR126 are associated with adolescent idiopathic scoliosis. Nat Genet. 2013;45:676–9.CrossRefPubMedGoogle Scholar
  31. 31.
    Xu JF, Yang GH, Pan XH, Zhang SJ, Zhao C, Qiu BS, et al. Association of GPR126 gene polymorphism with adolescent idiopathic scoliosis in Chinese populations. Genomics. 2015;105(2):101–7.CrossRefPubMedGoogle Scholar
  32. 32.
    Soranzo N, Rivadeneira F, Chinappen-Horsley U, Malkina I, Richards JB, Hammond N, et al. Meta-analysis of genome-wide scans for human adult stature identifies novel Loci and associations with measures of skeletal frame size. PLoS Genet. 2009;5(4):e1000445.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Shukunami C, Shigeno C, Atsumi T, Ishizeki K, Suzuki F, Hiraki Y. Chondrogenic differentiation of clonal mouse embryonic cell line ATDC5 in vitro: differentiation-dependent gene expression of parathyroid hormone (PTH)/PTH-related peptide receptor. J Cell Biol. 1996;133(2):457–68.CrossRefPubMedGoogle Scholar
  34. 34.
    Ikegawa S. Genomic study of adolescent idiopathic scoliosis in Japan. Scoliosis Spinal Disord. 2016;11:5.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Langenhan T, Aust G, Hamann J. Sticky signaling--adhesion class g protein-coupled receptors take the stage. Sci Signal. 2013;6(276):re3.CrossRefPubMedGoogle Scholar
  36. 36.
    Monk KR, Naylor SG, Glenn TD, Mercurio S, Perlin JR, Dominguez C, et al. A G protein-coupled receptor is essential for Schwann cells to initiate myelination. Science. 2009;325(5946):1402–5.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Monk KR, Oshima K, Jors S, Heller S, Talbot WS. Gpr126 is essential for peripheral nerve development and myelination in mammals. Development. 2011;138(13):2673–80.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Waller-Evans H, Promel S, Langenhan T, Dixon J, Zahn D, Colledge WH, et al. The orphan adhesion-GPCR GPR126 is required for embryonic development in the mouse. PLoS One. 2010;5(11):e14047.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Geng FS, Abbas L, Baxendale S, Holdsworth CJ, Swanson AG, Slanchev K, et al. Semicircular canal morphogenesis in the zebrafish inner ear requires the function of gpr126 (lauscher), an adhesion class G protein-coupled receptor gene. Development. 2013;140(21):4362–74.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Karner CM, Long F, Solnica-Krezel L, Monk KR, Gray RS. Gpr126/Adgrg6 deletion in cartilage models idiopathic scoliosis and pectus excavatum in mice. Hum Mol Genet. 2015;24(15):4365–73.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Ogura Y, Kou I, Miura S, Takahashi A, Xu L, Takeda K, et al. A functional SNP in BNC2 is associated with adolescent idiopathic scoliosis. Am J Hum Genet. 2015;97(2):337–42.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Sharma S, Londono D, Eckalbar WL, Gao X, Zhang D, Mauldin K, et al. A PAX1 enhancer locus is associated with susceptibility to idiopathic scoliosis in females. Nat Commun. 2015;6:6452.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Wallin J, Wilting J, Koseki H, Fritsch R, Christ B, Balling R. The role of Pax-1 in axial skeleton development. Development. 1994;120(5):1109–21.PubMedGoogle Scholar
  44. 44.
    Zhu Z, Tang NL, Xu L, Qin X, Mao S, Song Y, et al. Genome-wide association study identifies new susceptibility loci for adolescent idiopathic scoliosis in Chinese girls. Nat Commun. 2015;6:8355.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Bharti S, Handrow-Metzmacher H, Zickenheiner S, Zeitvogel A, Baumann R, Starzinski-Powitz A. Novel membrane protein shrew-1 targets to cadherin-mediated junctions in polarized epithelial cells. Mol Biol Cell. 2004;15(1):397–406.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Schubert FR, Tremblay P, Mansouri A, Faisst AM, Kammandel B, Lumsden A, et al. Early mesodermal phenotypes in splotch suggest a role for Pax3 in the formation of epithelial somites. Dev Dyn. 2001;222(3):506–21.CrossRefPubMedGoogle Scholar
  47. 47.
    Buckingham M, Relaix F. The role of Pax genes in the development of tissues and organs: Pax3 and Pax7 regulate muscle progenitor cell functions. Annu Rev Cell Dev Biol. 2007;23:645–73.CrossRefPubMedGoogle Scholar
  48. 48.
    Young AP, Wagers AJ. Pax3 induces differentiation of juvenile skeletal muscle stem cells without transcriptional upregulation of canonical myogenic regulatory factors. J Cell Sci. 2010;123(Pt 15):2632–9.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Relaix F, Rocancourt D, Mansouri A, Buckingham M. A Pax3/Pax7-dependent population of skeletal muscle progenitor cells. Nature. 2005;435(7044):948–53.CrossRefPubMedGoogle Scholar
  50. 50.
    Kullander K, Butt SJ, Lebret JM, Lundfald L, Restrepo CE, Rydstrom A, et al. Role of EphA4 and EphrinB3 in local neuronal circuits that control walking. Science. 2003;299(5614):1889–92.CrossRefPubMedGoogle Scholar
  51. 51.
    Farlie PG, Dringen R, Rees SM, Kannourakis G, Bernard O. bcl-2 transgene expression can protect neurons against developmental and induced cell death. Proc Natl Acad Sci U S A. 1995;92(10):4397–401.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Moriishi T, Maruyama Z, Fukuyama R, Ito M, Miyazaki T, Kitaura H, et al. Overexpression of Bcl2 in osteoblasts inhibits osteoblast differentiation and induces osteocyte apoptosis. PLoS One. 2011;6(11):e27487.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Wu J, Qiu Y, Zhang L, Sun Q, Qiu X, He Y. Association of estrogen receptor gene polymorphisms with susceptibility to adolescent idiopathic scoliosis. Spine (Phila Pa 1976). 2006;31(10):1131–6.CrossRefGoogle Scholar
  54. 54.
    Zhang HQ, Lu SJ, Tang MX, Chen LQ, Liu SH, Guo CF, et al. Association of estrogen receptor beta gene polymorphisms with susceptibility to adolescent idiopathic scoliosis. Spine (Phila Pa 1976). 2009;34(8):760–4.CrossRefGoogle Scholar
  55. 55.
    Chen Z, Tang NL, Cao X, Qiao D, Yi L, Cheng JC, et al. Promoter polymorphism of matrilin-1 gene predisposes to adolescent idiopathic scoliosis in a Chinese population. Eur J Hum Genet. 2009;17(4):525–32.CrossRefPubMedGoogle Scholar
  56. 56.
    Yeung HY, Tang NL, Lee KM, Ng BK, Hung VW, Kwok R, et al. Genetic association study of insulin-like growth factor-I (IGF-I) gene with curve severity and osteopenia in adolescent idiopathic scoliosis. Stud Health Technol Inform. 2006;123:18–24.PubMedGoogle Scholar
  57. 57.
    Miyake A, Kou I, Takahashi Y, Johnson TA, Ogura Y, Dai J, et al. Identification of a susceptibility locus for severe adolescent idiopathic scoliosis on chromosome 17q24.3. PLoS One. 2013;8(9):e72802.CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Dy P, Wang W, Bhattaram P, Wang Q, Wang L, Ballock RT, et al. Sox9 directs hypertrophic maturation and blocks osteoblast differentiation of growth plate chondrocytes. Dev Cell. 2012;22(3):597–609.CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Liu CF, Lefebvre V. The transcription factors SOX9 and SOX5/SOX6 cooperate genome-wide through super-enhancers to drive chondrogenesis. Nucleic Acids Res. 2015;43(17):8183–203.CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Lekovic GP, Rekate HL, Dickman CA, Pearson M. Congenital cervical instability in a patient with camptomelic dysplasia. Child’s Nerv Syst. 2006;22(9):1212–4.CrossRefGoogle Scholar
  61. 61.
    Henry SP, Liang S, Akdemir KC, de Crombrugghe B. The postnatal role of Sox9 in cartilage. J Bone Miner Res. 2012;27(12):2511–25.CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Wunderle VM, Critcher R, Hastie N, Goodfellow PN, Schedl A. Deletion of long-range regulatory elements upstream of SOX9 causes campomelic dysplasia. Proc Natl Acad Sci U S A. 1998;95(18):10649–54.CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Gordon CT, Tan TY, Benko S, Fitzpatrick D, Lyonnet S, Farlie PG. Long-range regulation at the SOX9 locus in development and disease. J Med Genet. 2009;46(10):649–56.CrossRefPubMedGoogle Scholar
  64. 64.
    Zhang X, Cowper-Sal lari R, Bailey SD, Moore JH, Lupien M. Integrative functional genomics identifies an enhancer looping to the SOX9 gene disrupted by the 17q24.3 prostate cancer risk locus. Genome Res. 2012;22(8):1437–46.CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Tristani-Firouzi M, Etheridge SP. Kir 2.1 channelopathies: the Andersen-Tawil syndrome. Pflugers Arch. 2010;460(2):289–94.CrossRefPubMedGoogle Scholar
  66. 66.
    Plaster NM, Tawil R, Tristani-Firouzi M, Canun S, Bendahhou S, Tsunoda A, et al. Mutations in Kir2.1 cause the developmental and episodic electrical phenotypes of Andersen’s syndrome. Cell. 2001;105(4):511–9.CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Lestner JM, Ellis R, Canham N. Delineating the 17q24.2-q24.3 microdeletion syndrome phenotype. Eur J Med Genet. 2012;55(12):700–4.CrossRefPubMedGoogle Scholar
  68. 68.
    Blyth M, Huang S, Maloney V, Crolla JA, Karen Temple I. A 2.3Mb deletion of 17q24.2-q24.3 associated with ‘Carney complex plus’. Eur J Med Genet. 2008;51(6):672–8.CrossRefPubMedGoogle Scholar
  69. 69.
    KI OY, Takahashi Y, Takeda K, Minami S, Kawakami N, Uno K, Ito M, Yonezawa I, Kaito T, Yanagida H, Watanabe K, Taneichi H, Harimaya K, Taniguchi Y, Kotani T, Tsuji T, Suzuki T, Sudo H, Fujita N, Yagi M, Chiba K, Kubo M, Kamatani Y, Nakamura M, Matsumoto M, Japan Scoliosis Clinical Research Group, Watanabe K, Ikegawa S, Japan Scoliosis Clinical Research Group. A functional variant in MIR4300HG, the host gene of microRNA MIR4300 is associated with progression of adolescent idiopathic scoliosis. Hum Mol Genet. 2017;26(20):4086–92.CrossRefGoogle Scholar
  70. 70.
    Weinstein SL. Natural history. Spine (Phila Pa 1976). 1999;24(24):2592–600.CrossRefGoogle Scholar
  71. 71.
    Carman DL, Browne RH, Birch JG. Measurement of scoliosis and kyphosis radiographs. Intraobserver and interobserver variation. J Bone Joint Surg. 1990;72(3):328–33.CrossRefPubMedGoogle Scholar
  72. 72.
    Londono D, Chen KM, Musolf A, Wang R, Shen T, Brandon J, et al. A novel method for analyzing genetic association with longitudinal phenotypes. Stat Appl Genet Mol Biol. 2013;12(2):241–61.CrossRefPubMedGoogle Scholar
  73. 73.
    Lek M, Karczewski KJ, Minikel EV, Samocha KE, Banks E, Fennell T, et al. Analysis of protein-coding genetic variation in 60,706 humans. Nature. 2016;536(7616):285–91.CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Chatterjee S, Ahituv N. Gene regulatory elements, major drivers of human disease. Annu Rev Genomics Hum Genet. 2017;18:45–63.CrossRefPubMedGoogle Scholar
  75. 75.
    Lee S, Emond MJ, Bamshad MJ, Barnes KC, Rieder MJ, Nickerson DA, et al. Optimal unified approach for rare-variant association testing with application to small-sample case-control whole-exome sequencing studies. Am J Hum Genet. 2012;91(2):224–37.CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Consortium EP, Bernstein BE, Birney E, Dunham I, Green ED, Gunter C, et al. An integrated encyclopedia of DNA elements in the human genome. Nature. 2012;489(7414):57–74.CrossRefGoogle Scholar
  77. 77.
    Buchan JG, Alvarado DM, Haller GE, Cruchaga C, Harms MB, Zhang T, et al. Rare variants in FBN1 and FBN2 are associated with severe adolescent idiopathic scoliosis. Hum Mol Genet. 2014;23(19):5271–82.CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Loeys BL, Dietz HC, Braverman AC, Callewaert BL, De Backer J, Devereux RB, et al. The revised Ghent nosology for the Marfan syndrome. J Med Genet. 2010;47(7):476–85.CrossRefPubMedGoogle Scholar
  79. 79.
    Haller G, Alvarado D, McCall K, Yang P, Cruchaga C, Harms M, et al. A polygenic burden of rare variants across extracellular matrix genes among individuals with adolescent idiopathic scoliosis. Hum Mol Genet. 2016;25(1):202–9.CrossRefPubMedGoogle Scholar
  80. 80.
    Project e. Enhancing GTEx by bridging the gaps between genotype, gene expression, and disease. Nat Genet. 2017;49:1664–70.CrossRefGoogle Scholar
  81. 81.
    Grun D, van Oudenaarden A. Design and analysis of single-cell sequencing experiments. Cell. 2015;163(4):799–810.CrossRefPubMedGoogle Scholar
  82. 82.
    Temple IK, Cockwell A, Hassold T, Pettay D, Jacobs P. Maternal uniparental disomy for chromosome 14. J Med Genet. 1991;28(8):511–4.CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Cleynen I, Boucher G, Jostins L, Schumm LP, Zeissig S, Ahmad T, et al. Inherited determinants of Crohn's disease and ulcerative colitis phenotypes: a genetic association study. Lancet. 2016;387(10014):156–67.CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Felix MA, Barkoulas M. Pervasive robustness in biological systems. Nat Rev Genet. 2015;16(8):483–96.CrossRefPubMedGoogle Scholar
  85. 85.
    Londono D, Kou I, Johnson TA, Sharma S, Ogura Y, Tsunoda T, et al. A meta-analysis identifies adolescent idiopathic scoliosis association with LBX1 locus in multiple ethnic groups. J Med Genet. 2014;51(6):401–6.CrossRefPubMedGoogle Scholar
  86. 86.
    Giampietro PF, Pourquié O, Raggio C, Ikegawa S, Turnpenny PD, Gray R, et al. Summary of the first inaugural joint meeting of the International Consortium for scoliosis genetics and the International Consortium for Vertebral Anomalies and Scoliosis, March 16–18, 2017, Dallas, Texas. Am J Med Genet A. 2017;176(1):253–6.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Sarah M. and Charles E. Seay Center for Musculoskeletal ResearchTexas Scottish Rite Hospital for ChildrenDallasUSA
  2. 2.Departments of Orthopaedic Surgery, Pediatrics, and McDermott Center for Human Growth and DevelopmentUniversity of Texas Southwestern Medical CenterDallasUSA
  3. 3.Laboratory for Bone and Joint Diseases, RIKEN Center for Integrative Medical SciencesTokyoJapan

Personalised recommendations