Plant-Made Veterinary Vaccines for Newcastle Disease Virus

  • David R. Thomas
  • Amanda M. WalmsleyEmail author


Newcastle disease is a word-wide, highly problematic, infectious, acute respiratory disease of domesticated and wild avian species. Newcastle disease virus proved an ideal target for a proof-of-concept study investigating the ability of a plant-made vaccines to successfully navigate the US veterinary regulatory system because it has: a single dominant viral surface antigen that is protective; a well-defined disease challenge model; readily available positive controls; and standardized diagnostic assays (Mihaliak et al. in Development of plant cell produced vaccines for animal health applicaions. United States Animal Health Association, Greensboro, 2004). However despite the Proof-of Concept study proving successful and an additional study proving an orally delivered, plant-made NDV vaccine could protect against challenge (Guerrero-Andrade et al. in Transgenic Res, 15(4): 455–463, 2006) a plant-made NDV vaccine has not been marketed. This is most likely due to the competition faced from numerous NDV vaccines already on the market that have proven successful for many years. Now that plant-made vaccines (for animal and human use) have successfully made it through regulatory systems, the target of future, commercial, plant-made vaccine investigations should either target a niche disease or a disease that has little or weaker competition already on the market.


Newcastle disease Plant-made vaccines Plant cell culture Commercially licensed 


  1. Al-Garib SO, Gielkens AL, Gruys DE, Hartog L, Koch G (2003a) Immunoglobulin class distribution of systemic and mucosal antibody responses to Newcastle disease in chickens. Avian Dis 47(1):32–40PubMedCrossRefGoogle Scholar
  2. Al-Garib SO, Gielkens ALJ, Gruys E, Kochi G (2003b) Review of Newcastle disease virus with particular references to immunity and vaccination. World’s Poult Sci J 59(02):185–200CrossRefGoogle Scholar
  3. Aldous EW, Alexander DJ (2001) Detection and differentiation of Newcastle disease virus (avian paramyxovirus type 1). Avian Pathol 30(2):117–128PubMedCrossRefGoogle Scholar
  4. Alexander DJ (1995) The epidemiology and control of avian influenza and Newcastle disease. J Comp Pathol 112(2):105–126PubMedCrossRefGoogle Scholar
  5. Alexander DJ, Allan WH (1974) Newcastle disease virus pathotypes. Avian Pathol 3(4):269–278PubMedCrossRefGoogle Scholar
  6. Awan MA, Otte MJ, James AD (1994a) The epidemiology of Newcastle disease in rural poultry: a review. Avian Pathol 23(3):405–423PubMedCrossRefGoogle Scholar
  7. Awan MA, Otte MJ, James AD (1994b) The epidemiology of Newcastle-disease in rural poultry—a review. Avian Pathol 23(3):405–423PubMedCrossRefGoogle Scholar
  8. Ayala AJ, Dimitrov KM, Becker CR, Goraichuk IV, Arns CW, Bolotin VI, Ferreira HL, Gerilovych AP, Goujgoulova GV, Martini MC, Muzyka DV, Orsi MA, Scagion GP, Silva RK, Solodiankin OS, Stegniy BT, Miller PJ, Afonso CL (2016) Presence of vaccine-derived Newcastle disease viruses in wild birds. PLoS ONE 11(9):e0162484PubMedPubMedCentralCrossRefGoogle Scholar
  9. Berinstein A, Vazquez-Rovere C, Asurmendi S, Gomez E, Zanetti F, Zabal O, Tozzini A, Conte Grand D, Taboga O, Calamante G, Barrios H, Hopp E, Carrillo E (2005) Mucosal and systemic immunization elicited by Newcastle disease virus (NDV) transgenic plants as antigens. Vaccine 23(48–49):5583–5589PubMedCrossRefGoogle Scholar
  10. Boursnell ME, Green PF, Samson AC, Campbell JI, Deuter A, Peters RW, Millar NS, Emmerson PT, Binns MM (1990) A recombinant fowlpox virus expressing the hemagglutinin-neuraminidase gene of Newcastle disease virus (NDV) protects chickens against challenge by NDV. Virology 178(1):297–300PubMedCrossRefGoogle Scholar
  11. Brown C, King DJ, Seal BS (1999) Pathogenesis of Newcastle disease in chickens experimentally infected with viruses of different virulence. Vet Pathol 36(2):125–132PubMedCrossRefGoogle Scholar
  12. Bublot M, Pritchard N, Swayne DE, Selleck P, Karaca K, Suarez DL, Audonnet JC, Mickle TR (2006) Development and use of fowlpox vectored vaccines for avian influenza. Ann N Y Acad Sci 1081:193–201PubMedCrossRefGoogle Scholar
  13. Burridge MJ, Riemann HP, Utterback WW (1975) Methods of spread of velogenic viscerotropic Newcastle disease virus in the Southern Californian epidemic of 1971–1973. Avian Dis 19(4):666–678PubMedCrossRefGoogle Scholar
  14. Cattoli G, Susta L, Terregino C, Brown C (2011) Newcastle disease: a review of field recognition and current methods of laboratory detection. J Vet Diagn Invest 23(4):637–656PubMedCrossRefGoogle Scholar
  15. Chahal JS, Khan OF, Cooper CL, McPartlan JS, Tsosie JK, Tilley LD, Sidik SM, Lourido S, Langer R, Bavari S, Ploegh HL, Anderson DG (2016) Dendrimer-RNA nanoparticles generate protective immunity against lethal Ebola, H1N1 influenza, and Toxoplasma gondii challenges with a single dose. Proc Natl Acad Sci USA 113(29):E4133–E4142PubMedCrossRefGoogle Scholar
  16. Childs K, Stock N, Ross C, Andrejeva J, Hilton L, Skinner M, Randall R, Goodbourn S (2007) mda-5, but not RIG-I, is a common target for paramyxovirus V proteins. Virology 359(1):190–200PubMedCrossRefGoogle Scholar
  17. Chong YL, Padhi A, Hudson PJ, Poss M (2010) The effect of vaccination on the evolution and population dynamics of avian paramyxovirus-1. PLoS Pathog 6(4):e1000872PubMedPubMedCentralCrossRefGoogle Scholar
  18. Chulan U, Ibrahim AL, Mustaffa Babjee A, SheikhOmar AR (1982) vaccination against Newcastle disease. Trop Anim Health Prod 14(3):177–184PubMedCrossRefGoogle Scholar
  19. Corey EA, Mirza AM, Levandowsky E, Iorio RM (2003) Fusion deficiency induced by mutations at the dimer interface in the Newcastle disease virus hemagglutinin-neuraminidase is due to a temperature-dependent defect in receptor binding. J Virol 77(12):6913–6922PubMedPubMedCentralCrossRefGoogle Scholar
  20. Czegledi A, Ujvari D, Somogyi E, Wehmann E, Werner O, Lomniczi B (2006) Third genome size category of avian paramyxovirus serotype 1 (Newcastle disease virus) and evolutionary implications. Virus Res 120(1–2):36–48PubMedCrossRefGoogle Scholar
  21. Dai C, Kang H, Yang W, Sun J, Liu C, Cheng G, Rong G, Wang X, Wang X, Jin Z, Zhao K (2015) O-2’-hydroxypropyltrimethyl ammonium chloride chitosan nanoparticles for the delivery of live Newcastle disease vaccine. Carbohydr Polym 130:280–289PubMedCrossRefGoogle Scholar
  22. Davis-Fields MK, Allison AB, Brown JR, Poulson RL, Stallknecht DE (2014) Effects of temperature and pH on the persistence of avian paramyxovirus-1 in water. J Wildl Dis 50(4):998–1000PubMedCrossRefGoogle Scholar
  23. de Leeuw OS, Hartog L, Koch G, Peeters BP (2003) Effect of fusion protein cleavage site mutations on virulence of Newcastle disease virus: non-virulent cleavage site mutants revert to virulence after one passage in chicken brain. J Gen Virol 84(Pt 2):475–484PubMedCrossRefGoogle Scholar
  24. Dimitrov KM, Afonso CL, Yu Q, Miller PJ (2016) Newcastle disease vaccines-A solved problem or a continuous challenge? Vet MicrobiolGoogle Scholar
  25. Dimitrov KM, Ramey AM, Qiu X, Bahl J, Afonso CL (2016b) Temporal, geographic, and host distribution of avian paramyxovirus 1 (Newcastle disease virus). Infect Genet Evol 39:22–34PubMedCrossRefGoogle Scholar
  26. Dortmans JC, Rottier PJ, Koch G, Peeters BP (2010) The viral replication complex is associated with the virulence of Newcastle disease virus. J Virol 84(19):10113–10120PubMedPubMedCentralCrossRefGoogle Scholar
  27. Doyle TM (1927) A hitherto unrecorded disease of fowls due to a filter passing virus. J Comp Pathol Therap 40:144–169Google Scholar
  28. Duan Z, Li J, Zhu J, Chen J, Xu H, Wang Y, Liu H, Hu S, Liu X (2014) A single amino acid mutation, R42A, in the Newcastle disease virus matrix protein abrogates its nuclear localization and attenuates viral replication and pathogenicity. J Gen Virol 95(Pt 5):1067–1073PubMedCrossRefGoogle Scholar
  29. Errington W, Emmerson PT (1997) Assembly of recombinant Newcastle disease virus nucleocapsid protein into nucleocapsid-like structures is inhibited by the phosphoprotein. J Gen Virol 78(9):2335–2339PubMedCrossRefGoogle Scholar
  30. Esaki M, Godoy A, Rosenberger JK, Rosenberger SC, Gardin Y, Yasuda A, Dorsey KM (2013) Protection and antibody response caused by Turkey herpesvirus vector Newcastle disease vaccine. Avian Dis 57(4):750–755PubMedCrossRefGoogle Scholar
  31. Faulkner OB, Estevez C, Yu Q, Suarez DL (2013) Passive antibody transfer in chickens to model maternal antibody after avian influenza vaccination. Vet Immunol Immunopathol 152(3–4):341–347PubMedCrossRefGoogle Scholar
  32. Fujii Y, Sakaguchi T, Kiyotani K, Yoshida T (1999) Comparison of substrate specificities against the fusion glycoprotein of virulent newcastle disease virus between a chick embryo fibroblast processing protease and mammalian subtilisin-like proteases. Microbiol Immunol 43(2):133–140PubMedCrossRefGoogle Scholar
  33. Gallili GE, Ben-Nathan D (1998) Newcastle disease vaccines. Biotechnol Adv 16(2):343–366PubMedCrossRefGoogle Scholar
  34. Gogoi P, Ganar K, Kumar S (2017) Avain paramyxovirus: a brief review. Transbound Emerg Dis 64(1):53–67PubMedCrossRefGoogle Scholar
  35. Gomez E, Chimeno Zoth S, Carrillo E, Estela Roux M, Berinstein A (2008) Mucosal immunity induced by orally administered transgenic plants. Immunobiology 213(8):671–675PubMedCrossRefGoogle Scholar
  36. Grimes SE (2002) A basic laboratory manual for the small-scale production and testing of I-2Google Scholar
  37. Guerrero-Andrade O, Loza-Rubio E, Olivera-Flores T, Fehervari-Bone T, Gomez-Lim MA (2006) Expression of the Newcastle disease virus fusion protein in transgenic maize and immunological studies. Transgenic Res 15(4):455–463PubMedCrossRefGoogle Scholar
  38. Hahn BS, Jeon IS, Jung YJ, Kim JB, Park JS, Ha SH, Kim KH, Kim HM, Yang JS, Kim YH (2007) Expression of hemagglutinin-neuraminidase protein of Newcastle disease virus in transgenic tobacco. Plant Biotechnol Rep 1(2):85–92CrossRefGoogle Scholar
  39. Hamaguchi M, Yoshida T, Nishikawa K, Naruse H, Nagai Y (1983a) Transcriptive complex of Newcastle disease virus. Virology 128(1):105–117PubMedCrossRefGoogle Scholar
  40. Hamaguchi M, Yoshida T, Nishikawa K, Naruse H, Nagai Y (1983b) Transcriptive complex of Newcastle disease virus. I. Both L and P proteins are required to constitute an active complex. Virology 128(1):105–117PubMedCrossRefGoogle Scholar
  41. Hao HF, Chen SL, Liu P, Ren SH, Gao XL, Wang YP, Wang XL, Zhang SX, Yang ZQ (2016) Genetic variation in V gene of class II Newcastle disease virus. Infect Genet Evol 37:14–20PubMedCrossRefGoogle Scholar
  42. Harrison MS, Sakaguchi T, Schmitt AP (2010) Paramyxovirus assembly and budding: building particles that transmit infections. Int J Biochem Cell Biol 42(9):1416–1429PubMedPubMedCentralCrossRefGoogle Scholar
  43. Hghihghi HR, Read LR, Mohammadi H, Pei Y, Ursprung C, Nagy E, Behboudi S, Haeryfar SM, Sharif S (2010) Characterization of host responses against a recombinant fowlpox virus-vectored vaccine expressing the hemagglutinin antigen of an avian influenza virus. Clin Vaccine Immunol 17(3):454–463PubMedPubMedCentralCrossRefGoogle Scholar
  44. Huang Z, Krishnamurthy S, Panda A, Samal SK (2003) Newcastle disease virus V protein is associated with viral pathogenesis and functions as an alpha interferon antagonist. J Virol 77(16):8676–8685PubMedPubMedCentralCrossRefGoogle Scholar
  45. Huang Z, Panda A, Elankumaran S, Govindarajan D, Rockemann DD, Samal SK (2004) The hemagglutinin-neuraminidase protein of Newcastle disease virus determines tropism and virulence. J Virol 78(8):4176–4184PubMedPubMedCentralCrossRefGoogle Scholar
  46. Hugh-Jones M, Allan WH, Dark FA, Harper GJ (1973) The evidence for the airborne spread of Newcastle disease. J Hyg (Lond) 71(2):325–339CrossRefGoogle Scholar
  47. Kaleta EF, Baldauf C (1988) Newcastle disease in free-living and pet birds. Newcastle Disease. D. J. Alexander. Springer, Boston, pp 197–246CrossRefGoogle Scholar
  48. Kapczynski DR, Afonso CL, Miller PJ (2013) Immune responses of poultry to Newcastle disease virus. Dev Comp Immunol 41(3):447–453PubMedCrossRefGoogle Scholar
  49. Kapczynski DR, King DJ (2005) Protection of chickens against overt clinical disease and determination of viral shedding following vaccination with commercially available Newcastle disease virus vaccines upon challenge with highly virulent virus from the California 2002 exotic Newcastle disease outbreak. Vaccine 23(26):3424–3433PubMedCrossRefGoogle Scholar
  50. Kapczynski DR, Martin A, Haddad EE, King DJ (2012) Protection from clinical disease against three highly virulent strains of Newcastle disease virus after in ovo application of an antibody-antigen complex vaccine in maternal antibody-positive chickens. Avian Dis 56(3):555–560PubMedCrossRefGoogle Scholar
  51. Karaca K, Sharma JM, Winslow BJ, Junker DE, Reddy S, Cochran M, McMillen J (1998) Recombinant fowlpox viruses coexpressing chicken type I IFN and Newcastle disease virus HN and F genes: influence of IFN on protective efficacy and humoral responses of chickens following in ovo or post-hatch administration of recombinant viruses. Vaccine 16(16):1496–1503PubMedCrossRefGoogle Scholar
  52. Katsnelson A, Ransom J, Vermij P, Waltz E (2006) USDA approves the first plant-based vaccine. News In Brief. Retrieved 13 Feb 2017, from
  53. Kho CL, Tan WS, Tey BT, Yusoff K (2003) Newcastle disease virus nucleocapsid protein: self-assembly and length-determination domains. J Gen Virol 84(Pt 8):2163–2168PubMedCrossRefGoogle Scholar
  54. Kho CL, Tan WS, Tey BT, Yusoff K (2004) Regions on nucleocapsid protein of Newcastle disease virus that interact with its phosphoprotein. Arch Virol 149(5):997–1005PubMedCrossRefGoogle Scholar
  55. Lamb RA, Kolakofsky D (2001) Paramyxoviridae: the viruses and their replication. Fields Virol 4:1305–1340 (B. N. Fields, D. M. Knipe and P. M. Howley. Philadelphia, PA, Lippincott Williams & Wilkins)Google Scholar
  56. Lancaster JE (1962) World distribution of Newcastle disease—1961. Can J Comp Med Vet Sci 26(10):244–245PubMedPubMedCentralGoogle Scholar
  57. Lancaster JE (1966) Newcastle disease. A review of some of the literature published between 1926 and 1964. Ottawa, Health of Animals Branch, Canada Department of Agriculture: x + 188Google Scholar
  58. Lancaster JE (1977) Newcastle-disease—review of geographical incidence and epizootiology. Worlds Poult Sci J 33(3):155–165CrossRefGoogle Scholar
  59. Le Gros FX, Dancer A, Giacomini C, Pizzoni L, Bublot M, Graziani M, Prandini F (2009) Field efficacy trial of a novel HVT-IBD vector vaccine for 1-day-old broilers. Vaccine 27(4):592–596PubMedCrossRefGoogle Scholar
  60. Leslie J (2000) Newcastle disease: outbreak losses and control policy costs. Vet Rec 146(21):603–606PubMedCrossRefGoogle Scholar
  61. Martin PAJ (1992) The epidemiology of Newcastle-disease in village chickens. Newcastle Dis Village Chickens 39:40–45Google Scholar
  62. McGinnes LW, Morrison TG (1986) Nucleotide sequence of the gene encoding the Newcastle disease virus fusion protein and comparisons of paramyxovirus fusion protein sequences. Virus Res 5(4):343–356PubMedCrossRefGoogle Scholar
  63. McGinnes LW, Pantua H, Laliberte JP, Gravel KA, Jain S, Morrison TG (2010) Assembly and biological and immunological properties of Newcastle disease virus-like particles. J Virol 84(9):4513–4523PubMedPubMedCentralCrossRefGoogle Scholar
  64. Mebatsion T, Verstegen S, De Vaan LT, Romer-Oberdorfer A, Schrier CC (2001) A recombinant newcastle disease virus with low-level V protein expression is immunogenic and lacks pathogenicity for chicken embryos. J Virol 75(1):420–428PubMedPubMedCentralCrossRefGoogle Scholar
  65. Mihaliak CA, Webb S, Miller T, Fanton M, Kirk DD, Cardineau GA, Mason HS, Walmsley A, Arntzen C, Van Eck JH (2004) Development of plant cell produced vaccines for animal health applicaions. In: Proceedings of the 108th Annual meeting of the United States Animal Health Association, Greensboro, North Carolina, United States Animal Health AssociationGoogle Scholar
  66. Miller PJ, Afonso CL, El Attrache J, Dorsey KM, Courtney SC, Guo Z, Kapczynski DR (2013) Effects of Newcastle disease virus vaccine antibodies on the shedding and transmission of challenge viruses. Dev Comp Immunol 41(4):505–513PubMedCrossRefGoogle Scholar
  67. Miller PJ, Estevez C, Yu Q, Suarez DL, King DJ (2009) Comparison of viral shedding following vaccination with inactivated and live Newcastle disease vaccines formulated with wild-type and recombinant viruses. Avian Dis 53(1):39–49PubMedCrossRefGoogle Scholar
  68. Miller PJ, King DJ, Afonso CL, Suarez DL (2007) Antigenic differences among Newcastle disease virus strains of different genotypes used in vaccine formulation affect viral shedding after a virulent challenge. Vaccine 25(41):7238–7246PubMedCrossRefGoogle Scholar
  69. Murawski MR, McGinnes LW, Finberg RW, Kurt-Jones EA, Massare MJ, Smith G, Heaton PM, Fraire AE, Morrison TG (2010) Newcastle disease virus-like particles containing respiratory syncytial virus G protein induced protection in BALB/c Mice, with no evidence of immunopathology. J Virol 84(2):1110–1123PubMedCrossRefGoogle Scholar
  70. Nagai Y, Hamaguchi M, Toyoda T (1989) Molecular biology of Newcastle disease virus. Prog Vet Microbiol Immunol 5:16–64PubMedGoogle Scholar
  71. Noh JY, Park JK, Lee DH, Yuk SS, Kwon JH, Lee SW, Lee JB, Park SY, Choi IS, Song CS (2016) Chimeric bivalent virus-like particle vaccine for H5N1 HPAI and ND confers protection against a lethal challenge in chickens and allows a strategy of Differentiating Infected from Vaccinated Animals (DIVA). Plos One 11(9)Google Scholar
  72. Orsi MA, Doretto L, Reischak D, da Silva LHA, Spilki FR, Buzinaro MG, Arns CW (2009) Newcastle disease virus vaccine strains: immunogenicity is not influenced by ICPI. Braz J Poult Sci 11(2):129–133CrossRefGoogle Scholar
  73. Palya V, Kiss I, Tatar-Kis T, Mato T, Felfoldi B, Gardin Y (2012) Advancement in vaccination against Newcastle disease: recombinant HVT NDV provides high clinical protection and reduces challenge virus shedding with the absence of vaccine reactions. Avian Dis 56(2):282–287PubMedCrossRefGoogle Scholar
  74. Panda A, Huang Z, Elankumaran S, Rockemann DD, Samal SK (2004) Role of fusion protein cleavage site in the virulence of Newcastle disease virus. Microbial Pathog 36(1):1–10CrossRefGoogle Scholar
  75. Pantua HD, McGinnes LW, Peeples ME, Morrison TG (2006) Requirements for the assembly and release of Newcastle disease virus-like particles. J Virol 80(22):11062–11073PubMedPubMedCentralCrossRefGoogle Scholar
  76. Park JK, Lee DH, Yuk SS, Tseren-Ochir EO, Kwon JH, Noh JY, Kim BY, Choi SW, Kang SM, Lee JB, Park SY, Choi IS, Song CS (2014) Virus-like particle vaccine confers protection against a lethal newcastle disease virus challenge in chickens and allows a strategy of differentiating infected from vaccinated animals. Clin Vaccine Immunol 21(3):360–365PubMedPubMedCentralCrossRefGoogle Scholar
  77. Park MS, Shaw ML, Munoz-Jordan J, Cros JF, Nakaya T, Bouvier N, Palese P, Garcia-Sastre A, Basler CF (2003) Newcastle Disease Virus (NDV)-based assay demonstrates interferon-antagonist activity for the NDV V protein and the Nipah virus V, W, and C proteins. J Virol 77(2):1501–1511PubMedPubMedCentralCrossRefGoogle Scholar
  78. Peeples ME, Wang C, Gupta KC, Coleman N (1992) Nuclear entry and nucleolar localization of the Newcastle disease virus (NDV) matrix protein occur early in infection and do not require other NDV proteins. J Virol 66(5):3263–3269PubMedPubMedCentralGoogle Scholar
  79. Peeters BP, Gruijthuijsen YK, de Leeuw OS, Gielkens AL (2000) Genome replication of Newcastle disease virus: involvement of the rule-of-six. Arch Virol 145(9):1829–1845PubMedCrossRefGoogle Scholar
  80. Peeters BPH, de Leeuw OS, Koch G, Gielkens ALJ (1999) Rescue of Newcastle disease virus from cloned cDNA: evidence that cleavability of the fusion protein is a major determinant for virulence. J Virol 73(6):5001–5009PubMedPubMedCentralGoogle Scholar
  81. Perozo F, Marcano R, Afonso CL (2012) Biological and phylogenetic characterization of a genotype VII Newcastle disease virus from Venezuela: efficacy of field vaccination. J Clin Microbiol 50(4):1204–1208PubMedPubMedCentralCrossRefGoogle Scholar
  82. Ramey AM, Reeves AB, Ogawa H, Ip HS, Imai K, Bui VN, Yamaguchi E, Silko NY, Afonso CL (2013) Genetic diversity and mutation of avian paramyxovirus serotype 1 (Newcastle disease virus) in wild birds and evidence for intercontinental spread. Arch Virol 158(12):2495–2503PubMedCrossRefGoogle Scholar
  83. Rehmani SF, Wajid A, Bibi T, Nazir B, Mukhtar N, Hussain A, Lone NA, Yaqub T, Afonso CL (2015) Presence of virulent Newcastle disease virus in vaccinated chickens in farms in Pakistan. J Clin Microbiol 53(5):1715–1718PubMedPubMedCentralCrossRefGoogle Scholar
  84. Rima B, Alexander D, Billeter M (1995) Family paramyxoviridae. Virus taxonomy: classification and nomenclature of viruses. M. FA, F. CM and B. DHL. Springer, New York, pp 268–274Google Scholar
  85. Romer-Oberdorfer A, Werner O, Veits J, Mebatsion T, Mettenleiter TC (2003) Contribution of the length of the HN protein and the sequence of the F protein cleavage site to Newcastle disease virus pathogenicity. J Gen Virol 84(Pt 11):3121–3129PubMedCrossRefGoogle Scholar
  86. Rout SN, Samal SK (2008) The large polymerase protein is associated with the virulence of Newcastle disease virus. J Virol 82(16):7828–7836PubMedPubMedCentralCrossRefGoogle Scholar
  87. Rue CA, Susta L, Cornax I, Brown CC, Kapczynski DR, Suarez DL, King DJ, Miller PJ, Afonso CL (2011) Virulent Newcastle disease virus elicits a strong innate immune response in chickens. J Gen Virol 92(Pt 4):931–939PubMedCrossRefGoogle Scholar
  88. Sanchez-Sampedro L, Perdiguero B, Mejias-Perez E, Garcia-Arriaza J, Di Pilato M, Esteban M (2015) The evolution of poxvirus vaccines. Viruses 7(4):1726–1803PubMedPubMedCentralCrossRefGoogle Scholar
  89. Scheid A, Choppin PW (1974) Identification of biological activities of paramyxovirus glycoproteins. Activation of cell fusion, hemolysis, and infectivity of proteolytic cleavage of an inactive precursor protein of Sendai virus. Virology 57(2):475–490PubMedCrossRefGoogle Scholar
  90. Schijns VEJC, van de Zande S, Lupiani B, Reddy SM (2013) Practical aspects of poultry vaccination. Avian Immunol 345–362 (K. A. Schat, Kaspers, B., Kaiser, P., Elsevier Science)Google Scholar
  91. Seal BS, King DJ, Bennett JD (1995) Characterization of Newcastle-disease virus isolates by reverse transcription Pcr coupled to direct nucleotide sequencing and development of sequence database for pathotype prediction and molecular epidemiologic analysis. J Clin Microbiol 33(10):2624–2630PubMedPubMedCentralGoogle Scholar
  92. Seal BS, King DJ, Meinersmann RJ (2000) Molecular evolution of the Newcastle disease virus matrix protein gene and phylogenetic relationships among the paramyxoviridae. Virus Res 66(1):1–11PubMedCrossRefGoogle Scholar
  93. Shen H, Xue C, Lv L, Wang W, Liu Q, Liu K, Chen X, Zheng J, Li X, Cao Y (2013) Assembly and immunological properties of a bivalent virus-like particle (VLP) for avian influenza and Newcastle disease. Virus Res 178(2):430–436PubMedCrossRefGoogle Scholar
  94. Smith GW, Hightower LE (1981) Identification of the P proteins and other disulfide-linked and phosphorylated proteins of Newcastle disease virus. J Virol 37(1):256–267PubMedPubMedCentralGoogle Scholar
  95. Sonoda K, Sakaguchi M, Okamura H, Yokogawa K, Tokunaga E, Tokiyoshi S, Kawaguchi Y, Hirai K (2000) Development of an effective polyvalent vaccine against both Marek’s and Newcastle diseases based on recombinant Marek’s disease virus type 1 in commercial chickens with maternal antibodies. J Virol 74(7):3217–3226PubMedPubMedCentralCrossRefGoogle Scholar
  96. Taylor J, Christensen L, Gettig R, Goebel J, Bouquet JF, Mickle TR, Paoletti E (1996) Efficacy of a recombinant fowl pox-based Newcastle disease virus vaccine candidate against velogenic and respiratory challenge. Avian Dis 40(1):173–180PubMedCrossRefGoogle Scholar
  97. Taylor TL, Dimitrov KM, Afonso CL (2017) Genome-wide analysis reveals class and gene specific codon usage adaptation in avian paramyxoviruses 1. Infect Genet Evol 50:28–37PubMedCrossRefGoogle Scholar
  98. Terres G, Wolins W (1959) Enhanced sensitization in mice by simultaneous injection of antigen and specific rabbit antiserum. Proc Soc Exp Biol Med 102:632–635PubMedCrossRefGoogle Scholar
  99. Terres G, Wolins W (1961) Enhanced immunological sensitization of mice by the simultaneous injection of antigen and specific antiserum. I. Effect of varying the amount of antigen used relative to the antiserum. J Immunol 86:361–368PubMedGoogle Scholar
  100. Van den Berg T (2013) Vector vaccines and immunity. New Technology Vaccine Symposium, MiamiGoogle Scholar
  101. Wen YM, Mu L, Shi Y (2016) Immunoregulatory functions of immune complexes in vaccine and therapy. EMBO Mol Med 8(10):1120–1133PubMedPubMedCentralCrossRefGoogle Scholar
  102. Yang ZQ, Liu QQ, Pan ZM, Yu HX, Jiao XA (2007) Expression of the fusion glycoprotein of Newcastle disease virus in transgenic rice and its immunogenicity in mice. Vaccine 25(4):591–598PubMedCrossRefGoogle Scholar
  103. Yuan P, Swanson KA, Leser GP, Paterson RG, Lamb RA, Jardetzky TS (2011) Structure of the Newcastle disease virus hemagglutinin-neuraminidase (HN) ectodomain reveals a four-helix bundle stalk. Proc Natl Acad Sci U S A 108(36):14920–14925PubMedPubMedCentralCrossRefGoogle Scholar
  104. Yune N, Abdela N (2017) Update on epidemiology, diagnosis and control technique of Newcastle disease. J Vet Sci Technol 8(429):2Google Scholar
  105. Zhao K, Rong G, Hao Y, Yu L, Kang H, Wang X, Wang X, Jin Z, Ren Z, Li Z (2016a) IgA response and protection following nasal vaccination of chickens with Newcastle disease virus DNA vaccine nanoencapsulated with Ag@SiO2 hollow nanoparticles. Sci Rep 6:25720PubMedPubMedCentralCrossRefGoogle Scholar
  106. Zhao K, Rong GY, Guo C, Luo XM, Kang H, Sun YW, Dai CX, Wang XH, Wang X, Jin Z, Cui SJ, Sun QS (2015) Synthesis, characterization, and immune efficacy of layered double hydroxide@SiO2 nanoparticles with shell-core structure as a delivery carrier for Newcastle disease virus DNA vaccine. Int J Nanomed 10:2895–2911CrossRefGoogle Scholar
  107. Zhao K, Sun YW, Chen G, Rong GY, Kang H, Jin Z, Wang XH (2016b) Biological evaluation of N-2-hydroxypropyl trimethyl ammonium chloride chitosan as a carrier for the delivery of live Newcastle disease vaccine. Carbohydr Polym 149:28–39PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Biochemistry and Molecular BiologyMonash UniversityClaytonAustralia
  2. 2.Institute of Vector-Borne DiseaseMonash UniversityClaytonAustralia

Personalised recommendations