Metallomics pp 101-110 | Cite as

Metallomics in Fish

  • Camila Pereira Braga
  • Jiri Adamec
  • Pedro de Magalhães PadilhaEmail author
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1055)


Metallomics allows the integration of traditionally analytical studies with inorganic and biochemical studies. The study of metallomics in living organisms allows us to obtain information about how the metal ion is distributed and coordinated with proteins, the essentiality and/or toxicity, and the individual concentrations of metal species, thus contributing to elucidation of the physiological and functional aspects of these biomolecules. In this context, several lines of research have appeared in the literature with different terms and approaches. For example, metallomic, which deals with the characterization of the total metal/metalloid species present in an organism; metalloprotein, which deals with the characterization of the total elements present in a specific site of an organism (cellular behavior, protein, metalloprotein); and metallomic, which deals with a more in-depth study of metallome. In this area, information is sought on the interactions and functional connections of metal/metalloid species with genes, proteins, metabolites and other biomolecules of the organism and, therefore, the elucidation of the biological role exerted by the metal ions bound to the biomolecules. In this chapter, we will describe techniques used in animal studies.


Animal Fish Metallomic Metalloprotein 



Two-dimensional polyacrylamide gel electrophoresis


Atomic absorption spectrometry


Electrospray ionization


Electrospray ionization tandem mass spectrometry


Flame atomic absorption spectrometry


Graphite furnace atomic absorption spectrometry


Inductively coupled plasma source mass spectrometry


Isoelectric focusing


Multidimensional liquid chromatography


Matrix assisted laser desorption ionization


Time-of-flight mass spectrometry coupled to laser-assisted matrix


Molecular mass


Mass spectrometry


One-dimensional polyacrylamide gel electrophoresis


Isoeletric point


Sodium dodecyl sulfate polyacrylamide gel electrophoresis


size-exclusion chromatography


  1. Aebersold R, Mann M (2003) Mass spectrometry-based proteomics. Nature 422:198–207CrossRefPubMedPubMedCentralGoogle Scholar
  2. Akagi H, Malm O, Kinjo Y et al (1995) Methylmercury pollution in the Amazon, Brazil. Sci Total Environ 175:85–95CrossRefGoogle Scholar
  3. Aula I, Braunschweiler H, Malin I (1995) The watershed flux of mercury examined with indicators in the Tucuruí reservoir in Pará, Brazil. Sci Total Environ 175:97–107CrossRefGoogle Scholar
  4. Baldassini WA, Braga CP, Chardulo LAL et al (2015) Bioanalytical methods for the metalloproteomics study of bovine longissimus thoracis muscle tissue with different grades of meat tenderness in the Nellore breed (Bos indicus). Food Chem 169:65–72CrossRefPubMedGoogle Scholar
  5. Barnham KJ, Bush AI (2014) Biological metals and metal-targeting compounds in major neurodegenerative diseases. Chem Soc Rev 43:6727–6749CrossRefPubMedGoogle Scholar
  6. Bastos WR, Gomes JPO, Oliveira RC et al (2006) Mercury in the environment and riverside population in the Madeira River basin, Amazon, Brazil. Sci Total Environ 368:344–351CrossRefPubMedGoogle Scholar
  7. Beyer J, Sandvik M, Hylland K et al (1996) Contaminant accumulation and biomarker responses in flounder (Platichthys flesus L.) and Atlantic cod (Gadus morhua L.) exposed by caging to polluted sediments in Sorfjorden, Norway. Aquat Toxicol 36:75–98CrossRefGoogle Scholar
  8. Braga CP, Bittarello AC, Padilha CCF et al (2015) Mercury fractionation in dourada (Brachyplatystoma rousseauxii) of the Madeira River in Brazil using metalloproteomic strategies. Talanta 132:239–244CrossRefPubMedGoogle Scholar
  9. Braga CP; Vieira JC; Leite AL et al (2017) Metalloproteomic and differential expression in plasma in a rat model of type 1 diabetes. Int J Biol Macromol 104:414–422.Google Scholar
  10. Braga CP, Vieira JCS, Grove RA et al (2017) A proteomic approach to identify metalloproteins and metal-binding proteins in liver from diabetic rats. Int J Biol Macromol 96:817–832CrossRefPubMedGoogle Scholar
  11. Cavecci B, De Lima PM, De Queiroz JV et al (2015) Metalloproteomic profile determination of muscle samples from Nile tilapia (Oreochromis niloticus) using AAS and ESI-MS/MS after 2D-PAGE separation. J Braz Chem Soc 26:239–246Google Scholar
  12. Clarkson TW, Magos L (2006) The toxicology of mercury and its chemical compounds. Crit Rev Toxicol 36:609–662CrossRefPubMedGoogle Scholar
  13. da Silva MAO, Garcia JS, GHMF S et al (2010) Evaluation of sample preparation protocols for proteomic analysis of sunflower leaves. Talanta 80:1545–1551CrossRefPubMedGoogle Scholar
  14. Dydio P, Key HM, Nazarenko A, et al (2016) An artificial metalloenzyme with the kinetics of native enzymes. Science (80-) 354:102–106CrossRefPubMedGoogle Scholar
  15. Gao Y, Chen C, Zhang P et al (2003) Detection of metalloproteins in human liver cytosol by synchrotron radiation X-ray fluorescence after sodium dodecyl sulphate polyacrylamide gel electrophoresis. Anal Chim Acta 485:131–137CrossRefGoogle Scholar
  16. Garcia R, Baez AP (2012) Atomic absorption spectrometry (AAS). In: At. Absorpt. Spectrosc, pp 1–12Google Scholar
  17. Gorg A, Obermaier C, Boguth G et al (2000) The current state of two-dimensional electrophoresis with immobilized pH gradients. Electrophoresis 21:1037–1053CrossRefPubMedGoogle Scholar
  18. Haraguchi H (2004) Metallomics as integrated biometal science. J Anal At Spectrom 19:5CrossRefGoogle Scholar
  19. Hauser-Davis RA, De Campos RC, Ziolli RL (2012) Fish metalloproteins as biomarkers of environmental contamination. Rev Environ Contam Toxicol 218:101–123PubMedGoogle Scholar
  20. Huang S, Liu X, Wang D et al (2016) Structural basis for the selective Pb(II) recognition of Metalloregulatory protein PbrR691. Inorg Chem 55:12516–12519CrossRefPubMedGoogle Scholar
  21. Jenniss SW, Katz SA, Lynch RW (1999) Applications of atomic spectrometry to regulatory compliance monitoring. ACH-Models Chem 136:55–68Google Scholar
  22. Korbas M, Blechinger SR, Krone PH et al (2008) Localizing organomercury uptake and accumulation in zebrafish larvae at the tissue and cellular level. Proc Natl Acad Sci U S A 105:12108–12112CrossRefPubMedPubMedCentralGoogle Scholar
  23. Kutscher DJ, Sanz-Medel A, Bettmer J (2012) Metallomics investigations on potential binding partners of methylmercury in tuna fish muscle tissue using complementary mass spectrometric techniques. Metallomics 4:807–813CrossRefPubMedGoogle Scholar
  24. Lima PM, Neves RDCF, Dos Santos FA et al (2010) Analytical approach to the metallomic of Nile tilapia (Oreochromis niloticus) liver tissue by SRXRF and FAAS after 2D-PAGE separation: preliminary results. Talanta 82:1052–1056CrossRefPubMedGoogle Scholar
  25. Lippard SJ (1994) Metals in medicine. In: Bioinorganic chemistry. University Science Books, Mill Valley, pp 505–584Google Scholar
  26. López-Barea J, Gómez-Ariza JL (2006) Environmental proteomics and metallomics. Proteomics 6(Suppl 1):S51–S62CrossRefPubMedGoogle Scholar
  27. Moraes PM, Santos FA, Padilha CCF et al (2012) A preliminary and qualitative metallomics study of mercury in the muscle of fish from Amazonas, Brazil. Biol Trace Elem Res 150:195–199CrossRefPubMedGoogle Scholar
  28. Moraes PM, Santos FA, Cavecci B et al (2013) GFAAS determination of mercury in muscle samples of fish from Amazon, Brazil. Food Chem 141:2614–2617CrossRefPubMedGoogle Scholar
  29. O’Farrell PH (1975) High resolution two-dimensional electrophoresis of proteins. J Biol Chem 250:4007–4021PubMedPubMedCentralGoogle Scholar
  30. Pfeiffer WC, Lacerda LD, Salomons W, Malm O (1993) Environmental fate of mercury from gold mining in the Brazilian Amazon. Environ Rev 1:26–37CrossRefGoogle Scholar
  31. Rees DA, Alcolado JC (2005) Animal models of diabetes mellitus. Diabet Med 22:359–370CrossRefPubMedGoogle Scholar
  32. Santos FA, Lima PM, Neves RCF et al (2011) Metallomic study on plasma samples from Nile tilapia using SR-XRF and GFAAS after separation by 2D PAGE: initial results. Microchim Acta 173:43–49CrossRefGoogle Scholar
  33. Sun H, Chai Z-F (2010) Metallomics: an integrated science for metals in biology and medicine. Annu Reports Sect “A” Inorganic Chem 106:20–38CrossRefGoogle Scholar
  34. Szpunar J (2004) Metallomics: a new frontier in analytical chemistry. Anal Bioanal Chem 378:54–56CrossRefPubMedGoogle Scholar
  35. Van der Oost R, Beyer J, Vermeulen NPE (2003) Fish bioaccumulation and biomarkers in environmental risk assessment: a review. Environ Toxicol Pharmacol 13:57–149CrossRefPubMedGoogle Scholar
  36. Vieira JCS, Cavecci B, Queiroz JV et al (2015) Determination of the mercury fraction linked to protein of muscle and liver tissue of Tucunaré (Cichla spp.) from the Amazon region of Brazil. Arch Environ Contam Toxicol 69:422–430CrossRefPubMedGoogle Scholar
  37. Vieira JCS, Braga CP, de Oliveira G et al (2017) Identification of protein biomarkers of mercury toxicity in fish. Environ Chem Lett 15:717–724CrossRefGoogle Scholar
  38. Xiang F, Lu X, Strutt B et al (2010) NOX2 deficiency protects against streptozotocin-induced β-cell destruction and development of diabetes in mice. Diabetes 59:2603–2611CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Camila Pereira Braga
    • 1
  • Jiri Adamec
    • 1
  • Pedro de Magalhães Padilha
    • 2
    Email author
  1. 1.Department of BiochemistryUniversity of Nebraska-LincolnLincolnUSA
  2. 2.Department of Chemistry and BiochemistryInstitute of Bioscience, São Paulo State University (UNESP)BotucatuBrazil

Personalised recommendations