Advertisement

Congenital Scoliosis and Segmentation Defects of the Vertebrae in the Genetic Clinic

  • Peter D. Turnpenny
Chapter

Abstract

Segmentation defects of the vertebrae (SDV) often give rise to congenital scoliosis (CS), or early-onset scoliosis, but the radiological phenotypes seen in clinical practice are numerous and diverse and frequently present significant challenges, not only in surgical decision-making but also in reaching an underlying diagnosis and providing genetic risk counselling. Abnormalities of development may affect formation and/or segmentation, single or multiple vertebrae may be affected, and any spinal region, or combination of regions, may be involved. Anomalies of rib formation and alignment are commonly associated, and other organ systems may be involved as part of an underlying syndrome. In general, our understanding of the causation of this hugely diverse group of malformation conditions is poor, but progress has been made through studying relatively rare families demonstrating Mendelian inheritance, aided in recent years by the power of next-generation sequencing technologies.

References

  1. 1.
    Wynne-Davies R. Infantile idiopathic scoliosis. Causative factors, particularly in the first six months of life. J Bone Joint Surg Br. 1975;57:138–41.CrossRefPubMedGoogle Scholar
  2. 2.
    Vitko RJ, Cass AS, Winter RB. Anomalies of the genitourinary tract associated with congenital scoliosis and congenital kyphosis. J Urol. 1972;108:655–9.CrossRefPubMedGoogle Scholar
  3. 3.
    Erol B, Tracy MR, Dormans JP, Zackai EH, Tonnesen M, O’Brien ML, et al. Congenital scoliosis and vertebral malformations: characterization of segmental defects for genetic analysis. J Pediatr Orthop. 2004;24:674–82.CrossRefPubMedGoogle Scholar
  4. 4.
    Purkiss SB, Driscoll B, Cole WG, Alman B. Idiopathic scoliosis in families of children with congenital scoliosis. Clin Orthop Relat Res. 2002;401:27–31.CrossRefGoogle Scholar
  5. 5.
    Maisenbacher MK, Han JS, O’Brien ML, Tracy MR, Erol B, Schaffer AA, et al. Molecular analysis of congenital scoliosis: a candidate gene approach. Hum Genet. 2005;116(5):416–9.CrossRefPubMedGoogle Scholar
  6. 6.
    McGaughran J, Oates A, Donnai D, Read AP, Tassabehji M. Mutations in PAX1 may be associated with Klippel-Feil syndrome. Eur J Hum Genet. 2003;11:468–74.CrossRefGoogle Scholar
  7. 7.
    Philibert P, Biason-Lauber A, Rouzier R, Pienkowski C, Paris F, Konrad D, et al. Identification and functional analysis of a new WNT4 gene mutation among 28 adolescent girls with primary amenorrhea and müllerian duct abnormalities: a French collaborative study. J Clin Endocrinol Metab. 2008;93(3):895–900.CrossRefPubMedGoogle Scholar
  8. 8.
    Lopez E, Berenguer M, Tingaud-Sequeira A, Marlin S, Toutain A, Denoyelle F, et al. Mutations in MYT1, encoding the myelin transcription factor 1, are a rare cause of OAVS. J Med Genet. 2016;53:752–60.CrossRefGoogle Scholar
  9. 9.
    Beleza-Meireles A, Clayton-Smith J, Saraiva JM, Tassabehji M. Oculo-auriculo-vertebral spectrum: a review of the literature and genetic update. J Med Genet. 2014;51:635–45.CrossRefPubMedGoogle Scholar
  10. 10.
    Zhang R, Marsch F, Kause F, Degenhardt F, Schmiedeke E, Märzheuser S, et al. Array-based molecular karyotyping in 115 VATER/VACTERL and VATER/VACTERL-like patients identifies disease-causing copy number variations. Birth Defects Res. 2017;109:1063–9.CrossRefPubMedGoogle Scholar
  11. 11.
    Sadler TW. Is VACTERL a laterality defect? Am J Med Genet A. 2015;167A:2563–5.CrossRefPubMedGoogle Scholar
  12. 12.
    Verheij JB, de Munnik SA, Dijkhuizen T, de Leeuw N, Olde Weghuis D, van den Hoek GJ, et al. An 8.35 Mb overlapping interstitial deletion of 8q24 in two patients with coloboma, congenital heart defect, limb abnormalities, psychomotor retardation and convulsions. Eur J Med Genet. 2009;52(5):353–7.CrossRefPubMedGoogle Scholar
  13. 13.
    Low KJ, Ansari M, Abou Jamra R, Clarke A, El Chehadeh S, FitzPatrick DR, et al. PUF60 variants cause a syndrome of ID, short stature, microcephaly, coloboma, craniofacial, cardiac, renal and spinal features. Eur J Hum Genet. 2017;25:552–9.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    William DA, Gibson SB, JD TJ, Markov V, Gonzalez DM, et al. Identification of oscillatory genes in somitogenesis from functional genomic analysis of a human mesenchymal stem cell model. Dev Biol. 2007;305:172–86.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Eckalbar WL, Fisher RE, Rawls A, Kusumi K. Scoliosis and segmentation defects of the vertebrae. Wiley Interdiscip Rev Dev Biol. 2012;1(3):401–23.CrossRefPubMedGoogle Scholar
  16. 16.
    Keynes RJ, Stern CD. Mechanisms of vertebrate segmentation. Development. 1988;103:413–29.PubMedPubMedCentralGoogle Scholar
  17. 17.
    Brent AE, Schweitzer R, Tabin CJ. A somitic compartment of tendon progenitors. Cell. 2003;113(2):235–48.CrossRefPubMedGoogle Scholar
  18. 18.
    Dequéant M-L, Pourquié O. Segmental patterning of the vertebrate embryonic axis. Nat Rev Genet. 2008;9:370–82.CrossRefPubMedGoogle Scholar
  19. 19.
    Gibb S, Maroto M, Dale JK. The segmentation clock mechanism moves up a notch. Trends Cell Biol. 2010;20:593–600.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Dubrulle J, McGrew MJ, Pourquié O. FGF signaling controls somite boundary position and regulates segmentation clock control of spatiotemporal Hox gene activation. Cell. 2001;106:219–32.CrossRefGoogle Scholar
  21. 21.
    Krumlauf R. Hox genes in vertebrate development. Cell. 1994;78:191–201.CrossRefPubMedGoogle Scholar
  22. 22.
    Zákány J, Kmita M, Alarcon P, de la Pompa JL, Duboule D. Localized and transient transcription of Hox genes suggests a link between patterning and the segmentation clock. Cell. 2001;106(2):207–17.CrossRefPubMedGoogle Scholar
  23. 23.
    Aulehla A, Wehrle C, Brand-Saberi B, Kemler R, Gossler A, Kanzler B, et al. Wnt3a plays a major role in the segmentation clock controlling somitogenesis. Dev Cell. 2003;4:395–406.CrossRefGoogle Scholar
  24. 24.
    Aulehla A, Herrmann B. Segmentation in vertebrates: clock and gradient finally joined. Genes Dev. 2004;18:2060–7.CrossRefPubMedGoogle Scholar
  25. 25.
    Hofmann M, Schuster-Gossler K, Watabe-Rudolph M, Aulehla A, Herrmann BG, Gossler A. WNT signaling, in synergy with T/TBX6, controls notch signaling by regulating Dll1 expression in the presomitic mesoderm of mouse embryos. Genes Dev. 2004;18(22):2712–7.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Saga Y. The mechanism of somite formation in mice. Curr Opin Genet Dev. 2012;22:331–8.CrossRefPubMedGoogle Scholar
  27. 27.
    Remak R. Untersuchungen über die entwicklung der Wirbeltiere. Berlin: Reimer; 1850.Google Scholar
  28. 28.
    Bagnall KM, Higgins SJ, Sanders EJ. The contribution made by cells from a single somite to tissues within a body segment and assessment of their integration with similar cells from adjacent segments. Development. 1989;107(4):931–43.PubMedGoogle Scholar
  29. 29.
    Ewan KB, Everett AW. Evidence for resegmentation in the formation of the vertebral column using the novel approach of retroviral-mediated gene transfer. Exp Cell Res. 1992;198(2):315–20.CrossRefPubMedGoogle Scholar
  30. 30.
    Goldstein RS, Kalcheim C. Determination of epithelial half-somites in skeletal morphogenesis. Development. 1992;116:441–5.PubMedPubMedCentralGoogle Scholar
  31. 31.
    Mortier GR, Lachman RS, Bocian M, Rimoin DL. Multiple vertebral segmentation defects: analysis of 26 new patients and review of the literature. Am J Med Genet. 1996;61:310–9.CrossRefPubMedGoogle Scholar
  32. 32.
    Takikawa K, Haga N, Maruyama T, Nakatomi A, Kondoh T, Makita Y, et al. Spine and rib abnormalities and stature in spondylocostal dysostosis. Spine. 2006;31:E192–7.CrossRefPubMedGoogle Scholar
  33. 33.
    McMaster MJ, Singh H. Natural history of congenital kyphosis and congenital kyphoscoliosis. A study of one hundred and twelve patients. J Bone Joint Surg Am. 1999;81:1367–83.CrossRefPubMedGoogle Scholar
  34. 34.
    Aburakawa K, Harada M, Otake S. Clinical evaluations of the treatment of congenital scoliosis. Orthop Surg Trauma. 1996;39:55–62.Google Scholar
  35. 35.
    Offiah AC, Hall CM. Radiological diagnosis of the constitutional disorders of bone. As easy as a, B, C? Pediatr Radiol. 2003;33:153–61.CrossRefPubMedGoogle Scholar
  36. 36.
    Bonafe L, Cormier-Daire V, Hall C, Lachman R, Mortier G, Mundlos S, et al. Nosology and classification of genetic skeletal disorders: 2015 revision. Am J Med Genet A. 2015;167A:2869–92.CrossRefPubMedGoogle Scholar
  37. 37.
    Feil A. L’absence et la diminution des vertebres cervicales. Paris: Thesis, Libraire Litteraire et Medicale; 1919.Google Scholar
  38. 38.
    Thomsen M, Schneider U, Weber M, Johannisson R, Niethard F. Scoliosis and congenital anomalies associated with Klippel-Feil syndrome types I-III. Spine. 1997;22:396–401.CrossRefPubMedGoogle Scholar
  39. 39.
    Clarke RA, Catalan G, Diwan AD, Kearsley JH. Heterogeneity in Klippel-Feil syndrome: a new classification. Pediatr Radiol. 1998;28:967–74.CrossRefPubMedGoogle Scholar
  40. 40.
    Tassabehji M, Fang ZM, Hilton EN, McGaughran J, Zhao Z, de Bock CE, et al. Mutations in GDF6 are associated with vertebral segmentation defects in Klippel-Feil syndrome. Hum Mutat. 2008;29:1017–27.CrossRefGoogle Scholar
  41. 41.
    Mohamed JY, Faqeih E, Alsiddiky A, Alshammari MJ, Ibrahim NA, Alkuraya FS. Mutations in MEOX1, encoding mesenchyme homeobox 1, cause Klippel-Feil anomaly. Am J Hum Genet. 2013;92:157–61.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Ye M, Berry-Wynne KM, Asai-Coakwell M, Sundaresan P, Footz T, French CR, et al. Mutation of the bone morphogenetic protein GDF3 causes ocular and skeletal anomalies. Hum Molec Genet. 2010;19:287–98.CrossRefPubMedGoogle Scholar
  43. 43.
    Alazami AM, Kentab AY, Faqeih E, Mohamed JY, Alkhalidi H, Hijazi H, et al. A novel syndrome of Klippel-Feil anomaly, myopathy, and characteristic facies is linked to a null mutation in MYO18B. J Med Genet. 2015;52:400–4.CrossRefGoogle Scholar
  44. 44.
    Balling R, Deutsch U, Gruss P. Undulated, a mutation affecting the development of the mouse skeleton, has a point mutation in the paired box of Pax 1. Cell. 1988;55:531–5.CrossRefPubMedGoogle Scholar
  45. 45.
    Giampietro PF, Raggio CL, Reynolds CE, Shukla SK, McPherson E, Ghebranious N, et al. An analysis of PAX1 in the development of vertebral malformations. Clin Genet. 2005;68:448–53.CrossRefGoogle Scholar
  46. 46.
    Turnpenny PD, Thwaites RJ, Boulos FN. Evidence for variable gene expression in a large inbred kindred with autosomal recessive spondylocostal dysostosis. J Med Genet. 1991;28:27–33.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Turnpenny PD, Bulman MP, Frayling TM, Abu-Nasra TK, Garrett C, Hattersley AT, et al. A gene for autosomal recessive spondylocostal dysostosis maps to 19q13.1-q13.3. Am J Hum Genet. 1999;65:175–82.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Kusumi K, Sun ES, Kerrebrock AW, Bronson RT, Chi DC, Bulotsky MS, et al. The mouse pudgy mutation disrupts Delta homolog Dll3 and initiation of early somite boundaries. Nature Genet. 1998;19:274–8.CrossRefPubMedGoogle Scholar
  49. 49.
    Dunwoodie SL, Clements M, Sparrow DB, Conlon R, Beddington RSP. Axial skeletal defects caused by mutation in the spondylocostal dysplasia/pudgy gene Dll3 are associated with disruption of the segmentation clock within the presomitic mesoderm. Development. 2002;129:1795–806.PubMedGoogle Scholar
  50. 50.
    Bulman MP, Kusumi K, Frayling TM, McKeown C, Garrett C, Lander ES, et al. Mutations in the human Delta homologue, DLL3, cause axial skeletal defects in spondylocostal dysostosis. Nature Genet. 2000;24:438–41.CrossRefPubMedGoogle Scholar
  51. 51.
    Bonafé L, Giunta C, Gassner M, Steinmann B, Superti-Furga A. A cluster of autosomal recessive spondylocostal dysostosis caused by three newly identified DLL3 mutations segregating in a small village. Clin Genet. 2003;64:28–35.CrossRefPubMedGoogle Scholar
  52. 52.
    Turnpenny PD, Whittock N, Duncan J, Dunwoodie S, Kusumi K, Ellard S. Novel mutations in DLL3, a somitogenesis gene encoding a ligand for the notch signaling pathway, cause a consistent pattern of abnormal vertebral segmentation in spondylocostal dysostosis. J Med Genet. 2003;40:333–9.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Whittock NV, Sparrow DB, Wouters MA, Sillence D, Ellard S, Dunwoodie SL, et al. Mutated MESP2 causes spondylocostal dysostosis in humans. Am J Hum Genet. 2004;74:1249–54.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Cornier AS, Staehling-Hampton K, Delventhal KM, Saga Y, Caubet JF, Sasaki N, et al. Mutations in the MESP2 gene cause spondylothoracic dysostosis/Jarcho-Levin syndrome. Am J Hum Genet. 2008;82:1334–41.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Cornier AS, Ramírez N, Arroyo S, Acevedo J, García L, Carlo S, et al. Phenotype characterisation and natural history of spondylothoracic dysplasia syndrome: a series of 27 new cases. Am J Med Genet. 2004;128A:120–6.CrossRefPubMedGoogle Scholar
  56. 56.
    Sparrow DB, Chapman G, Wouters MA, Whittock NV, Ellard S, Fatkin D, et al. Mutation of the LUNATIC FRINGE gene in humans causes spondylocostal dysostosis with a severe vertebral phenotype. Am J Hum Genet. 2006;78:28–37.CrossRefGoogle Scholar
  57. 57.
    Haines N, Irvine KD. Glycosylation regulates notch signaling. Nat Rev Mol Cell Biol. 2003;4:786–97.CrossRefPubMedGoogle Scholar
  58. 58.
    Evrard YA, Lun Y, Aulehla A, Gan L, Johnson RL. Lunatic fringe is an essential mediator of somite segmentation and patterning. Nature. 1998;394:377–81.CrossRefPubMedGoogle Scholar
  59. 59.
    Zhang N, Gridley T. Defects in somite formation in lunatic fringe-deficient mice. Nature. 1998;394:374–7.CrossRefPubMedGoogle Scholar
  60. 60.
    Sparrow DB, Guillén-Navarro E, Fatkin D, Dunwoodie SL. Mutation of Hairy-and-Enhancer-of-Split-7 in humans causes spondylocostal dysostosis. Hum Mol Genet. 2008;17:3761–6.CrossRefGoogle Scholar
  61. 61.
    Sparrow DB, Sillence D, Wouters MA, Turnpenny PD, Dunwoodie SL. Two novel missense mutations in HAIRY-AND-ENHANCER-OF-SPLIT-7 in a family with spondylocostal dysostosis. Eur J Hum Genet. 2010;18:674–9.CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Kageyama R, Niwa Y, Isomura A, González A, Harima Y. Oscillatory gene expression and somitogenesis. Wiley Interdiscip Rev Dev Biol. 2012;1:629–41.CrossRefPubMedGoogle Scholar
  63. 63.
    Bessho Y, Miyoshi G, Sakata R, Kageyama R. Hes7: a bHLH-type repressor gene regulated by notch and expressed in the presomitic mesoderm. Genes Cells. 2001;6:175–85.CrossRefPubMedGoogle Scholar
  64. 64.
    Bessho Y, Sakata R, Komatsu S, Shiota K, Yamada S, Kageyama R. Dynamic expression and essential functions of Hes7 in somite segmentation. Genes Dev. 2001;15:2642–7.CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Sparrow DB, Faqeih EA, Sallout B, Alswaid A, Ababneh F, Al-Sayed M, et al. Mutation of HES7 in a large extended family with spondylocostal dysostosis and dextrocardia with situs inversus. Am J Med Genet. 2013;161A(9):2244–9.CrossRefPubMedGoogle Scholar
  66. 66.
    Sparrow DB, McInerney-Leo A, Gucev ZS, Gardiner B, Marshall M, Leo PJ, et al. Autosomal dominant spondylocostal dysostosis is caused by mutation in TBX6. Hum Mol Genet. 2013;22(8):1625–31.CrossRefGoogle Scholar
  67. 67.
    Gucev ZS, Tasic V, Pop-Jordanova N, Sparrow DB, Dunwoodie SL, Ellard S, et al. Autosomal dominant spondylocostal dysostosis in three generations of a Macedonian family: negative mutation analysis of DLL3, MESP2, HES7, and LFNG. Am J Med Genet. 2010;152A:1378–82.PubMedGoogle Scholar
  68. 68.
    Yasuhiko Y, Haraguchi S, Kitajima S, Takahashi Y, Kanno J, Saga Y. Tbx6-mediated notch signaling controls somite-specific Mesp2 expression. Proc Natl Acad Sci U S A. 2006;103:3651–6.CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    McInerney-Leo AM, Sparrow DB, Harris JE, Gardiner BB, Marshall MS, et al. Compound heterozygous mutations in RIPPLY2 associated with vertebral segmentation defects. Hum Mol Genet. 2015;24:1234–42.CrossRefPubMedGoogle Scholar
  70. 70.
    Wu N, Ming X, Xiao J, Wu Z, Chen X, Shinawi M, et al. TBX6 null variants and a common hypomorphic allele in congenital scoliosis. N Engl J Med. 2015;372:341–50.CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Lefebvre M, Duffourd Y, Jouan T, Poe C, Jean-Marçais N, Verloes A, et al. Autosomal recessive variations of TBX6, from congenital scoliosis to spondylocostal dysostosis. Clin Genet. 2017;91:908–12.CrossRefGoogle Scholar
  72. 72.
    Sandbacka M, Laivuori H, Freitas É, Halttunen M, Jokimaa V, Morin-Papunen L, et al. TBX6, LHX1 and copy number variations in the complex genetics of Müllerian aplasia. Orphanet J Rare Dis. 2013;8:125.CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Aymé S, Preus M. Spondylocostal/spondylothoracic dysostosis: the clinical basis for prognosticating and genetic counselling. Am J Med Genet. 1986;24:599–606.CrossRefPubMedGoogle Scholar
  74. 74.
    Roberts AP, Conner AN, Tolmie JL, Connor JM. Spondylothoracic and spondylocostal dysostosis. J Bone Jt Surg. 1988;70B:123–6.CrossRefGoogle Scholar
  75. 75.
    Perez-Comas A, Garcia-Castro JM. Occipito-facial-cervicothoracic-abdomino-digital dysplasia: Jarcho Levin syndrome of vertebral anomalies. J Pediatr. 1974;85:388–91.CrossRefPubMedGoogle Scholar
  76. 76.
    Karnes PS, Day D, Berry SA, Pierpont ME. Jarcho-Levin syndrome: four new cases and classification of subtypes. Am J Med Genet. 1991;40(3):264–70.CrossRefPubMedGoogle Scholar
  77. 77.
    Martínez-Frías ML, Urioste M. Segmentation anomalies of the vertebras and ribs: a developmental field defect: epidemiologic evidence. Am J Med Genet. 1994;49:36–44.CrossRefPubMedGoogle Scholar
  78. 78.
    Rastogi D, Rosenzweing EB, Koumbourlis A. Pulmonary hypertension in Jarcho Levin syndrome. Am J Med Genet. 2002;107:250–2.CrossRefPubMedGoogle Scholar
  79. 79.
    Bannykh SI, Emery SC, Gerber J-K, Jones KL, Benirschke K, Masliah E. Aberrant Pax1 and Pax9 expression in Jarcho Levin syndrome: report of 2 caucasian siblings and literature review. Am J Med Genet. 2003;120A:241–6.CrossRefPubMedGoogle Scholar
  80. 80.
    Cornier AS, Ramirez N, Carlo S, Reiss A. Controversies surrounding Jarcho-Levin syndrome. Current Opinion Pediatr. 2003;15:614–20.CrossRefGoogle Scholar
  81. 81.
    Cantú JM, Urrusti J, Rosales G, Rojas A. Evidence for autosomal recessive inheritance of costovertebral dysplasia. Clin Genet. 1971;2:149–54.CrossRefPubMedGoogle Scholar
  82. 82.
    Bartsocas CS, Kiossoglou KA, Papas CV, Xanthou-Tsingoglou M, Anagnostakis DE, Daskalopoulou HD. Costovertebral dysplasia. Birth Defects OAS. 1974;X(9):221–6.Google Scholar
  83. 83.
    David TJ, Glass A. Hereditary costovertebral dysplasia with malignant cerebral tumour. J Med Genet. 1983;20:441–4.CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Rimoin DL, Fletcher BD, McKusick VA. Spondylocostal dysplasia. Am J Med Genet. 1968;45:948–53.Google Scholar
  85. 85.
    Silengo MC, Cavallaro S, Francheschini P. Recessive spondylocostal dysostosis: two new cases. Clin Genet. 1978;13:289–94.CrossRefPubMedGoogle Scholar
  86. 86.
    Moseley JE, Bonforte RJ. Spondylothoracic dysplasia – a syndrome of congenital anomalies. Am J Roentgenol. 1969;106:166–9.CrossRefGoogle Scholar
  87. 87.
    Pochaczevsky R, Ratner H, Perles D, Kassner G, Naysan P. Spondylothoracic dysplasia. Radiology. 1971;98:53–8.CrossRefPubMedGoogle Scholar
  88. 88.
    Solomon L, Jimenez B, Reiner L. Spondylothoracic dysostosis. Arch Pathol Lab Med. 1978;102:201–5.PubMedGoogle Scholar
  89. 89.
    Kozlowski K. Spondylo-costal dysplasia. Fortschr Röntgenstr. 1984;140:204–9.CrossRefGoogle Scholar
  90. 90.
    Ohashi H, Sugio Y, Kajii T. Spondylocostal dysostosis: report of three patients. Jpn J Hum Genet. 1987;32:299–303.CrossRefGoogle Scholar
  91. 91.
    Jarcho S, Levin PM. Hereditary malformation of the vertebral bodies. Bull Johns Hopkins Hosp. 1938;62:216–26.Google Scholar
  92. 92.
    Berdon WE, Lampl BS, Cornier AS, Ramirez N, Turnpenny PD, Vitale MG, et al. Clinical and radiological distinction between spondylothoracic dysostosis (Lavy-Moseley syndrome) and spondylocostal dysostosis (Jarcho-Levin syndrome). Pediatr Radiol. 2011;41(3):384–8.CrossRefPubMedGoogle Scholar
  93. 93.
    Casamassima AC, Morton CC, Nance WE, Kodroff M, Caldwell R, Kelly T, et al. Spondylocostal dysostosis associated with anal and urogenital anomalies in a Mennonite sibship. Am J Med Genet. 1981;8:117–27.CrossRefPubMedGoogle Scholar
  94. 94.
    Daikha-Dahmane F, Huten Y, Morvan J, Szpiro-Tapia S, Nessmann C, Eydoux P. Fetus with Casamassima-Morton-Nance syndrome and an inherited (6;9) balanced translocation. Am J Med Genet. 1998;80:514–7.CrossRefPubMedGoogle Scholar
  95. 95.
    Poor MA, Alberti O Jr, Griscom NT, Driscoll SG, Holmes LB. Nonskeletal malformations in one of three siblings with Jarcho-Levin syndrome of vertebral anomalies. J Pediatr. 1983;103:270–2.CrossRefPubMedGoogle Scholar
  96. 96.
    Offiah A, Alman B, Cornier AS, Giampietro PF, Tassy O, Wade A, et al. Pilot assessment of a radiologic classification system for segmentation defects of the vertebrae. Am J Med Genet. 2010;152A:1357–71.PubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Clinical Genetics DepartmentRoyal Devon & Exeter NHS Foundation TrustExeterUK
  2. 2.University of Exeter Medical SchoolExeterUK

Personalised recommendations