Metallomics pp 139-181 | Cite as

Bioimaging Metallomics

  • Valderi Luiz Dressler
  • Edson Irineu Müller
  • Dirce Pozebon
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1055)


This chapter focuses on bioimaging in metallomics, which involves metal and metalloids distribution in animal tissues. It starts with laser ablation-inductively coupled plasma-mass spectrometry followed by secondary ion mass spectrometry, synchrotron-based X-ray fluorescence, and electron microscopy, including transmission electron microscopy, scanning electron microscopy, and energy-dispersive X-ray spectroscopy. The basic principles of these techniques and their application for qualitative and quantitative imaging of elements are presented. Sample preparation for bioimaging is briefly discussed. The usefulness of element bioimaging is demonstrated for cells and several animal tissues, including the brain, liver, hair, eye, teeth, and bone. As such, this chapter addresses the state of the art in bioimaging metallomics.


Metallomics Bioimaging LA-ICP-MS SIMS SRXRF SEM TEM  EDX 



Two dimensional


Two-dimensional polyacrylamide gel electrophoresis


Three dimensional


Alzheimer disease


Amyloid deposits


Adenosine triphosphate


Boron neutron capture therapy


Bovine serum albumin


Charge-coupled device


Certified reference material


Computed tomography




Deoxyribonucleic acid


Tetraazacyclododecane-1,4,7,10-tetraacetic acid


2-[bis[2-[carboxymethyl-[2-(methylamino)-2-oxoethyl]amino]ethyl]amino]acetic acid


Energy-dispersive X-ray spectroscopy


Energy loss


Electron energy loss spectroscopy




Energy-filtered transmission electron microscopy


Electron microscopy


Electrospray-mass spectrometry


Field emission gun


Full width at half maximum


Gel electrophoresis


High-pressure freezing


Inductively coupled plasma


Inductively coupled plasma mass spectrometry


Isotope dilution


Isoelectric focusing gel electrophoresis


Immobilized pH gradient strips




Internal standard


Laser ablation


Laser ablation-inductively coupled plasma mass spectrometry


Laser ablation mass spectrometry


Liquid-metal ion gun


Limit of detection


Multicollector-inductively coupled plasma mass spectrometry


Metal-coded affinity tag


Metal-tagging transmission electron microscopy


Maximum likelihood expectation maximization


Magnetic resonance image


Mass spectrometry imaging


Non-denaturing isoelectric focusing gel electrophoresis


Nanoimaging and nanoanalysis




Optical density unit


Polyacrylamide gel electrophoresis


Quantum dots


Quadrupole mass spectrometer


Ru-arene bound to 1,3,5-triaza-7-phosphotricyclo-[] decane


Rare earth elements


Regions of interest


Relative sensitivity factor


Sodium dodecyl sulphate-polyacrylamide gel electrophoresis


Size exclusion chromatography-inductively coupled plasma mass spectrometry


Scanning electron microscopy


Sector field-inductively coupled plasma mass spectrometry


Secondary ionization mass spectrometry


Solution nebulization inductively coupled plasma mass spectrometry


Signal-to-noise ratio


Superoxide dismutase


Synchrotron X-ray fluorescence


Scanning transmission electron microscopy


Scanning transmission electron microscopy-electron energy loss spectroscopy


Transmission electron microscopy


Time of flight


Time of flight-inductively coupled plasma mass spectrometry


Time of flight-secondary ionization mass spectrometry




Ultra high vacuum


Very small iron oxide particles


Wilson’s disease


Wavelength-dispersive spectrometry


X-ray absorption fine structure


X-ray absorption near edge structure spectroscopy


X-ray absorption spectroscopy


X-ray fluorescence


  1. Amstalden van Hove ER, Smith DF, Heeren RMA (2010) A concise review of mass spectrometry imaging. J Chromatogr A 1217:3946–3954PubMedCrossRefPubMedCentralGoogle Scholar
  2. Aronova MA, Leapman RD (2012) Development of electron energy loss spectroscopy in the biological sciences. MRS Bull 37(1):53–62PubMedPubMedCentralCrossRefGoogle Scholar
  3. Arora M, Hare D, Austin C et al (2011) Spatial distribution of manganese in enamel and coronal dentine of human primary teeth. Sci Total Environ 409(7):1315–1319PubMedCrossRefPubMedCentralGoogle Scholar
  4. Austin C, Hare D, Rozelle AL et al (2009) Elemental bio-imaging of calcium phosphate crystal deposits in knee samples from arthritic patients. Metallomics 1:142–147PubMedPubMedCentralCrossRefGoogle Scholar
  5. Austin C, Fryer F, Lear J et al (2011) Factors affecting internal standard selection for quantitative elemental bio-imaging of soft tissues by LA–ICP–MS. J Anal At Spectrom 26:1494–1501CrossRefGoogle Scholar
  6. Bandura DR, Baranov VI, Ornatsky OI et al (2009) Mass cytometry: technique for real time single cell multitarget immunoassay based on inductively coupled plasma time-of-flight mass spectrometry. Anal Chem 81(16):6813–6822PubMedCrossRefPubMedCentralGoogle Scholar
  7. Becker JS, Zoriy MV, Pickhardt C et al (2005a) Imaging of copper, zinc, and other elements in thin section of human brain samples (Hippocampus) by laser ablation inductively coupled plasma mass spectrometry. Anal Chem 77(10):3208–3216PubMedCrossRefPubMedCentralGoogle Scholar
  8. Becker JS, Zoriy MV, Dehnhardt M (2005b) Copper, zinc, phosphorus and sulfur distribution in thin section of rat brain tissues measured by laser ablation inductively coupled plasma mass spectrometry: possibility for small-size tumor analysis. J Anal At Spectrom 20:912–917CrossRefGoogle Scholar
  9. Becker JS, Zoriy M, Becker JS et al (2007) Elemental imaging mass spectrometry of thin sections of tissues and analysis of brain proteins in gels by laser ablation inductively coupled plasma mass spectrometry. Phys Status Solidi C 4(6):1775–1784CrossRefGoogle Scholar
  10. Becker JS, Breuer U, Hsieh H-F et al (2010) Bioimaging of metals and biomolecules in mouse heart by laser ablation inductively coupled plasma mass spectrometry and secondary ion mass spectrometry. Anal Chem 82(22):9528–9533PubMedCrossRefPubMedCentralGoogle Scholar
  11. Becker JS, Matusch A, Wu B (2014) Bioimaging mass spectrometry of trace elements– recent advance and applications of LA–ICP–MS: a review. Anal Chim Acta 835:1–18PubMedCrossRefPubMedCentralGoogle Scholar
  12. Bellis DJ, Hetter KM, Jones J et al (2006) Calibration of laser ablation inductively coupled plasma mass spectrometry for quantitative measurements of lead in bone. J Anal At Spectrom 21:948–954PubMedPubMedCentralCrossRefGoogle Scholar
  13. Bianga J, Touat-Hamici Z, Bierla K et al (2014) Speciation analysis for trace levels of selenoproteins in cultured human cells. J Proteome 108:316–324CrossRefGoogle Scholar
  14. Blaske F, Reifschneider O, Gosheger G et al (2014) Elemental bioimaging of nanosilver-coated prostheses using X-ray fluorescence spectroscopy and laser ablation–inductively coupled plasma–mass spectrometry. Anal Chem 86(1):615–620PubMedCrossRefPubMedCentralGoogle Scholar
  15. Bloom AN, Tian H, Winograd N (2016) C60-SIMS imaging of nanoparticles within mammalian cells. Biointerphases 11(2):02A306-1–02A306-7CrossRefGoogle Scholar
  16. Böhme S, Stärk H-J, Kühnel D et al (2015) Exploring LA–ICP–MS as a quantitative imaging technique to study nanoparticle uptake in Daphnia magna and zebrafish (Danio rerio) embryos. Anal Bioanal Chem 407(18):5477–5485PubMedPubMedCentralCrossRefGoogle Scholar
  17. Bonta M, Lohninger H, Laszlo V et al (2014) Quantitative LA–ICP–MS imaging of platinum in chemotherapy treated human malignant pleural mesothelioma samples using printed patterns as standard. J Anal At Spectrom 29:2159–2167CrossRefGoogle Scholar
  18. Bonta M, Limbeck A, Quarles CD Jr et al (2015) A metric for evaluation of the image quality of chemical maps derived from LA–ICP–MS experiments. J Anal At Spectrom 30:1809–1815CrossRefGoogle Scholar
  19. Bonta M, Hegedus B, Limbeck A (2016) Application of dried-droplets deposited on pre-cut filter paper disks for quantitative LA–ICP–MS imaging of biologically relevant minor and trace elements in tissue samples. Anal Chim Acta 908:54–62PubMedCrossRefPubMedCentralGoogle Scholar
  20. Bourassa MW, Miller LM (2012) Metal imaging in neurodegenerative diseases. Metallomics 4(8):721–738PubMedPubMedCentralCrossRefGoogle Scholar
  21. Bourassa D, Gleber S-C, Vogt S et al (2014) 3D imaging of transition metals in the zebrafish embryo by X-ray fluorescence microtomography. Metallomics 6(9):1648–1655PubMedPubMedCentralCrossRefGoogle Scholar
  22. Bourassa D, Gleber S-C, Vogt S et al (2016) MicroXRF tomographic visualization of zinc and iron in the zebrafish embryo at the onset of the hatching period. Metallomics 8(10):1122–1130PubMedCrossRefPubMedCentralGoogle Scholar
  23. Boxer SG, Kraft ML, Weber PK (2009) Advances in imaging secondary ion mass spectrometry for biological samples. Annu Rev Biophys 38:53–74PubMedCrossRefPubMedCentralGoogle Scholar
  24. Braidy N, Poljak A, Marjo C et al (2014) Metal and complementary molecular bioimaging in Alzheimer’s disease. Front Integr Neurosci 6:1–14Google Scholar
  25. Castaing R, Slodzian G (1962) Microanalyse par emission ionique secondaire. J Microsc 1:395–410Google Scholar
  26. Castro W, Hoogewerff J, Latkoczy C (2010) Application of laser ablation (LA–ICP–SF–MS) for the elemental analysis of bone and teeth samples for discrimination purposes. Forensic Sci Int 195(1–3):17–27PubMedCrossRefPubMedCentralGoogle Scholar
  27. Chandra S (2008) Challenges of biological sample preparation for SIMS imaging of elements and molecules at subcellular resolution. Appl Surf Sci 255:1273–1284CrossRefGoogle Scholar
  28. Chandra S, Tjarks W, Lorey DR et al (2008) Quantitative subcellular imaging of boron compounds in individual mitotic and interphase human glioblastoma cells with imaging secondary ion mass spectrometry (SIMS). J Microsc 229:92–103PubMedCrossRefPubMedCentralGoogle Scholar
  29. Chen D, Monteiro-Riviere NA, Zhang LW (2017) Intracellular imaging of quantum dots, gold, and iron oxide nanoparticles with associated endocytic pathways. Wiley Interdiscip Rev Nanomed Nanobiotechnol 9(2):1–19CrossRefGoogle Scholar
  30. Claverie F, Pecheyran C, Mounicou S et al (2009) Characterization of the aerosol produced by infrared femtosecond laser ablation of polyacrylamide gels for the sensitive inductively coupled plasma mass spectrometry detection of selenoproteins. Spectrochim Acta B 64(7):649–658CrossRefGoogle Scholar
  31. Collins SM, Midgley PA (2017) Progress and opportunities in EELS and EDS tomography. Ultramicroscopy 180:133–141PubMedCrossRefPubMedCentralGoogle Scholar
  32. Corezzi S, Urbanelli L, Cloetens P et al (2009) Synchrotron based X-ray fluorescence imaging of human cells labeled with CdSe quantum dots. Anal Biochem 388:33–39PubMedPubMedCentralCrossRefGoogle Scholar
  33. Cunha MML, Trepout S, Messaoudi C et al (2016) Overview of chemical imaging methods to address biological questions. Micron 84:23–26PubMedCrossRefPubMedCentralGoogle Scholar
  34. De Jonge MD, Vogt S (2010) Hard X-ray fluorescence tomographyan emerging tool for structural visualization. Curr Opin Struct Biol 20:606–614PubMedCrossRefGoogle Scholar
  35. Dérue C, Gibouin D, Lefebvre F et al (2006) Relative sensitivity factors of inorganic cations in frozen-hydrated standards in secondary ion MS analysis. Anal Chem 78(8):2471–2477PubMedCrossRefGoogle Scholar
  36. Dias AA, Carvalho M, Carvalho ML et al (2015) Quantitative evaluation of ante-mortem lead in human remains of the 18th century by triaxial geometry and bench top micro X-ray fluorescence spectrometry. J Anal At Spectrom 30:2488–2495CrossRefGoogle Scholar
  37. Douglas DN, O’Reilly J, O’Connor C et al (2016) Quantitation of the Fe spatial distribution in biological tissue by online double isotope dilution analysis with LA–ICP–MS: a strategy for estimating measurement uncertainty. J Anal At Spectrom 31:270–279CrossRefGoogle Scholar
  38. Drescher D, Giesen C, Traub H et al (2012) Quantitative imaging of gold and silver nanoparticles in single eukaryotic cells by laser ablation ICP–MS. Anal Chem 84(22):9684–9688CrossRefPubMedGoogle Scholar
  39. Egger AE, Theiner S, Kornauth C et al (2014) Quantitative bioimaging by LA–ICP–MS: a methodological study on the distribution of Pt and Ru in viscera originating from cisplatin- and KP1339-treated mice. Metallomics 6(9):1616–1625PubMedCrossRefGoogle Scholar
  40. Farell J, Amarasiriwardena D, Goodman AH et al (2013) Bioimaging of trace metals in ancient Chilean mummies and contemporary Egyptian teeth by laser ablation–inductively coupled plasma–mass spectrometry (LA–ICP–MS). Microchem J 106:340–346CrossRefGoogle Scholar
  41. Feldmann J, Kindness A, Ek P (2002) Laser ablation of soft tissue using a cryogenically cooled ablation cell. J Anal At Spectrom 17:813–818CrossRefGoogle Scholar
  42. Fernandez B, Claverie F, Pecheyran C et al (2007) Direct analysis of solid samples by fs-LA–ICP–MS. TrAC-Trends Anal Chem 26(10):951–966CrossRefGoogle Scholar
  43. Fiori CE, Leapman RD, Swyt CR (1988) Quantitative X-ray mapping of biological cryosections. Ultramicroscopy 24(2–3):237–250PubMedCrossRefPubMedCentralGoogle Scholar
  44. Fiori CE (1988) The new electron microscopy: imaging the chemistry of nature. Anal Chem 60(12):86R–90RPubMedCrossRefGoogle Scholar
  45. Frick DA, Günther D (2012) Fundamental studies on the ablation behaviour of carbon in LA–ICP–MS with respect to the suitability as internal standard. J Anal At Spectrom 27:1294–1303CrossRefGoogle Scholar
  46. Frick DA, Giesen C, Hemmerle T et al (2015) An internal standardisation strategy for quantitative immunoassay tissue imaging using laser ablation inductively coupled plasma mass spectrometry. J Anal At Spectrom 30:254–259CrossRefGoogle Scholar
  47. Friel JJ, Lyman CE (2006) X-ray mapping in electron-beam instruments. Microsc Microanal 12(1):2–25PubMedCrossRefPubMedCentralGoogle Scholar
  48. Giesen C, Wang HAO, Schapiro D (2014) Highly multiplexed imaging of tumor tissues with subcellular resolution by mass cytometry. Nat Methods 11:417–422PubMedCrossRefPubMedCentralGoogle Scholar
  49. Gray AL (1985) Solid sample introduction by laser ablation for inductively coupled plasma source mass spectrometry. Analyst 110:551–556CrossRefGoogle Scholar
  50. Grovenor CRM, Smart KE, Kilburn M et al (2006) Specimen preparation and calibration for NanoSIMS analysis of biological materials. Appl Surf Sci 252:6917–6924CrossRefGoogle Scholar
  51. Gulin AA, Pavlyukov MS, Gularyan SK et al (2015) Visualization of the spatial distribution of Pt+ ions in cisplatin-treated glioblastoma cells by time-of-flight secondary ion mass spectrometry. Biochem (Mosc) Suppl Ser A Membr Cell Biol 9(3):202–209CrossRefGoogle Scholar
  52. Gunther D, Hattendorf B (2005) Solid sample analysis using laser ablation inductively coupled plasma mass spectrometry. TrAC-Trends Anal Chem 24(3):255–265CrossRefGoogle Scholar
  53. Hachmöller O, GuilhermeBuzanich A, Aichler M et al (2016) Elemental bioimaging and speciation analysis for the investigation of Wilson’s disease using μXRF and XANES. Metallomics 8(7):648–653PubMedCrossRefPubMedCentralGoogle Scholar
  54. Hagège A, Huynh TNS, Hébrant M (2015) Separative techniques for metalloproteomics require balance between separation and perturbation. TrAC-Trends Anal Chem 64:64–74CrossRefGoogle Scholar
  55. Hamilton JS, Gorishek EL, Mach PM et al (2016) Evaluation of a custom single Peltier-cooled ablation cell for elemental imaging of biological samples in laser ablation–inductively coupled plasma–mass spectrometry (LA–ICP–MS). J Anal At Spectrom 31:1030–1033CrossRefGoogle Scholar
  56. Hare D, Reedy B, Grimm R et al (2009) Quantitative elemental bio-imaging of Mn, Fe, Cu and Zn in 6–hydroxydopamine induced Parkinsonism mouse models. Metallomics 1:53–58CrossRefGoogle Scholar
  57. Hare D, Austin C, Doble P et al (2011) Elemental bio-imaging of trace elements in teeth using laser ablation–inductively coupled plasma–mass spectrometry. J Dent 39(5):397–403PubMedCrossRefPubMedCentralGoogle Scholar
  58. Hare DJ, Lee JK, Beavis AD et al (2012) Three-dimensional atlas of iron, copper, and zinc in the mouse cerebrum and brainstem. Anal Chem 84(9):3990–3997PubMedCrossRefGoogle Scholar
  59. Hare DJ, George JL, Bray L et al (2014) The effect of paraformaldehyde fixation and sucrose cryoprotection on metal concentration in murine neurological tissue. J Anal At Spectrom 29:565–570CrossRefGoogle Scholar
  60. He Y, Esteban-Fernández D, Neumann B et al (2016) Application of MeCAT-Click labeling for protein abundance characterization of E. coli after heat shock experiments. J Proteome 136:68–76CrossRefGoogle Scholar
  61. Hofer F, Grogger W, Warbichler P et al (2000) Quantitative energy-filtering transmission electron microscopy (EFTEM). Mikrochim Acta 132(2–4):273–288Google Scholar
  62. Hoffmann E, Stephanowitz H, Ullrich E et al (2000) Investigation of mercury migration in human teeth using spatially resolved analysis by laser ablation–ICP–MS. J Anal At Spectrom 15:663–667CrossRefGoogle Scholar
  63. Horowitz P, Howell JA (1972) A scanning X-ray microscope using synchrotron radiation. Science 178:607–608CrossRefGoogle Scholar
  64. Hugo L-F, Pessôa GS, Arruda MAZ et al (2016) LA-iMageS: a software for elemental distribution bioimaging using LA–ICP–MS data. J Cheminformatics 8:65–74CrossRefGoogle Scholar
  65. Jackson B, Harper S, Smith L et al (2006) Elemental mapping and quantitative analysis of Cu, Zn, and Fe in rat brain sections by laser ablation ICP–MS. Anal Bioanal Chem 384(4):951–957PubMedPubMedCentralCrossRefGoogle Scholar
  66. Jiménez MS, Rodriguez L, Bertolin JR et al (2013) Evaluation of gel electrophoresis techniques and laser ablation–inductively coupled plasma–mass spectrometry for screening analysis of Zn and Cu-binding proteins in plankton. Anal Bioanal Chem 405(1):359–368PubMedCrossRefPubMedCentralGoogle Scholar
  67. Jimenez MS, Luque-Alled JM, Gomez T et al (2016) Evaluation of agarose gel electrophoresis for characterization of silver nanoparticles in industrial products. Electrophoresis 37(10):1376–1383PubMedCrossRefPubMedCentralGoogle Scholar
  68. Jurowski K, Buszewski B, Piekoszewski W (2015) Bioanalytics in quantitative (bio)imaging/mapping of metallic elements in biological samples. Crit Rev Anal Chem 45(4):334–347PubMedCrossRefPubMedCentralGoogle Scholar
  69. Kang D, Amarasiriwardena D, Goodman AH (2004) Application of laser ablation–inductively coupled plasma–mass spectrometry (LA–ICP–MS) to investigate trace metal spatial distributions in human tooth enamel and dentine growth layers and pulp. Anal Bioanal Chem 378(6):1608–1615PubMedPubMedCentralCrossRefGoogle Scholar
  70. Katz W, Newman JG (1987) Fundamentals of secondary ion mass spectrometry. MRS Bull 7:40–46CrossRefGoogle Scholar
  71. Kindness A, Sekaran CN, Feldmann J (2003) Two-dimensional mapping of copper and zinc in liver sections by laser ablation-inductively coupled plasma mass spectrometry. Clin Chem 49(11):1916–1923PubMedPubMedCentralCrossRefGoogle Scholar
  72. Komine Y, Eggink LL, Park H et al (2000) Vacuolar granules in Chlamydomonas reinhardtii: polyphosphate and a 70-kDa polypeptide as major components. Planta 210(6):897–905PubMedCrossRefPubMedCentralGoogle Scholar
  73. Konz I, Fernandez B, Fernandez ML et al (2013) Gold internal standard correction for elemental imaging of soft tissue sections by LA–ICP–MS: element distribution in eye microstructures. Anal Bioanal Chem 405(10):3091–3096PubMedCrossRefPubMedCentralGoogle Scholar
  74. Konz I, Fernandez B, Fernandez ML et al (2014a) Design and evaluation of a new Peltier-cooled laser ablation cell with on-sample temperature control. Anal Chim Acta 809:88–96PubMedCrossRefPubMedCentralGoogle Scholar
  75. Konz I, Fernández B, Fernández ML et al (2014b) Quantitative bioimaging of trace elements in the human lens by LA–ICP–MS. Anal Bioanal Chem 406(9):2343–2348PubMedCrossRefPubMedCentralGoogle Scholar
  76. Kowarski D (1984) Intelligent interface for a microprocessor controlled scanning transmission electron microscope with X-ray imaging. J Electron Micro Tech 1(2):175–184CrossRefGoogle Scholar
  77. Leapman RD, Hunt JA, Buchanan RA et al (1993) Measurement of low calcium concentrations in cryosectioned cells by parallel-EELS mapping. Ultramicroscopy 49(1–4):225–234PubMedCrossRefPubMedCentralGoogle Scholar
  78. Leapman RD (2017) Application of EELS and EFTEM to the life sciences enabled by the contributions of Ondrej Krivanek. Ultramicroscopy 180:180–187PubMedCrossRefPubMedCentralGoogle Scholar
  79. Lear J, Hare DJ, Fryer F et al (2012) High-resolution elemental bioimaging of Ca, Mn, Fe, Co, Cu, and Zn employing LA–ICP–MS and hydrogen reaction gas. Anal Chem 84(15):6707–6714PubMedCrossRefPubMedCentralGoogle Scholar
  80. Lee RFS, Escrig S, Croisier M et al (2015) NanoSIMS analysis of an isotopically labeled organometallic ruthenium(II) drug to probe its distribution and state in vitro. Chem Commun 51:16486–16489CrossRefGoogle Scholar
  81. Legin AA, Schintlmeister A, Jakupec MA et al (2014) NanoSIMS combined with fluorescence microscopy as a tool for subcellular imaging of isotopically labeled platinum-based anticancer drugs. Chem Sci 5:3135–3143CrossRefGoogle Scholar
  82. Limbeck A, Galler P, Bonta M et al (2015) Recent advances in quantitative LA–ICP–MS analysis: challenges and solutions in the life sciences and environmental chemistry. Anal Bioanal Chem 407(22):6593–6617PubMedPubMedCentralCrossRefGoogle Scholar
  83. Lobinski R, Moulin C, Ortega R (2006) Imaging and speciation of trace elements in biological environment. Biochimie 88:1591–1604PubMedCrossRefPubMedCentralGoogle Scholar
  84. Lombi E, De Jonge MD, Donner E et al (2011) Trends in hard X-ray fluorescence mapping: environmental applications in the age of fast detectors. Anal Bioanal Chem 400:1637–1644PubMedCrossRefPubMedCentralGoogle Scholar
  85. Lum TS, Ho CL, Tsoi YK et al (2016) Elemental bioimaging of platinum in mouse tissues by laser ablation–inductively coupled plasma–mass spectrometry for the study of localization behavior of structurally similar complexes. Int J Mass Spectrom 404:40–47CrossRefGoogle Scholar
  86. Maia F-D, Chen B-J, Wu L-C et al (2006) Imaging of single liver tumor cells intoxicated by heavy metals using ToF-SIMS. Appl Surf Sci 252:6809–6812CrossRefGoogle Scholar
  87. Managh AJ, Edwards S, Bushell A et al (2013) Single cell tracking of gadolinium labeled CD4+ T cells by laser ablation inductively coupled plasma mass spectrometry. Anal Chem 85(22):10627–10634PubMedCrossRefPubMedCentralGoogle Scholar
  88. Managh AJ, Hutchinson RW, Riquelme P et al (2014) Laser ablation–inductively coupled plasma mass spectrometry: an emerging technology for detecting rare cells in tissue sections. J Immunol 193(5):2600–2608PubMedCrossRefPubMedCentralGoogle Scholar
  89. Marshall J, Franks J et al (1991) Determination of trace elements in solid plastic materials by laser ablation–inductively coupled plasma mass spectrometry. J Anal At Spectrom 6:145–150CrossRefGoogle Scholar
  90. Martínez-Criado G, Tucoulou R, Cloetens P et al (2012) Status of the hard X-ray microprobe beamline ID22 of the European synchrotron radiation facility. J Synchrotron Rad 19:10–18CrossRefGoogle Scholar
  91. Matsuyama S, Shimura M, Mimura H et al (2009) Trace element mapping of a single cell using a hard X-ray nanobeam focused by a Kirkpatrick–Baez mirror system. X-Ray Spectrom 38:89–94CrossRefGoogle Scholar
  92. Matsuyama S, Shimura M, Fujii M et al (2010) Elemental mapping of frozen-hydrated cells with cryo-scanning X-ray fluorescence microscopy. X-Ray Spectrom 39:260–266CrossRefGoogle Scholar
  93. McRae R, Lai B, Vogt S et al (2006) Correlative microXRF and optical immunofluorescence microscopy of adherent cells labeled with ultra small gold particles. J Struct Biol 155(1):22–29PubMedCrossRefPubMedCentralGoogle Scholar
  94. Mitsuoka K (2011) Obtaining high-resolution images of biological macromolecules by using a cryo-electron microscope with a liquid-helium cooled stage. Micron 42(2):100–106PubMedCrossRefPubMedCentralGoogle Scholar
  95. Moraleja I, Esteban-Fernández D, Lázaro A et al (2016) Printing metal-spiked inks for LA–ICP–MS bioimaging internal standardization: comparison of the different nephrotoxic behavior of cisplatin, carboplatin, and oxaliplatin. Anal Bional Chem 408(9):2309–2318CrossRefGoogle Scholar
  96. Morello M, Canini A, Caiola MG et al (2002) Manganese detected by electron spectroscopy imaging and electron energy loss spectroscopy in mitochondria of normal rat brain cells. J Trace Microprobe T 20(4):481–491CrossRefGoogle Scholar
  97. Nagata T (2004) X-ray microanalysis of biological specimens by high voltage electron microscopy. Prog Histochem Cytochem 39(4):185–319PubMedCrossRefPubMedCentralGoogle Scholar
  98. Nisman R, Dellaire G, Ren Y et al (2004) Application of quantum dots as probes for correlative fluorescence, conventional, and energy-filtered transmission electron microscopy. J Histochem Cytochem 52(1):13–18PubMedCrossRefPubMedCentralGoogle Scholar
  99. Nygren H, Dahlén G, Malmberg P (2014) Analysis of As- and Hg-species in metal-resistant oral bacteria, by imaging ToF-SIMS. Basic Clin Pharmacol Toxicol 115:129–133PubMedCrossRefPubMedCentralGoogle Scholar
  100. Noël M, Spence J, Harris KA et al (2014) Grizzly bear hair reveals toxic exposure to mercury through salmon consumption. Environ Sci Technol 48(13):7560–7567PubMedCrossRefPubMedCentralGoogle Scholar
  101. Ortega R (2005) Chemical elements distribution in cells. Nucl Instrum Meth B 231(1–4):218–223CrossRefGoogle Scholar
  102. Osterholt T, Salber D, Matusch A et al (2011) IMAGENA: image generation and analysis – an interactive software tool handling LA–ICP–MS data. Int J Mass Spectrom 307(1–3):232–239CrossRefGoogle Scholar
  103. O’Reilly J, Douglas D, Braybrook J et al (2014) A novel calibration strategy for the quantitative imaging of iron in biological tissues by LA–ICP–MS using matrix-matched standards and internal standardization. J Anal At Spectrom 29:1378–1384CrossRefGoogle Scholar
  104. Pozebon D, Dressler VL, Matusch A (2008) Monitoring of platinum in a single hair by laser ablation inductively coupled plasma mass spectrometry (LA–ICP–MS) after cisplatin treatment for cancer. Int J Mass Spectrom 272(1):57–62CrossRefGoogle Scholar
  105. Pozebon D, Scheffler GL, Dressler VL et al (2014) Review of the applications of laser ablation inductively coupled plasma mass spectrometry (LA–ICP–MS) to the analysis of biological samples. J Anal At Spectrom 29:2204–2228CrossRefGoogle Scholar
  106. Pacholski ML, Winograd N (1999) Imaging with mass spectrometry. Chem Rev 99:2977–3005PubMedCrossRefPubMedCentralGoogle Scholar
  107. Paul B, Paton C, Norris A et al (2012) CellSpace: a module for creating spatially registered laser ablation images within the Iolite freeware environment. J Anal At Spectrom 27(4):700–706CrossRefGoogle Scholar
  108. Paul B, Hare DJ, Bishop DP et al (2015) Visualising mouse neuroanatomy and function by metal distribution using laser ablation-inductively coupled plasma-mass spectrometry imaging. Chem Sci 6:5383–5383PubMedPubMedCentralCrossRefGoogle Scholar
  109. Penen F, Malherbe J, Isaure MP et al (2016) Chemical bioimaging for the subcellular localization of trace elements by high contrast TEM, TEM/X-EDS, and NanoSIMS. J Trace Elem Med Bio 37:62–68CrossRefGoogle Scholar
  110. Pennycook SJ (2012) Scanning transmission electron: Z-contrast imaging. In: Kaufmann EN (ed) Characterization of materials. John Wiley & Sons, Inc., Hoboken, pp 1736–1763Google Scholar
  111. Pessôa GS, Capelo-Martínez JL, Fdez-Riverola F et al (2016) Laser ablation and inductively coupled plasma mass spectrometry focusing on bioimaging from elemental distribution using MatLab software: a practical guide. J Anal At Spectrom 31:832–840CrossRefGoogle Scholar
  112. Pornwilard MM, Merle U, Weiskirchen R et al (2013) Bioimaging of copper deposition in Wilson's diseases mouse liver by laser ablation inductively coupled plasma mass spectrometry imaging (LA–ICP–MSI). Int J Mass Spectrom 354:281–287Google Scholar
  113. Pozebon D, Dressler VL, Mesko MF (2010) Bioimaging of metals in thin mouse brain section by laser ablation inductively coupled plasma mass spectrometry: novel online quantification strategy using aqueous standards. J Anal At Spectrom 25:1739–1744CrossRefGoogle Scholar
  114. Pozebon D, Scheffler GL, Dressler VL (2017) Recent applications of laser ablation inductively coupled plasma mass spectrometry (LA–ICP–MS) for biological sample analysis: a follow-up review. J Anal At Spectrom 32:890–919CrossRefGoogle Scholar
  115. Pugh JAT, Cox AG, McLeod CW et al (2011) A novel calibration strategy for analysis and imaging of biological thin sections by laser ablation inductively coupled plasma mass spectrometry. J Anal At Spectrom 26:1667–1673CrossRefGoogle Scholar
  116. Qin ZY, Caruso JA, Lai B et al (2011) Trace metal imaging with high spatial resolution: applications in biomedicine. Metallomics 3(1):28–37PubMedCrossRefPubMedCentralGoogle Scholar
  117. Quintana C, Bellefqih S, Laval JY et al (2006) Study of the localization of iron, ferritin, and hemosiderin in Alzheimer’s disease hippocampus by analytical microscopy at the subcellular level. J Struct Biol 153:42–54PubMedCrossRefPubMedCentralGoogle Scholar
  118. Quintana C, Wu T, Delatour B, Dhenain M et al (2007) Morphological and chemical studies of pathological human and mice brain at the subcellular level: correlation between light, electron, and NanoSIMS microscopies. Microsc Res Tech 70:281–289PubMedCrossRefPubMedCentralGoogle Scholar
  119. Ranaldi MM, Gagnon MM (2009) Accumulation of cadmium in the otoliths and tissues of juvenile pink snapper (Pagrus auratus Forster) following dietary and waterborne exposure. Comp Biochem Phys C Toxicol Pharmacol 150(4):421–427CrossRefGoogle Scholar
  120. Ryan CG, Siddons DP, Moorhead G et al (2009) High-throughput X-ray fluorescence imaging using a massively parallel detector array, integrated scanning and real-time spectral deconvolution. 9th international conference on X-ray microscopy. J Phys Conf Ser 186(1):012013–012015CrossRefGoogle Scholar
  121. Reifschneider O, Wehe CA, Diebold K et al (2013a) Elemental bioimaging of haematoxylin and eosin-stained tissues by laser ablation ICP–MS. J Anal At Spectrom 28:989–993CrossRefGoogle Scholar
  122. Reifschneider O, Wehe CA, Raj I et al (2013b) Quantitative bioimaging of platinum in polymer embedded mouse organs using laser ablation ICP–MS. Metallomics 5:1440–1447PubMedCrossRefPubMedCentralGoogle Scholar
  123. Reifschneider O, Wentker KS, Strobel K et al (2015) Elemental bioimaging of thulium in mouse tissues by laser ablation–ICPMS as a complementary method to heteronuclear proton magnetic resonance imaging for cell tracking experiments. Anal Chem 87(8):4225–4230PubMedCrossRefPubMedCentralGoogle Scholar
  124. Risco C, Sanmartın-Conesa E, Tzeng WP et al (2012) Specific, sensitive, high-resolution detection of protein molecules in eukaryotic cells using metal-tagging transmission electron microscopy. Structure 20(5):759–766PubMedPubMedCentralCrossRefGoogle Scholar
  125. Ruiz FA, Marchesini N, Seufferheld M et al (2001) The polyphosphate bodies of Chlamydomonas reinhardtii possess a proton-pumping pyrophosphatase and are similar to acidocalcisomes. J Biol Chem 276(49):46196–46203PubMedCrossRefPubMedCentralGoogle Scholar
  126. Santos MC, Wagner M, Wu B (2009) Biomonitoring of metal contamination in a marine prosobranch snail (Nassarius reticulatus) by imaging laser ablation inductively coupled plasma mass spectrometry (LA–ICP–MS). Talanta 80(2):428–433PubMedCrossRefPubMedCentralGoogle Scholar
  127. Sarret G, Smits EAHP, Michel HC et al (2013) Use of synchrotron-based techniques to elucidate metal uptake and metabolism in plants. Adv Agron 119:1–82CrossRefGoogle Scholar
  128. Scharlach C, Müller L, Wagner S et al (2016) LA–ICP–MS allows quantitative microscopy of europium-doped iron oxide nanoparticles and is a possible alternative to ambiguous prussian blue iron staining. J Biomed Nanotechnol 12:1001–1010PubMedCrossRefPubMedCentralGoogle Scholar
  129. Scotuzzi M, Kuipers J, Wensveen DI et al (2017) Multi-color electron microscopy by element-guided identification of cells, organelles and molecules. Sci Rep 7:45970PubMedPubMedCentralCrossRefGoogle Scholar
  130. Sela H, Karpas Z, Zoriy M et al (2007) Biomonitoring of hair samples by laser ablation inductively coupled plasma mass spectrometry (LA–ICP–MS). Int J Mass Spectrom 261(2–3):199–207CrossRefGoogle Scholar
  131. Sela H, Karpas Z, Cohen H et al (2011) Preparation of stable standards of biological tissues for laser ablation analysis. Int J Mass Spectrom 307(1–3):142–148CrossRefGoogle Scholar
  132. Shariatgorji M, Nilsson A, Bonta M et al (2016) Direct imaging of elemental distributions in tissue sections by laser ablation mass spectrometry. Methods 104:86–92PubMedCrossRefPubMedCentralGoogle Scholar
  133. Smulders S, Larue C, Sarret G et al (2015) Lung distribution, quantification, co-localization and speciation of silver nanoparticles after lung exposure in mice. Toxicol Lett 238(1):1–6PubMedCrossRefPubMedCentralGoogle Scholar
  134. Somlyo AP (1984) Compositional mapping in biology: X rays and electrons. J Ultra Mol Struct Res 88(2):135142Google Scholar
  135. Sousa AA, Aronova MA, Kim YC et al (2007) On the feasibility of visualizing ultra small gold labels in biological specimens by STEM tomography. J Struct Biol 159(3):507–522PubMedPubMedCentralCrossRefGoogle Scholar
  136. Sousa AA, Leapman RD (2012) Development and application of STEM for the biological sciences. Ultramicroscopy 123:38–49PubMedPubMedCentralCrossRefGoogle Scholar
  137. Sparks CJ Jr, Raman S, Yakel HL et al (1977) Search with SR for super heavy elements in giant-halo inclusions. Phys Rev Lett 38:205–208CrossRefGoogle Scholar
  138. Sparks CJ Jr (1980) X-ray fluorescence microprobe for chemical analysis. In: Winick H, Doniach S (eds) Synchrotron radiation research. Springer, USA., New York. Chapter 14, pp 459–512Google Scholar
  139. Thompson RF, Walker M, Siebert A et al (2016) An introduction to sample preparation and imaging by cryo-electron microscopy for structural biology. Methods 100:3–15PubMedPubMedCentralCrossRefGoogle Scholar
  140. Todoli JL, Mermet JM (1998) Study of polymer ablation products obtained by ultraviolet laser ablation — inductively coupled plasma atomic emission spectrometry. Spectrochim Acta B 53(12):1645–1656CrossRefGoogle Scholar
  141. Uerlings R, Matusch A, Weiskirchen R (2016) Reconstruction of laser ablation inductively coupled plasma mass spectrometry (LA–ICP–MS) spatial distribution images in Microsoft Excel 2007. Int J Mass Spectrom 395:27–35CrossRefGoogle Scholar
  142. Van Malderen SJM, Managh AJ, Sharp BL et al (2016a) Recent developments in the design of rapid response cells for laser ablation–inductively coupled plasma–mass spectrometry and their impact on bioimaging applications. J Anal At Spectrom 31:423–439CrossRefGoogle Scholar
  143. Van Malderen SJM, Vergucht E, Rijcke M et al (2016b) Quantitative determination and subcellular imaging of cu in single cells via laser ablation–ICP–mass spectrometry using high-density microarray gelatin standards. Anal Chem 88(11):5783–5789PubMedCrossRefPubMedCentralGoogle Scholar
  144. Van Schooneveld MM, Gloter A, Stephan O et al (2010) Imaging and quantifying the morphology of an organic-inorganic nanoparticle at the sub-nanometre level. Nature Nanotechnol 5(7):538–544CrossRefGoogle Scholar
  145. Wang HAO, Grolimund D, Giesen C et al (2013) Fast chemical imaging at high spatial resolution by laser ablation inductively coupled plasma mass spectrometry. Anal Chem 85(21):10107–10116PubMedCrossRefPubMedCentralGoogle Scholar
  146. Wang S, Brown R, Gray DJ (1994) Application of laser ablation–ICPMS to the spatially resolved micro-analysis of biological tissue. Appl Spectrosc 48(11):1321–1325CrossRefGoogle Scholar
  147. Watanabe M, Williams DB, Tomokiyo Y (2003) Comparison of detectability limits for elemental mapping by EF-TEM and STEM-XEDS. Micron 34(2–5):173–183PubMedCrossRefPubMedCentralGoogle Scholar
  148. Waugh AR, Bayly AR, Anderson K (1984) The application of liquid metal ion sources to SIMS. Vacuum 34:103–106CrossRefGoogle Scholar
  149. Wedlock LE, Berners-Price SJ (2011) Recent advances in mapping the sub-cellular distribution of metal-based anticancer drugs. Aust J Chem 64:692–704CrossRefGoogle Scholar
  150. Wedlock LE, Kilburn MR, Cliff JB et al (2011) Visualising gold inside tumour cells following treatment with an antitumour gold(I) complex. Metallomics 3(9):917–925PubMedCrossRefPubMedCentralGoogle Scholar
  151. Wedlock LE, Kilburn MR, Liu R et al (2013) NanoSIMS multi-element imaging reveals internalisation and nucleolar targeting for a highly-charged polynuclear platinum compound. Chem Commun 49:6944–6946CrossRefGoogle Scholar
  152. Williams P (1985) Secondary ion mass spectrometry. Ann Rev Mater Sci 15:517–548CrossRefGoogle Scholar
  153. Williams DB, Carter CB (2009) The transmission electron microscope. In: Transmission electron microscopy. A textbook for materials science. Springer, USA., New York. Chapter 1, pp 3–22CrossRefGoogle Scholar
  154. Winograd N, Bloom A (2015) Sample preparation for 3D SIMS chemical imaging cells. In: He L (ed) Mass spectrometry imaging of small molecules. Springer, USA., New York. Chapter 2, pp 9–19Google Scholar
  155. Wong JG, Wilkinson LE, Chen SW et al (1989) Quantitative elemental imaging in the analytical electron microscope with biological applications. Scanning 11:12–19CrossRefGoogle Scholar
  156. Wu B, Chen Y, Becker JS (2013a) Study of essential element accumulation in the leaves of a Cu-tolerant plant Elsholtzia splendens after Cu treatment by imaging laser ablation inductively coupled plasma mass spectrometry (LA–ICP–MS). Anal Chim Acta 633(2):165–172CrossRefGoogle Scholar
  157. Wu S, Kim AM, Bleher R et al (2013b) Imaging and elemental mapping of biological specimens with a dual-EDS dedicated scanning transmission electron microscope. Ultramicroscopy 128:24–31PubMedPubMedCentralCrossRefGoogle Scholar
  158. Xu M, Bijoux H, Gonzalez P et al (2014a) Investigating the response of cuproproteins from oysters (Crassostrea gigas) after waterborne copper exposure by metallomic and proteomic approaches. Metallomics 6(2):338–346PubMedPubMedCentralCrossRefGoogle Scholar
  159. Xu M, Frelon S, Simon O et al (2014b) Non-denaturating isoelectric focusing gel electrophoresis for uranium-protein complexes quantitative analysis with LA–ICP MS. Anal Bioanal Chem 406(4):1063–1072PubMedPubMedCentralCrossRefGoogle Scholar
  160. Yumoto S, Kakimi S, Ohsaki A et al (2009) Demonstration of aluminum in amyloid fibers in the cores of senile plaques in the brains of patients with Alzheimer’s disease. J Inorg Biochem 103(11):1579–1584PubMedCrossRefGoogle Scholar
  161. Zarco-Fernandez S, Coto-García AM, Munoz-Olivas R et al (2016) Bioconcentration of ionic cadmium and cadmium selenide quantum dots in zebrafish larvae. Chemosphere 148:328–335PubMedCrossRefPubMedCentralGoogle Scholar
  162. Zhang P, Land W, Lee S et al (2005) Electron tomography of degenerating neurons in mice with abnormal regulation of iron metabolism. J Struct Biol 150(2):144–153PubMedPubMedCentralCrossRefGoogle Scholar
  163. Zoriy MV, Kayser A, Izmer A et al (2005) Determination of uranium isotopic ratios in biological samples using laser ablation inductively coupled plasma double focusing sector field mass spectrometry with cooled ablation chamber. Int J Mass Spectrom 242(2–3):297–302CrossRefGoogle Scholar
  164. Zoriy MV, Dehnhardt M, Reifenberger G et al (2006) Imaging of Cu, Zn, Pb and U in human brain tumor resections by laser ablation inductively coupled plasma mass spectrometry. Int J Mass Spectrom 257(1–3):27–33CrossRefGoogle Scholar
  165. Zoriy MV, Dehnhardt M, Matusch A et al (2008) Comparative imaging of P, S, Fe, Cu, Zn and C in thin sections of rat brain tumor as well as control tissues by laser ablation inductively coupled plasma mass spectrometry. Spectrochim Acta B 63(3):375–382CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Valderi Luiz Dressler
    • 1
  • Edson Irineu Müller
    • 1
  • Dirce Pozebon
    • 2
  1. 1.Universidade Federal de Santa MariaSanta MariaBrazil
  2. 2.Universidade Federal do Rio Grande do SulPorto AlegreBrazil

Personalised recommendations