Advertisement

Metallomics pp 111-137 | Cite as

The Use of Stable Isotopic Tracers in Metallomics Studies

  • Maria Montes-Bayón
  • Jörg Bettmer
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1055)

Abstract

Mass spectrometry represents an essential technique in Metallomics studies. It permits the identification of metal-containing molecules as part of the metallome as well as their quantification at low concentration levels. The technique becomes even more powerful in combination with the use of isotopically enriched species. Provided that they are stable, these isotopically labelled species can be easily distinguished from their natural counterparts by mass spectrometric techniques. This capability permits that these species are used for accurate and precise quantitative experiments and/or metabolic studies applying inductively coupled plasma as ionization source. In this chapter, we present the different concepts of using stable isotope tracers and isotope dilution analysis as quantification strategy. Besides some fundamental aspects, various examples from Metallomics studies, for instance, on the preparation of isotopically enriched metalloproteins and determination by isotope dilution analysis or the exploration of the biological pathways of Se species, are shown in order to demonstrate the usefulness of isotopes.

Keywords

Isotopes ICP-MS Isotope dilution analysis Tracer studies Metalloproteins Metallometabolites 

Abbreviations

AQUA

Absolute quantification

CRM

Certified reference material

DNA

Deoxyribonucleic acid

DOM

Dissolved organic matter

ESI

Electrospray ionization

FAZ

Fractional absorption of zinc

GC-MS

Gas chromatography-mass spectrometry

HPLC

High-performance liquid chromatography

ICP

Inductively coupled plasma

ICP-MS

Inductively coupled plasma-mass spectrometry

IDA

Isotope dilution analysis

IPD

Isotope pattern deconvolution

LA-ICP-MS

Laser ablation-inductively coupled plasma-mass spectrometry

LC-MS

Liquid chromatography-mass spectrometry

LC-MS/MS

Liquid chromatography-tandem mass spectrometry

MALDI

Matrix-assisted laser desorption and ionization

MC-ICP-MS

Multicollector-inductively coupled plasma-mass spectrometry

MELD

Model for end-stage liver disease

MeSeCys

Se-methyl selenocysteine

MS

Mass spectrometry

NTI-MS

Negative thermal ionization-mass spectrometry

PCR

Polymerase chain reaction

RSD

Relative standard deviation

SeCys

Selenocysteine

SeMet

Selenomethionine

SOD

Superoxide dismutase

TIMS

Thermal ionization mass spectrometry

References

  1. Balter V, Lamboux A, Zazzo A, Télouk P, Leverrier Y, Marvel J, Moloney AP, Monahan FJ, Schmidt O, Albarède F (2013) Contrasting Cu, Fe, and Zn isotopic patterns in organs and body fluids of mice and sheep, with emphasis on cellular fractionation. Metallomics 5:1470–1482CrossRefPubMedGoogle Scholar
  2. Bettmer J (2010) Application of isotope dilution ICP-MS techniques to quantitative proteomics. Anal Bioanal Chem 397:3495–3502CrossRefPubMedGoogle Scholar
  3. Bettmer J, Montes Bayón M, Ruiz Encinar J, Fernández Sánchez ML, Fernández de la Campa MR, Sanz Medel A (2009) The emerging role of ICP-MS in proteomic analysis. J Proteome 72:989–1005CrossRefGoogle Scholar
  4. Brauckmann C, Frank C, Schulze D, Kaiser P, Stosch R, Swart C (2016) Preparation and characterisation of an 57Fe enriched haemoglobin spike material for species specific isotope dilution mass spectrometry. J Anal At Spectrom 31:1846–1857CrossRefGoogle Scholar
  5. Brnić M, Wegmüller R, Melse-Boonstra A, Stomph T, Zeder C, Tay FM, Hurrell RF (2016) Zinc absorption by adults is similar from intrinsically labeled zinc-biofortified rice and from rice fortified with labeled zinc sulfate. J Nutr 146:76–80CrossRefPubMedGoogle Scholar
  6. Chen JH, Singh N, Taya H, Walczyk T (2014) Imbalance of iron influx and efflux causes brain iron accumulation over time in the healthy adult rat. Metallomics 6:1417–1426CrossRefPubMedGoogle Scholar
  7. Costas-Rodríguez M, Anoshkina Y, Lauwens S, Van Vlierberghe H, Delanghe J, Vanhaecke F (2015) Isotopic analysis of Cu in blood serum by multi-collector ICP-mass spectrometry: a new approach for the diagnosis and prognosis of liver cirrhosis? Metallomics 7:491–498CrossRefPubMedGoogle Scholar
  8. Deitrich C, Raab A, Pioselli B, Thomas-Oates JE, Feldmann J (2007) Chemical preparation of an isotopically enriched superoxide dismutase and its characterization as a standard for species-specific isotope dilution analysis. Anal Chem 79:8381–8390CrossRefPubMedGoogle Scholar
  9. Deitrich CL, Braukmann S, Raab A, Munro C, Pioselli B, Krupp EM, Thomas-Oates JE, Feldmann J (2010) Absolute quantification of superoxide dismutase (SOD) using species-specific isotope dilution analysis. Anal Bioanal Chem 397:3515–3524CrossRefPubMedGoogle Scholar
  10. Del Castillo Busto ME, Montes-Bayón M, Sanz-Medel A (2006) Accurate determination of human serum transferrin isoforms: exploring metal-specific isotope dilution analysis as a quantitative proteomic tool. Anal Chem 82:8218–8226CrossRefGoogle Scholar
  11. Demuth N, Heumann KG (2001) Validation of methylmercury determinations in aquatic systems by alkyl derivatization methods for GC analysis using ICP-IDMS. Anal Chem 73:4020–4027CrossRefPubMedGoogle Scholar
  12. Di Tullo P, Versini A, Bueno M, Le Hécho I, Thiry Y, Biron P, Castrec-Rouelle M, Pannier F (2015) Stable isotope tracing: a powerful tool for selenium speciation and metabolic studies in non-hyperaccumulator plants (ryegrass Lolium perenne L.). Anal Bioanal Chem 407:9029–9042CrossRefPubMedGoogle Scholar
  13. Dybowska AD, Croteau M-N, Misra SK, Berhanu D, Luoma SN, Christian P, O’Brien P, Valsami-Jones E (2011) Synthesis of isotopically modified ZnO nanoparticles and their potential as nanotoxicity tracers. Environ Pollut 159:266–273CrossRefPubMedGoogle Scholar
  14. Fairweather-Tait SJ, Collings R, Hurst R (2010) Selenium bioavailability: current knowledge and future research requirements. Am J Clin Nutr 91:1484S–1491SCrossRefPubMedGoogle Scholar
  15. Gammelgaard B, Gabel-Jensen C, Stürup S, Hansen HR (2008) Complementary use of molecular and element-specific mass spectrometry for identification of selenium compounds related to human selenium metabolism. Anal Bioanal Chem 390:1691–1706CrossRefPubMedGoogle Scholar
  16. García Alonso JI, Rodríguez González P (2013) Isotope dilution mass spectrometry. RSC publishing, Cambridge, pp 12–108Google Scholar
  17. Giusti P, Schaumlöffel D, Ruiz Encinar J, Szpunar J (2005) Interfacing reversed-phase nanoHPLC with ICP-MS and on-line isotope dilution analysis for the accurate quantification of selenium-containing peptides in protein tryptic digests. J Anal At Spectrom 20:1101–1107CrossRefGoogle Scholar
  18. Gleitzmann J, Raab A, Schulze D, Wätzig H, Feldmann J, Swart C (2016) Accurate and precise quantification of Cu,Zn-SOD in human red blood cells using species-specific double and triple IDMS. J Anal At Spectrom 31:1922–1928CrossRefGoogle Scholar
  19. Guelke M, von Blanckenburg F (2007) Fractionation of stable iron isotopes in higher plants. Environ Sci Technol 41:1896–1901CrossRefPubMedGoogle Scholar
  20. Hann S, Obinger C, Stingeder G, Paumann M, Furtmüller PG, Koellensperger G (2006) Studying metal integration in native and recombinant copper proteins by hyphenated ICP-DRC-MS and ESI-TOF-MS capabilities and limitations of the complementary techniques. J Anal At Spectrom 21:1224–1231CrossRefGoogle Scholar
  21. Harrington CF, Vidler DS, Watts MJ, Hall JF (2005) Potential for using isotopically altered metalloproteins in species-specific isotope dilution analysis of proteins by HPLC coupled to inductively coupled plasma mass spectrometry. Anal Chem 77:4034–4041CrossRefPubMedGoogle Scholar
  22. Heumann KG (1992) Isotope dilution mass spectrometry (IDMS) of the elements. Mass Spectrom Rev 11:41–67CrossRefGoogle Scholar
  23. Heumann KG (2004) Isotope-dilution ICP-MS for trace element determination and speciation: from a reference method to a routine method? Anal Bioanal Chem 378:318–329CrossRefPubMedGoogle Scholar
  24. Heumann KG, Großer R (1989) Negative thermal ionization mass spectrometry of selenium. Part 2. Selenite and selenate species determination in ground waters with isotope dilution technique. Fresenius Z. Anal Chem 332:880–883CrossRefGoogle Scholar
  25. Heumann KG, Rottmann L, Vogl J (1994) Elemental speciation with liquid chromatography–inductively coupled plasma isotope dilution mass spectrometry. J Anal At Spectrom 9:1351–1355CrossRefGoogle Scholar
  26. Hinojosa Reyes L, Marchante-Gayón JM, García Alonso JI, Sanz-Medel A (2003) Quantitative speciation of selenium in human serum by affinity chromatography coupled to post-column isotope dilution analysis ICP-MS. J Anal At Spectrom 18:1210–1216CrossRefGoogle Scholar
  27. Hinojosa Reyes L, Moreno Sanz F, Herrero Espílez P, Marchante-Gayón JM, García Alonso JI, Sanz-Medel A (2004) Biosynthesis of isotopically enriched selenomethionine: application to its accurate determination in selenium-enriched yeast by isotope dilution analysis-HPLC-ICP-MS. J Anal At Spectrom 19:1230–1235CrossRefGoogle Scholar
  28. Hoppler M, Meile L, Walczyk T (2008) Biosynthesis, isolation and characterization of 57Fe-enriched Phaseolus vulgaris ferritin after heterologous expression in Escherichia coli. Anal Bioanal Chem 390:53–59CrossRefPubMedGoogle Scholar
  29. Jitaru P, Cozzi P, Gambaro A, Cescon P, Barbante C (2008) Simultaneous speciation analysis of glutathione peroxidase, selenoprotein P and selenoalbumin in human serum by tandem anion exchange-affinity HPLC and on-line isotope dilution ICP-quadrupole MS. Anal Bioanal Chem 391:661–669CrossRefPubMedGoogle Scholar
  30. Jouvin D, Weiss DJ, Mason TFM, Bravin MN, Louvat P, Zhao F, Ferec F, Hinsinger P, Benedetti MF (2012) Stable isotopes of Cu and Zn in higher plants: evidence for Cu reduction at the root surface and two conceptual models for isotopic fractionation processes. Environ Sci Technol 46:2652–2660CrossRefPubMedGoogle Scholar
  31. Kirby JK, Lyons GH, Karkkainen MP (2008) Selenium speciation and bioavailability in biofortified products using species-unspecific isotope dilution and reverse phase ion pairing-inductively coupled plasma-mass spectrometry. J Agri Food Chem 56:1772–1779CrossRefGoogle Scholar
  32. Konopka A, Winter D, Konopka W, del Castillo Busto ME, Nunez S, Goenaga-Infante H, Fisicaro P, Lehmann WD (2016) [Sec-to-cys]selenoprotein - a novel type of recombinant, full-length selenoprotein standard for quantitative proteomics. J Anal At Spectrom 31:1929–1938CrossRefGoogle Scholar
  33. Krebs NE, Hambidge KM (2001) Zinc metabolism and homeostasis: the application of tracer techniques to human zinc physiology. Biometals 14:397–412CrossRefPubMedGoogle Scholar
  34. Lehmann WD (2017) A timeline of stable isotopes and mass spectrometry in the life sciences. Mass Spectrom Rev 36:58–85CrossRefPubMedGoogle Scholar
  35. Meija J, Mester Z (2008) Paradigms in isotope dilution mass spectrometry for elemental speciation analysis. Anal Chim Acta 607:115–125CrossRefPubMedGoogle Scholar
  36. Monperrus M, Tessier E, Veschambre S, Amouroux D, Donard O (2005) Simultaneous speciation of mercury and butyltin compounds in natural waters and snow by propylation and species-specific isotope dilution mass spectrometry analysis. Anal Bioanal Chem 381:854–862CrossRefPubMedGoogle Scholar
  37. Montes-Bayon M, Pröfrock D, Sanz-Medel A, Prange A (2006) Direct comparison of capillary electrophoresis and capillary liquid chromatography hyphenated to collision-cell inductively coupled plasma mass spectrometry for the investigation of Cd-, Cu- and Zn-containing metalloproteins. J Chromatogr A 1114:138–144CrossRefPubMedGoogle Scholar
  38. Nuevo Ordóñez Y, Deitrich CL, Montes-Bayón M, Blanco-González E, Feldmann J, Sanz-Medel A (2011) Species specific isotope dilution versus internal standardization strategies for the determination of Cu, Zn-superoxide dismutase in red blood cells. J Anal At Spectrom 26:150–155CrossRefGoogle Scholar
  39. Orera I, Rodríguez-Castrillo JA, Moldovan M, García-Alonso JI, Abadia A, Abadia J, Álvarez-Fernández A (2010) Using a dual-stable isotope tracer method to study the uptake, xylem transport and distribution of Fe and its chelating agent from stereoisomers of an Fe(III)-chelate used as fertilizer in Fe-deficient strategy I plants. Metallomics 2:646–657CrossRefPubMedGoogle Scholar
  40. Pedrero Z, Madrid Y (2009) Novel approaches for selenium speciation in foodstuffs and biological specimens: a review. Anal Chim Acta 634:135–152CrossRefPubMedGoogle Scholar
  41. Pessôa GS, Arruda MAZ (2017) Incorporation of 67Zn and 68Zn into carbonic anhydrase: effects on isotope enrichment and enzymatic aspects. J Anal At Spectrom 32:1473–1480CrossRefGoogle Scholar
  42. Poperechna N, Heumann KG (2005) Species-specific GC/ICP-IDMS for trimethyllead determinations in biological and environmental samples. Anal Chem 77:511–516CrossRefPubMedGoogle Scholar
  43. Rodríguez-González P, Marchante-Gayón JM, García Alonso JI, Sanz-Medel A (2005) Isotope dilution analysis for elemental speciation: a tutorial review. Spectrochim Acta B: At Spectrom 60:151–207CrossRefGoogle Scholar
  44. Rottmann L, Heumann KG (1994a) Development of an on-line isotope dilution technique with HPLC/ICP-MS for the accurate determination of elemental species. Fresen J Anal Chem 350:221–227CrossRefGoogle Scholar
  45. Rottmann L, Heumann KG (1994b) Determination of heavy metal interactions with dissolved organic materials in natural aquatic systems by coupling a high-performance liquid chromatography system with an inductively coupled plasma mass spectrometer. Anal Chem 66:3709–3715CrossRefGoogle Scholar
  46. Ruiz Encinar J, Schaumlöffel D, Ogra Y, Lobinski R (2004) Determination of selenomethionine and selenocysteine in human serum using speciated isotope dilution-capillary HPLC−inductively coupled plasma collision cell mass spectrometry. Anal Chem 76:6635–6642CrossRefGoogle Scholar
  47. Schaumlöffel D, Prange A, Marx G, Heumann KG, Brätter P (2002) Characterization and quantification of metallothionein isoforms by capillary electrophoresis–inductively coupled plasma-isotope-dilution mass spectrometry. Anal Bioanal Chem 372:155–163CrossRefPubMedGoogle Scholar
  48. Stürup S, Hansen HR, Gammelgaard B (2008) Application of enriched stable isotopes as tracers in biological systems: a critical review. Anal Bioanal Chem 390:541–554CrossRefPubMedGoogle Scholar
  49. Suzuki KT, Doi C, Suzuki N (2006) Metabolism of 76Se-methylselenocysteine compared with that of 77Se-selenomethionine and 82Se-selenite. Toxicol Appl Pharmacol 217:185–195CrossRefPubMedGoogle Scholar
  50. Swart C (2013) Metrology for metalloproteins-where are we now, where are we heading? Anal Bioanal Chem 405:5697–5723CrossRefPubMedGoogle Scholar
  51. Swart C, Jakubowski N (2016) Update on the status of metrology for metalloproteins. J Anal At Spectrom 31:1756–1765CrossRefGoogle Scholar
  52. Télouk P, Puisieux A, Fujii T, Balter V, Bondanese VP, Morel A-P, Clapisson G, Lamboux A, Albarede F (2015) Copper isotope effect in serum of cancer patients. A pilot study. Metallomics 7:299–308CrossRefPubMedGoogle Scholar
  53. Tran CD, Gopalsamy GL, Mortimer EK, Young GP (2015) The potential for zinc stable isotope techniques and modelling to determine optimal zinc supplementation. Nutrients 7:4271–4295CrossRefPubMedPubMedCentralGoogle Scholar
  54. Walczyk T, von Blanckenburg F (2002) Natural iron isotope variations in human blood. Science 295:2065–2066CrossRefPubMedGoogle Scholar
  55. Zhao D, Zhang Y, Wang Y, Xu C, Dong C, Li C, Ren S, Zhang W, Lu Y, Dai Y, Chen X (2014) Pharmacokinetics study of hemin in rats by applying 58Fe-extrinsically labeling techniques in combination with ICP-MS method. J Pharm Biomed Anal 88:331–336CrossRefPubMedGoogle Scholar
  56. Zinn N, Krüger R, Leonard P, Bettmer J (2008) μLC coupled to ICP-SFMS with post-column isotope dilution analysis of sulfur for absolute protein quantification. Anal Bioanal Chem 391:537–543CrossRefPubMedGoogle Scholar
  57. Zitek A, Irrgeher J, Cervicek M, Horsky M, Kletzl M, Weismann T, Prohaska T (2014) Individual-specific transgenerational marking of common carp, Cyprinus carpio L., using 86Sr/84Sr double spikes. Mar Freshwater Res 65:978–986CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.University of Oviedo, Department of Physical and Analytical ChemistryOviedoSpain

Personalised recommendations