Advertisement

Privacy in Social Information Access

  • Bart P. KnijnenburgEmail author
Chapter
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10100)

Abstract

Social information access (SIA) systems crucially depend on user-provided information, and must therefore provide extensive privacy provisions to encourage users to share their personal data. Even though the information SIA systems use is usually considered public, they often use this information in novel ways, and the outcomes of this process may at times lead to unintended consequences for their users’ privacy. Indeed, even if a SIA system is deemed generally beneficial, privacy concerns can play a limiting role in its adoption. This chapter analyzes the privacy implications of several types of SIA systems (aggregators, public content systems, and social network-based systems) from various angles, and discusses a wide range of solutions (both technical and decision-support solutions) to potential privacy threats. Acknowledging that SIA systems are not just a threat to users’ privacy, the chapter concludes with a discussion of the use of social information access as a solution to privacy threats, i.e. by using it to provide social justifications, or by means of adaptive privacy decision support.

References

  1. 1.
    Ackerman, M.S., Cranor, L.F., Reagle, J.: Privacy in e-commerce: examining user scenarios and privacy preferences. In: Proceedings of the 1st ACM Conference on Electronic Commerce, EC 1999, pp. 1–8. ACM, Denver (1999).  https://doi.org/10.1145/336992.336995
  2. 2.
    Acquisti, A.: Nudging privacy: the behavioral economics of personal information. IEEE Secur. Priv. 7, 82–85 (2009).  https://doi.org/10.1109/MSP.2009.163CrossRefGoogle Scholar
  3. 3.
    Acquisti, A., Gross, R.: Predicting social security numbers from public data. Proc. Natl. Acad. Sci. 106(27), 10,975–10,980 (2009).  https://doi.org/10.1073/pnas.0904891106CrossRefGoogle Scholar
  4. 4.
    Acquisti, A., Grossklags, J.: Privacy and rationality in individual decision making. IEEE Secur. Priv. 3(1), 26–33 (2005).  https://doi.org/10.1109/MSP.2005.22CrossRefGoogle Scholar
  5. 5.
    Acquisti, A., Grossklags, J.: What can behavioral economics teach us about privacy? In: Acquisti, A., De Capitani di Vimercati, S., Gritzalis, S., Lambrinoudakis, C. (eds.) Digital Privacy: Theory, Technologies, and Practices, pp. 363–377. Auerbach Publications, New York/London (2008).  https://doi.org/10.1201/9781420052183.ch18
  6. 6.
    Acquisti, A., John, L.K., Loewenstein, G.: The impact of relative standards on the propensity to disclose. J. Mark. Res. 49(2), 160–174 (2012).  https://doi.org/10.1509/jmr.09.0215CrossRefGoogle Scholar
  7. 7.
    Adjerid, I., Acquisti, A., Brandimarte, L., Loewenstein, G.: Sleights of privacy: framing, disclosures, and the limits of transparency. In: Proceedings of the Ninth Symposium on Usable Privacy and Security, SOUPS 2013, pp. 9:1–9:11. ACM, Newcastle (2013).  https://doi.org/10.1145/2501604.2501613
  8. 8.
    Adomavicius, G., Tuzhilin, A.: Context-aware recommender systems. In: Ricci, F., Rokach, L., Shapira, B., Kantor, P.B. (eds.) Recommender Systems Handbook, pp. 217–253. Springer, Boston (2011).  https://doi.org/10.1007/978-0-387-85820-3_7CrossRefzbMATHGoogle Scholar
  9. 9.
    Aizenbud-Reshef, N., Barger, A., Dubinsky, Y., Guy, I., Kremer-Davidson, S.: Privacy concerns in enterprise social travel: attitudes and actions. In: Campos, P., Graham, N., Jorge, J., Nunes, N., Palanque, P., Winckler, M. (eds.) INTERACT 2011. LNCS, vol. 6948, pp. 242–249. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-23765-2_17CrossRefGoogle Scholar
  10. 10.
    Alluri, A.V.: Empirical study on key attributes of yelp dataset which account for susceptibility of a user to social influence. M.S. thesis, University of Cincinnati, Cincinnati, OH (2015)Google Scholar
  11. 11.
    Altman, I.: The Environment and Social Behavior: Privacy, Personal Space, Territory, and Crowding. Brooks/Cole Publishing Company, Monterey (1975)Google Scholar
  12. 12.
    Anderson, C.A., Lepper, M.R., Ross, L.: Perseverance of social theories: the role of explanation in the persistence of discredited information. J. Pers. Soc. Psychol. 39(6), 1037–1049 (1980).  https://doi.org/10.1037/h0077720CrossRefGoogle Scholar
  13. 13.
    Angst, C.M., Agarwal, R.: Adoption of electronic health records in the presence of privacy concerns: the elaboration likelihood model and individual persuasion. MIS Q. 33(2), 339–370 (2009)CrossRefGoogle Scholar
  14. 14.
    Aoki, P., Woodruff, A.: Making space for stories. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 181–190 (2005).  https://doi.org/10.1145/1054972.1054998
  15. 15.
    Arlein, R.M., Jai, B., Jakobsson, M., Monrose, F., Reiter, M.K.: Privacy-preserving global customization. In: 2nd ACM Conference on Electronic Commerce, EC 2000, pp. 176–184. ACM, Minneapolis (2000).  https://doi.org/10.1145/352871.352891
  16. 16.
    Awad, N.F., Krishnan, M.S.: The personalization privacy paradox: an empirical evaluation of information transparency and the willingness to be profiled online for personalization. MIS Q. 30(1), 13–28 (2006)CrossRefGoogle Scholar
  17. 17.
    Balebako, R., Leon, P.G., Mugan, J., Acquisti, A., Cranor, L.F., Sadeh, N.: Nudging users towards privacy on mobile devices. In: CHI 2011 Workshop on Persuasion, Influence, Nudge and Coercion Through Mobile Devices, PINC 2011, Vancouver, Canada, pp. 23–26 (2011)Google Scholar
  18. 18.
    Baron, J., Ritov, I.: Reference points and omission bias. Organ. Behav. Hum. Decis. Process. 59(3), 475–498 (1994).  https://doi.org/10.1006/obhd.1994.1070CrossRefGoogle Scholar
  19. 19.
    Bean, D.: 11 Brutal Reminders That You Can and Will Get Fired for What You Post on Facebook (2014). https://www.yahoo.com/tech/11-brutal-reminders-that-you-can-and-will-get-fired-for-84931050659.html
  20. 20.
    Beatty, P., Reay, I., Dick, S., Miller, J.: P3P adoption on e-commerce web sites: a survey and analysis. IEEE Internet Comput. 11(2), 65–71 (2007).  https://doi.org/10.1109/MIC.2007.45CrossRefGoogle Scholar
  21. 21.
    Beckwith, R., Mainwaring, S.: Privacy: personal information, threats, and technologies. In: Proceedings of the Proceedings 2005 IEEE International Symposium on Technology and Society, ISTAS 2005, pp. 9–16. IEEE, Los Angeles (2005).  https://doi.org/10.1109/ISTAS.2005.1452707
  22. 22.
    Benisch, M., Kelley, P.G., Sadeh, N., Cranor, L.F.: Capturing location-privacy preferences: quantifying accuracy and user-burden tradeoffs. Pers. Ubiquit. Comput. 15(7), 679–694 (2011).  https://doi.org/10.1007/s00779-010-0346-0CrossRefGoogle Scholar
  23. 23.
    Berendt, B., Günther, O., Spiekermann, S.: Privacy in e-commerce: stated preferences vs. actual behavior. Commun. ACM 48(4), 101–106 (2005).  https://doi.org/10.1145/1053291.1053295CrossRefGoogle Scholar
  24. 24.
    Bergmann, M.: Testing privacy awareness. In: Matyáš, V., Fischer-Hübner, S., Cvrček, D., Švenda, P. (eds.) Privacy and Identity 2008. IAICT, vol. 298, pp. 237–253. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-03315-5_18CrossRefGoogle Scholar
  25. 25.
    Berry, M.J., Linoff, G.: Data Mining Techniques: For Marketing, Sales, and Customer Support. Wiley, New York (1997)Google Scholar
  26. 26.
    Besmer, A., Watson, J., Lipford, H.R.: The impact of social navigation on privacy policy configuration. In: Proceedings of the Sixth Symposium on Usable Privacy and Security, SOUPS 2010, pp. 7:1–7:10. ACM, Redmond (2010).  https://doi.org/10.1145/1837110.1837120
  27. 27.
    Bettman, J.R., Luce, M.F., Payne, J.W.: Constructive consumer choice processes. J. Consum. Res. 25(3), 187–217 (1998).  https://doi.org/10.1086/209535CrossRefGoogle Scholar
  28. 28.
    Binder, J., Howes, A., Sutcliffe, A.: The problem of conflicting social spheres: effects of network structure on experienced tension in social network sites. In: Proceedings of the 27th International Conference on Human Factors in Computing Systems, CHI 2009, pp. 965–974. ACM, Boston (2009).  https://doi.org/10.1145/1518701.1518849
  29. 29.
    Birnholtz, J., Guillory, J., Hancock, J., Bazarova, N.: “On my way”: deceptive texting and interpersonal awareness narratives. In: Proceedings of the 2010 ACM Conference on Computer Supported Cooperative Work, CSCW 2010, pp. 1–4. ACM, Savannah (2010).  https://doi.org/10.1145/1718918.1718920
  30. 30.
    Bogers, T.: Tag-based recommendation. In: Brusilovsky, P., He, D. (eds.) Social Information Access. LNCS, vol. 10100, pp. 441–479. Springer, Cham (2018)Google Scholar
  31. 31.
    Bothorel, C., Lathia, N., Picot-Clemente, R., Noulas, A.: Location recommendation with social media data. In: Brusilovsky, P., He, D. (eds.) Social Information Access. LNCS, vol. 10100, pp. 624–653. Springer, Cham (2018)Google Scholar
  32. 32.
    Boyd, D.M., Ellison, N.B.: Social network sites: definition, history, and scholarship. J. Comput.-Mediat. Commun. 13(1), 210–230 (2007).  https://doi.org/10.1111/j.1083-6101.2007.00393.xCrossRefGoogle Scholar
  33. 33.
    Brandimarte, L., Acquisti, A., Loewenstein, G.: Misplaced confidences: privacy and the control paradox. Soc. Psychol. Pers. Sci. 4(3), 340–347 (2013).  https://doi.org/10.1177/1948550612455931CrossRefGoogle Scholar
  34. 34.
    Brody, R.G., Mulig, E., Kimball, V.: Phishing, pharming and identity theft. Acad. Account. Finan. Stud. J. 11(3), 43–56 (2007)Google Scholar
  35. 35.
    Brown, G., Howe, T., Ihbe, M., Prakash, A., Borders, K.: Social networks and context-aware spam. In: Proceedings of the 2008 ACM Conference on Computer Supported Cooperative Work, CSCW 2008, pp. 403–412. ACM, San Diego (2008).  https://doi.org/10.1145/1460563.1460628
  36. 36.
    Brusilovsky, P.: Social information access: the other side of the social web. In: Geffert, V., Karhumäki, J., Bertoni, A., Preneel, B., Návrat, P., Bieliková, M. (eds.) SOFSEM 2008. LNCS, vol. 4910, pp. 5–22. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-77566-9_2CrossRefGoogle Scholar
  37. 37.
    Brusilovsky, P., He, D.: Social information access: definition and classification. In: Brusilovsky, P., He, D. (eds.) Social Information Access. LNCS, vol. 10100, pp. 1–18. Springer, Cham (2018)Google Scholar
  38. 38.
    Brusilovsky, P., Smyth, B., Shapira, B.: Social search. In: Brusilovsky, P., He, D. (eds.) Social Information Access. LNCS, vol. 10100, pp. 213–276. Springer, Cham (2018)Google Scholar
  39. 39.
    Burke, M., Marlow, C., Lento, T.: Social network activity and social well-being. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI 2010, pp. 1909–1912. ACM, Atlanta (2010).  https://doi.org/10.1145/1753326.1753613
  40. 40.
    Caine, K., Hanania, R.: Patients want granular privacy control over health information in electronic medical records. J. Am. Med. Inform. Assoc. 20(1), 7–15 (2013).  https://doi.org/10.1136/amiajnl-2012-001023CrossRefGoogle Scholar
  41. 41.
    Caine, K., Kohn, S., Lawrence, C., Hanania, R., Meslin, E.M., Tierney, W.M.: Designing a patient-centered user interface for access decisions about EHR data: implications from patient interviews. J. Gen. Intern. Med. 30(1), 7–16 (2015).  https://doi.org/10.1007/s11606-014-3049-9CrossRefGoogle Scholar
  42. 42.
    Calandrino, J.A., Kilzer, A., Narayanan, A., Felten, E.W., Shmatikov, V.: You might also like: privacy risks of collaborative filtering. In: Proceedings of the 2011 IEEE Symposium on Security and Privacy, pp. 231–246. IEEE, Oakland (2011).  https://doi.org/10.1109/SP.2011.40
  43. 43.
    Campan, A., Truta, T.M.: Data and structural k-anonymity in social networks. In: Bonchi, F., Ferrari, E., Jiang, W., Malin, B. (eds.) PInKDD 2008. LNCS, vol. 5456, pp. 33–54. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-01718-6_4CrossRefGoogle Scholar
  44. 44.
    Canny, J.F.: Collaborative filtering with privacy. In: Proceedings of the IEEE Symposium on Security and Privacy, pp. 45–57. IEEE Computer Society, Washington, DC (2002)Google Scholar
  45. 45.
    Cashmore, P.: Facebook Recommends Reconnecting with Ex-Lovers, Dead Friends (2009). http://mashable.com/2009/10/25/facebook-reconnect/
  46. 46.
    Cassel, L.N., Wolz, U.: Client side personalization. In: DELOS Workshop: Personalisation and Recommender Systems in Digital Libraries, Dublin, Ireland, pp. 8–12 (2001)Google Scholar
  47. 47.
    Cavusoglu, H., Phan, T., Cavusoglu, H.: Privacy controls and content sharing patterns of online social network users: a natural experiment. In: ICIS 2013 Proceedings, Milan, Italy (2013)Google Scholar
  48. 48.
    Chan, K.H.: Memories of Friends Departed Endure on Facebook (2009). https://www.facebook.com/notes/facebook/memories-of-friends-departed-endure-on-facebook/163091042130/
  49. 49.
    Chellappa, R.K., Sin, R.G.: Personalization versus privacy: an empirical examination of the online consumer’s dilemma. Inf. Technol. Manag. 6(2–3), 181–202 (2005).  https://doi.org/10.1007/s10799-005-5879-yCrossRefGoogle Scholar
  50. 50.
    Chen, D., Fraiberger, S.P., Moakler, R., Provost, F.: Enhancing transparency and control when drawing data-driven inferences about individuals. In: Working Paper (2015). http://archive.nyu.edu/handle/2451/33969
  51. 51.
    Chen, H., Chiang, R.H.L., Storey, V.C.: Business intelligence and analytics: from big data to big impact. MIS Q. 36(4), 1165–1188 (2012)Google Scholar
  52. 52.
    Chen, H.G., Chen, C.C., Lo, L., Yang, S.C.: Online privacy control via anonymity and pseudonym: cross-cultural implications. Behav. Inf. Technol. 27(3), 229–242 (2008).  https://doi.org/10.1080/01449290601156817CrossRefGoogle Scholar
  53. 53.
    Chen, Y.F.: Herd behavior in purchasing books online. Comput. Hum. Behav. 24(5), 1977–1992 (2008).  https://doi.org/10.1016/j.chb.2007.08.004CrossRefGoogle Scholar
  54. 54.
    Cho, D., Kim, S., Acquisti, A.: Empirical analysis of online anonymity and user behaviors: the impact of real name policy. In: 2012 45th Hawaii International Conference on System Science, HICSS 2012, pp. 3041–3050. IEEE Computer Society, Maui (2012).  https://doi.org/10.1109/HICSS.2012.241
  55. 55.
    Coleman, G.: Phreaks, hackers, and trolls: the politics of transgression and spectacle. In: Mandiberg, M. (ed.) The Social Media Reader, pp. 99–119. NYU Press, New York (2012)Google Scholar
  56. 56.
    Compañó, R., Lusoli, W.: The policy maker’s anguish: regulating personal data behavior between paradoxes and dilemmas. In: Moore, T., Pym, D., Ioannidis, C. (eds.) Economics of Information Security and Privacy, pp. 169–185. Springer, New York (2010).  https://doi.org/10.1007/978-1-4419-6967-5_9CrossRefGoogle Scholar
  57. 57.
    Consolvo, S., Smith, I., Matthews, T., LaMarca, A., Tabert, J., Powledge, P.: Location disclosure to social relations: why, when, & what people want to share. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI 2005, pp. 81–90. ACM, Portland (2005).  https://doi.org/10.1145/1054972.1054985
  58. 58.
    Consumer Reports: Facebook & your privacy: who sees the data you share on the biggest social network? (2012). http://www.consumerreports.org/cro/magazine/2012/06/facebook-your-privacy
  59. 59.
    Cosley, D., Lam, S.K., Albert, I., Konstan, J.A., Riedl, J.: Is seeing believing?: how recommender system interfaces affect users’ opinions. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI 2003, pp. 585–592. ACM, Ft. Lauderdale (2003).  https://doi.org/10.1145/642611.642713
  60. 60.
    Coupey, E., Irwin, J.R., Payne, J.W.: Product category familiarity and preference construction. J. Consum. Res. 24(4), 459–468 (1998).  https://doi.org/10.1086/209521CrossRefGoogle Scholar
  61. 61.
    Culnan, M.J.: “How did they get my name?”: an exploratory investigation of consumer attitudes toward secondary information use. MIS Q. 17(3), 341–363 (1993).  https://doi.org/10.2307/249775CrossRefGoogle Scholar
  62. 62.
    Culnan, M.J.: Consumer awareness of name removal procedures: Implications for direct marketing. J. Dir. Mark. 9(2), 10–19 (1995).  https://doi.org/10.1002/dir.4000090204CrossRefGoogle Scholar
  63. 63.
    De Wolf, R., Pierson, J.: Researching social privacy on SNS through developing and evaluating alternative privacy technologies. In: Proceedings of the CSCW 2013 Networked Social Privacy Workshop, San Antonio, TX (2013)Google Scholar
  64. 64.
    Deuker, A.: Friend-to-friend privacy protection on social networking sites: a grounded theory study. In: AMCIS 2012 Proceedings, Seattle, WA (2012)Google Scholar
  65. 65.
    Di Castro, D., Lewin-Eytan, L., Maarek, Y., Wolff, R., Zohar, E.: Enforcing K-anonymity in web mail auditing. In: Proceedings of the Ninth ACM International Conference on Web Search and Data Mining, WSDM 2016, pp. 327–336. ACM, New York (2016).  https://doi.org/10.1145/2835776.2835803
  66. 66.
    DiGioia, P., Dourish, P.: Social navigation as a model for usable security. In: Proceedings of the 2005 Symposium on Usable Privacy and Security, SOUPS 2005, pp. 101–108. ACM, Pittsburgh (2005).  https://doi.org/10.1145/1073001.1073011
  67. 67.
    DiMicco, J., Millen, D.R., Geyer, W., Dugan, C., Brownholtz, B., Muller, M.: Motivations for social networking at work. In: Proceedings of the 2008 ACM Conference on Computer Supported Cooperative Work, CSCW 2008, pp. 711–720. ACM, New York (2008).  https://doi.org/10.1145/1460563.1460674
  68. 68.
    Dimitrov, D., Helic, D., Strohmaier, M.: Tag-based navigation and visualization. In: Brusilovsky, P., He, D. (eds.) Social Information Access. LNCS, vol. 10100, pp. 181–212. Springer, Cham (2018)Google Scholar
  69. 69.
    Dong, C., Jin, H., Knijnenburg, B.P.: Predicting privacy behavior on online social networks. In: Ninth International AAAI Conference on Web and Social Media, ICWSM 2015, pp. 91–100. AAAI Publications, Oxford (2015)Google Scholar
  70. 70.
    Duggan, M.: Mobile messaging and social media - 2015. Technical report, Pew Research Center (2015). http://www.pewinternet.org/2015/08/19/mobile-messaging-and-social-media-2015/
  71. 71.
    Duhigg, C.: How Companies Learn Your Secrets. The New York Times (2012). http://www.nytimes.com/2012/02/19/magazine/shopping-habits.html
  72. 72.
    D’Urso, S.C.: Who’s watching us at work? Toward a structural-perceptual model of electronic monitoring and surveillance in organizations. Commun. Theory 16(3), 281–303 (2006).  https://doi.org/10.1111/j.1468-2885.2006.00271.xCrossRefGoogle Scholar
  73. 73.
    Egelman, S.: My profile is my password, verify me!: the privacy/convenience tradeoff of Facebook connect. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI 2013, pp. 2369–2378. ACM, Paris (2013).  https://doi.org/10.1145/2470654.2481328
  74. 74.
    Ehrlich, K., Shami, N.S.: Microblogging inside and outside the workplace. In: Fourth International AAAI Conference on Weblogs and Social Media, ICWSM 2010, pp. 42–49. AAAI Publications, Washington, DC (2010)Google Scholar
  75. 75.
    Ellison, N.B., Steinfield, C., Lampe, C.: The benefits of Facebook “Friends:” social capital and college students’ use of online social network sites. J. Comput.-Mediat. Commun. 12(4), 1143–1168 (2007).  https://doi.org/10.1111/j.1083-6101.2007.00367.xCrossRefGoogle Scholar
  76. 76.
    Ellison, N.B., Steinfield, C., Lampe, C.: Connection strategies: social capital implications of Facebook-enabled communication practices. New Media Soc. 13(6), 873–892 (2011).  https://doi.org/10.1177/1461444810385389CrossRefGoogle Scholar
  77. 77.
    Ellison, N.B., Vitak, J., Steinfield, C., Gray, R., Lampe, C.: Negotiating privacy concerns and social capital needs in a social media environment. In: Trepte, S., Reinecke, L. (eds.) Privacy Online: Perspectives on Privacy and Self-Disclosure in the Social Web, pp. 19–32. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-21521-6_3CrossRefGoogle Scholar
  78. 78.
    EU: Regulation (EU) 2016/679 of the European Parliament and the Council of 27 April 2016 on the protection of individuals with regard to the processing of personal data and on the free movement of such data, and repealing Directive 95/46/EC (General Data Protection Regulation) (2016). http://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32016R0679
  79. 79.
    European Commission: Factsheet on the “Right to be Forgotten” ruling. Technical report C-131/12, European Commission, Brussels, Belgium (2014). http://ec.europa.eu/justice/data-protection/files/factsheets/factsheet_data_protection_en.pdf
  80. 80.
    Fang, L., LeFevre, K.: Privacy wizards for social networking sites. In: Proceedings of the 19th International Conference on World Wide Web, WWW 2010, pp. 351–360. ACM, Raleigh (2010).  https://doi.org/10.1145/1772690.1772727
  81. 81.
    Farzan, R., Brusilovsky, P.: Social navigation. In: Brusilovsky, P., He, D. (eds.) Social Information Access. LNCS, vol. 10100, pp. 142–180. Springer, Cham (2018)Google Scholar
  82. 82.
    Featherman, M.S., Pavlou, P.A.: Predicting e-services adoption: a perceived risk facets perspective. Int. J. Hum.-Comput. Stud. 59(4), 451–474 (2003).  https://doi.org/10.1016/S1071-5819(03)00111-3CrossRefGoogle Scholar
  83. 83.
    Federal Trade Committee: Privacy Online: Fair Information Practices in the Electronic Marketplace. A Report to Congress (2000). http://www.ftc.gov/reports/privacy2000/privacy2000.pdf
  84. 84.
    Federal Trade Committee: Protecting Consumer Privacy in an Era of Rapid Change: Recommendations for Businesses and Policymakers (2012). https://www.ftc.gov/sites/default/files/documents/reports/federal-trade-commission-report-protecting-consumer-privacy-era-rapid-change-recommendations/120326privacyreport.pdf
  85. 85.
    Fishbein, M., Ajzen, I.: Belief, Attitude, Intention, and Behavior: An Introduction to Theory and Research. Addison-Wesley Pub. Co., Reading (1975)Google Scholar
  86. 86.
    Fiske, S.T., Hauser, R.M.: Protecting human research participants in the age of big data. Proc. Natl. Acad. Sci. 111(38), 13,675–13,676 (2014).  https://doi.org/10.1073/pnas.1414626111CrossRefGoogle Scholar
  87. 87.
    Friedman, A., Knijnenburg, B.P., Vanhecke, K., Martens, L., Berkovsky, S.: Privacy aspects of recommender systems. In: Ricci, F., Rokach, L., Shapira, B. (eds.) Recommender Systems Handbook, 2nd edn, pp. 649–688. Springer, Boston, MA (2015).  https://doi.org/10.1007/978-1-4899-7637-6_19CrossRefGoogle Scholar
  88. 88.
    Friedrich, G., Zanker, M.: A taxonomy for generating explanations in recommender systems. AI Mag. 32(3), 90–98 (2011).  https://doi.org/10.1609/aimag.v32i3.2365CrossRefGoogle Scholar
  89. 89.
    van de Garde-Perik, E., Markopoulos, P., de Ruyter, B., Eggen, B., Ijsselsteijn, W.: Investigating privacy attitudes and behavior in relation to personalization. Soc. Sci. Comput. Rev. 26(1), 20–43 (2008).  https://doi.org/10.1177/0894439307307682CrossRefGoogle Scholar
  90. 90.
    Gedikli, F., Jannach, D., Ge, M.: How should I explain? A comparison of different explanation types for recommender systems. Int. J. Hum.-Comput. Stud. 72(4), 367–382 (2014).  https://doi.org/10.1016/j.ijhcs.2013.12.007CrossRefGoogle Scholar
  91. 91.
    Goecks, J., Edwards, W.K., Mynatt, E.D.: Challenges in supporting end-user privacy and security management with social navigation. In: Proceedings of the 5th Symposium on Usable Privacy and Security, SOUPS 2009, pp. 5:1–5:12. ACM, Mountain View (2009).  https://doi.org/10.1145/1572532.1572539
  92. 92.
    Gross, R., Acquisti, A.: Information revelation and privacy in online social networks. In: Proceedings of the 2005 ACM Workshop on Privacy in the Electronic Society, WPES 2005, pp. 71–80. ACM, Alexandria (2005).  https://doi.org/10.1145/1102199.1102214
  93. 93.
    Guillaume, D.: Amazing mind reader reveals his ‘gift’ (2012). https://www.youtube.com/watch?v=F7pYHN9iC9I
  94. 94.
    Gürses, S., Diaz, C.: Two tales of privacy in online social networks. IEEE Secur. Priv. 11(3), 29–37 (2013).  https://doi.org/10.1109/MSP.2013.47CrossRefGoogle Scholar
  95. 95.
    Guy, I.: People recommendation on social media. In: Brusilovsky, P., He, D. (eds.) Social Information Access. LNCS, vol. 10100, pp. 570–623. Springer, Cham (2018)Google Scholar
  96. 96.
    Hampton, K., Goulet, L.S., Marlow, C., Rainie, L.: Why most Facebook users get more than they give. Technical report, Pew Internet & American Life Project (2012). http://www.pewinternet.org/2012/02/03/why-most-facebook-users-get-more-than-they-give/
  97. 97.
    Han, S., He, D.: Network-based social search. In: Brusilovsky, P., He, D. (eds.) Social Information Access. LNCS, vol. 10100, pp. 277–309. Springer, Cham (2018)Google Scholar
  98. 98.
    Hancock, J., Birnholtz, J., Bazarova, N., Guillory, J., Perlin, J., Amos, B.: Butler lies: awareness, deception and design. In: Proceedings of the 27th International Conference on Human Factors in Computing Systems, CHI 2009, pp. 517–526. ACM, Boston (2009).  https://doi.org/10.1145/1518701.1518782
  99. 99.
    Hancock, J.T., Thom-Santelli, J., Ritchie, T.: Deception and design: the impact of communication technology on lying behavior. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI 2004, pp. 129–134. ACM, Vienna (2004).  https://doi.org/10.1145/985692.985709
  100. 100.
    Hann, I.H., Hui, K.L., Lee, S.Y., Png, I.: Overcoming online information privacy concerns: an information-processing theory approach. J. Manag. Inf. Syst. 24(2), 13–42 (2007).  https://doi.org/10.2753/MIS0742-1222240202CrossRefGoogle Scholar
  101. 101.
    Harris Interactive Inc.: A Survey of Consumer Privacy Attitudes and Behaviors (2000). http://www.bbbonline.org/UnderstandingPrivacy/library/harrissummary.pdf
  102. 102.
    Hasler, L., Ruthven, I.: Escaping information poverty through internet newsgroups. In: Fifth International AAAI Conference on Weblogs and Social Media, ICWSM 2011, pp. 153–160. AAAI Publications, Barcelona (2011)Google Scholar
  103. 103.
    Hassing, L.: An exploratory study in the concerns for information privacy. Master thesis, University of Delft, Netherlands (2015)Google Scholar
  104. 104.
    Henry, A.: How Facebook Is Using You to Annoy Your Friends (and How to Stop It) (2013). http://lifehacker.com/5987248/how-facebook-is-using-you-to-annoy-your-friends-and-how-to-stop-it
  105. 105.
    Ho, S.Y., Tam, K.: Understanding the impact of web personalization on user information processing and decision outcomes. MIS Q. 30(4), 865–890 (2006)CrossRefGoogle Scholar
  106. 106.
    Hong, J.: The state of phishing attacks. Commun. ACM 55(1), 74–81 (2012).  https://doi.org/10.1145/2063176.2063197CrossRefGoogle Scholar
  107. 107.
    House, W.: Consumer data privacy in a networked world: a framework for protecting privacy and promoting innovation in the global economy. Technical report, White House, Washington, D.C. (2012)Google Scholar
  108. 108.
    Huang, J.H., Chen, Y.F.: Herding in online product choices. Psychol. Market. 23(5), 413–428 (2006).  https://doi.org/10.1002/mar.20119CrossRefGoogle Scholar
  109. 109.
    Huber, J., Puto, C.: Market boundaries and product choice: illustrating attraction and substitution effects. J. Consum. Res. 10(1), 31–44 (1983)CrossRefGoogle Scholar
  110. 110.
    Huberman, B.A., Adar, E., Fine, L.A.: Valuating privacy. IEEE Secur. Priv. 3(5), 22–25 (2005).  https://doi.org/10.1109/MSP.2005.137CrossRefGoogle Scholar
  111. 111.
    Hui, K.L., Tan, B.C.Y., Goh, C.Y.: Online information disclosure: motivators and measurements. ACM Trans. Internet Technol. 6(4), 415–441 (2006).  https://doi.org/10.1145/1183463.1183467CrossRefGoogle Scholar
  112. 112.
    Hull, G., Lipford, H.R., Latulipe, C.: Contextual gaps: privacy issues on Facebook. Ethics Inf. Technol. 13(4), 289–302 (2011).  https://doi.org/10.1007/s10676-010-9224-8CrossRefGoogle Scholar
  113. 113.
    Iachello, G., Hong, J.: End-user privacy in human-computer interaction. Found. Trends® Hum.-Comput. Interact. 1(1), 1–137 (2007).  https://doi.org/10.1561/1100000004CrossRefzbMATHGoogle Scholar
  114. 114.
    Iachello, G., Smith, I., Consolvo, S., Chen, M., Abowd, G.D.: Developing privacy guidelines for social location disclosure applications and services. In: Proceedings of the 2005 Symposium on Usable Privacy and Security, SOUPS 2005, pp. 65–76. ACM, Philadelphia (2005).  https://doi.org/10.1145/1073001.1073008
  115. 115.
    Iyilade, J.: Enforcing privacy in secondary user information sharing and usage. In: Carberry, S., Weibelzahl, S., Micarelli, A., Semeraro, G. (eds.) UMAP 2013. LNCS, vol. 7899, pp. 396–400. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-38844-6_48CrossRefGoogle Scholar
  116. 116.
    Jannach, D., Lerche, L., Zanker, M.: Recommending based on implicit feedback. In: Brusilovsky, P., He, D. (eds.) Social Information Access. LNCS, vol. 10100, pp. 510–569. Springer, Cham (2018)Google Scholar
  117. 117.
    Jedrzejczyk, L., Price, B.A., Bandara, A.K., Nuseibeh, B.: On the impact of real-time feedback on users’ behaviour in mobile location-sharing applications. In: Proceedings of the Sixth Symposium on Usable Privacy and Security, SOUPS 2010, Redmond, Washington, pp. 14:1–14:12 (2010).  https://doi.org/10.1145/1837110.1837129
  118. 118.
    Jensen, C., Potts, C., Jensen, C.: Privacy practices of internet users: self-reports versus observed behavior. Int. J. Hum.-Comput. Stud. 63(1–2), 203–227 (2005).  https://doi.org/10.1016/j.ijhcs.2005.04.019CrossRefGoogle Scholar
  119. 119.
    John, L.K., Acquisti, A., Loewenstein, G.: Strangers on a plane: context-dependent willingness to divulge sensitive information. J. Consum. Res. 37(5), 858–873 (2011).  https://doi.org/10.1086/656423CrossRefGoogle Scholar
  120. 120.
    Johnson, E.J., Bellman, S., Lohse, G.L.: Defaults, framing and privacy: why opting in \(\ne \) opting out. Mark. Lett. 13(1), 5–15 (2002).  https://doi.org/10.1023/A:1015044207315CrossRefGoogle Scholar
  121. 121.
    Johnson, E.J., Goldstein, D.: Do defaults save lives? Science 302(5649), 1338–1339 (2003).  https://doi.org/10.1126/science.1091721CrossRefGoogle Scholar
  122. 122.
    Johnson, H.M., Seifert, C.M.: Sources of the continued influence effect: when misinformation in memory affects later inferences. J. Exp. Psychol.: Learn. Mem. Cogn. 20(6), 1420–1436 (1994).  https://doi.org/10.1037/0278-7393.20.6.1420CrossRefGoogle Scholar
  123. 123.
    Johnson, M., Egelman, S., Bellovin, S.M.: Facebook and privacy: it’s complicated. In: Proceedings of the 8th Symposium on Usable Privacy and Security, SOUPS 2012, pp. 9:1–9:15. ACM, Pittsburgh (2012).  https://doi.org/10.1145/2335356.2335369
  124. 124.
    Joinson, A.N., Paine, C., Buchanan, T., Reips, U.D.: Measuring self-disclosure online: blurring and non-response to sensitive items in web-based surveys. Comput. Hum. Behav. 24(5), 2158–2171 (2008).  https://doi.org/10.1016/j.chb.2007.10.005CrossRefGoogle Scholar
  125. 125.
    Joinson, A.N., Reips, U.D., Buchanan, T., Schofield, C.B.P.: Privacy, trust, and self-disclosure online. Hum.-Comput. Interact. 25(1), 1–24 (2010).  https://doi.org/10.1080/07370020903586662CrossRefGoogle Scholar
  126. 126.
    Juels, A.: Targeted advertising \(\ldots \) and privacy too. In: Naccache, D. (ed.) CT-RSA 2001. LNCS, vol. 2020, pp. 408–424. Springer, Heidelberg (2001).  https://doi.org/10.1007/3-540-45353-9_30CrossRefGoogle Scholar
  127. 127.
    Kahneman, D., Knetsch, J.L., Thaler, R.H.: Anomalies: the endowment effect, loss aversion, and status quo bias. J. Econ. Perspect. 5(1), 193–206 (1991).  https://doi.org/10.1257/jep.5.1.193CrossRefGoogle Scholar
  128. 128.
    Kahneman, D., Tversky, A.: Choices, Values, and Frames. Cambridge University Press, Cambridge (2000)zbMATHGoogle Scholar
  129. 129.
    Kairam, S., Brzozowski, M., Huffaker, D., Chi, E.: Talking in circles: selective sharing in Google+. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI 2012, pp. 1065–1074. ACM, Austin (2012).  https://doi.org/10.1145/2207676.2208552
  130. 130.
    Kantor, K.: People You May Know (2015). https://www.youtube.com/watch?v=LoyfunmYIpU
  131. 131.
    Kay, J., Kummerfeld, B.: Creating personalized systems that people can scrutinize and control: drivers, principles and experience. ACM Trans. Interact. Intell. Syst. 2(4), 24:1–24:42 (2013).  https://doi.org/10.1145/2395123.2395129CrossRefGoogle Scholar
  132. 132.
    Kelley, P.G., Brewer, R., Mayer, Y., Cranor, L.F., Sadeh, N.: An investigation into Facebook friend grouping. In: Campos, P., Graham, N., Jorge, J., Nunes, N., Palanque, P., Winckler, M. (eds.) INTERACT 2011. LNCS, vol. 6948, pp. 216–233. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-23765-2_15CrossRefGoogle Scholar
  133. 133.
    Kim, D.J., Ferrin, D.L., Rao, H.R.: A trust-based consumer decision-making model in electronic commerce: the role of trust, perceived risk, and their antecedents. Decis. Support Syst. 44(2), 544–564 (2008).  https://doi.org/10.1016/j.dss.2007.07.001CrossRefGoogle Scholar
  134. 134.
    Kluver, D., Ekstrand, M., Konstan, J.: Rating-based collaborative filtering: algorithms and evaluation. In: Brusilovsky, P., He, D. (eds.) Social Information Access. LNCS, vol. 10100, pp. 344–390. Springer, Cham (2018)Google Scholar
  135. 135.
    Knijnenburg, B.P.: Simplifying privacy decisions: towards interactive and adaptive solutions. In: Proceedings of the Recsys 2013 Workshop on Human Decision Making in Recommender Systems, Decisions@Recsys 2013, Hong Kong, China, pp. 40–41 (2013)Google Scholar
  136. 136.
    Knijnenburg, B.P.: A user-tailored approach to privacy decision support. Ph.D. thesis, University of California, Irvine, Irvine, CA (2015). http://search.proquest.com/docview/1725139739/abstract
  137. 137.
    Knijnenburg, B.P., Jin, H.: The persuasive effect of privacy recommendations. In: Twelfth Annual Workshop on HCI Research in MIS, Milan, Italy, pp. 16:1–16:5 (2013)Google Scholar
  138. 138.
    Knijnenburg, B.P., Kobsa, A.: Helping users with information disclosure decisions: potential for adaptation. In: Proceedings of the 2013 ACM International Conference on Intelligent User Interfaces, IUI 2013, pp. 407–416. ACM Press, Santa Monica (2013).  https://doi.org/10.1145/2449396.2449448
  139. 139.
    Knijnenburg, B.P., Kobsa, A.: Making decisions about privacy: information disclosure in context-aware recommender systems. ACM Trans. Interact. Intell. Syst. 3(3), 20:1–20:23 (2013).  https://doi.org/10.1145/2499670CrossRefGoogle Scholar
  140. 140.
    Knijnenburg, B.P., Kobsa, A.: Increasing sharing tendency without reducing satisfaction: finding the best privacy-settings user interface for social networks. In: ICIS 2014 Proceedings, Auckland, New Zealand (2014)Google Scholar
  141. 141.
    Knijnenburg, B.P., Kobsa, A., Jin, H.: Counteracting the negative effect of form auto-completion on the privacy calculus. In: ICIS 2013 Proceedings, Milan, Italy (2013)Google Scholar
  142. 142.
    Knijnenburg, B.P., Kobsa, A., Jin, H.: Dimensionality of information disclosure behavior. Int. J. Hum.-Comput. Stud. 71(12), 1144–1162 (2013).  https://doi.org/10.1016/j.ijhcs.2013.06.003CrossRefGoogle Scholar
  143. 143.
    Knijnenburg, B.P., Kobsa, A., Jin, H.: Preference-based location sharing: are more privacy options really better? In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI 2013, pp. 2667–2676. ACM, Paris (2013).  https://doi.org/10.1145/2470654.2481369
  144. 144.
    Knijnenburg, B.P., Sivakumar, S., Wilkinson, D.: Recommender systems for self-actualization. In: Proceedings of the 10th ACM Conference on Recommender Systems, RecSys 2016, pp. 11–14. ACM, Boston (2016).  https://doi.org/10.1145/2959100.2959189
  145. 145.
    Knijnenburg, B.P., Willemsen, M.C.: Evaluating recommender systems with user experiments. In: Ricci, F., Rokach, L., Shapira, B. (eds.) Recommender Systems Handbook, 2nd edn, pp. 309–352. Springer, Boston (2015).  https://doi.org/10.1007/978-1-4899-7637-6_9CrossRefGoogle Scholar
  146. 146.
    Knijnenburg, B.P., Willemsen, M.C., Gantner, Z., Soncu, H., Newell, C.: Explaining the user experience of recommender systems. User Model. User-Adap. Interact. 22(4–5), 441–504 (2012).  https://doi.org/10.1007/s11257-011-9118-4CrossRefGoogle Scholar
  147. 147.
    Knijnenburg, B.P., Willemsen, M.C., Hirtbach, S.: Receiving recommendations and providing feedback: the user-experience of a recommender system. In: Buccafurri, F., Semeraro, G. (eds.) EC-Web 2010. LNBIP, vol. 61, pp. 207–216. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-15208-5_19CrossRefGoogle Scholar
  148. 148.
    Kobsa, A.: Tailoring privacy to users’ needs (invited keynote). In: Bauer, M., Gmytrasiewicz, P.J., Vassileva, J. (eds.) UM 2001. LNCS (LNAI), vol. 2109, pp. 303–313. Springer, Heidelberg (2001).  https://doi.org/10.1007/3-540-44566-8_52CrossRefzbMATHGoogle Scholar
  149. 149.
    Kobsa, A., Cho, H., Knijnenburg, B.P.: The effect of personalization provider characteristics on privacy attitudes and behaviors: an elaboration likelihood model approach. J. Assoc. Inf. Sci. Technol. 67, 2587–2606 (2016).  https://doi.org/10.1002/asi.23629CrossRefGoogle Scholar
  150. 150.
    Kobsa, A., Patil, S., Meyer, B.: Privacy in instant messaging: an impression management model. Behav. Inf. Technol. 31(4), 355–370 (2012).  https://doi.org/10.1080/01449291003611326CrossRefGoogle Scholar
  151. 151.
    Kobsa, A., Schreck, J.: Privacy through pseudonymity in user-adaptive systems. ACM Trans. Internet Technol. 3(2), 149–183 (2003).  https://doi.org/10.1145/767193.767196CrossRefGoogle Scholar
  152. 152.
    Kobsa, A., Teltzrow, M.: Contextualized communication of privacy practices and personalization benefits: impacts on users’ data sharing and purchase behavior. In: Martin, D., Serjantov, A. (eds.) PET 2004. LNCS, vol. 3424, pp. 329–343. Springer, Heidelberg (2005).  https://doi.org/10.1007/11423409_21CrossRefGoogle Scholar
  153. 153.
    Koroleva, K., Krasnova, H., Veltri, N., Günther, O.: It’s all about networking! empirical investigation of social capital formation on social network sites. In: ICIS 2011 Proceedings, Shanghai, China (2011)Google Scholar
  154. 154.
    Kosinski, M., Stillwell, D., Graepel, T.: Private traits and attributes are predictable from digital records of human behavior. Proc. Natl. Acad. Sci. 110(15), 5802–5805 (2013).  https://doi.org/10.1073/pnas.1218772110CrossRefGoogle Scholar
  155. 155.
    Krämer, N.C., Haferkamp, N.: Online self-presentation: balancing privacy concerns and impression construction on social networking sites. In: Trepte, S., Reinecke, L. (eds.) Privacy Online: Perspectives on Privacy and Self-Disclosure in the Social Web, pp. 127–141. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-21521-6_10CrossRefGoogle Scholar
  156. 156.
    Krasnova, H., Hildebrand, T., Guenther, O.: Investigating the value of privacy in online social networks: conjoint analysis. In: ICIS 2009 Proceedings, Phoenix, AZ (2009)Google Scholar
  157. 157.
    Krishnamurthy, B., Wills, C.: Privacy diffusion on the web: a longitudinal perspective. In: Proceedings of the 18th International Conference on World Wide Web, WWW 2009, pp. 541–550. ACM, Madrid (2009).  https://doi.org/10.1145/1526709.1526782
  158. 158.
    Lai, Y.L., Hui, K.L.: Internet opt-in and opt-out: investigating the roles of frames, defaults and privacy concerns. In: Proceedings of the 2006 ACM SIGMIS Conference on Computer Personnel Research, Claremont, CA, pp. 253–263 (2006).  https://doi.org/10.1145/1125170.1125230
  159. 159.
    Lampe, C., Ellison, N., Steinfield, C.: A face(book) in the crowd: social searching vs. social browsing. In: Proceedings of the 2006 20th Anniversary Conference on Computer Supported Cooperative Work, CSCW 2006, pp. 167–170. ACM, Banff (2006).  https://doi.org/10.1145/1180875.1180901
  160. 160.
    Lampinen, A., Lehtinen, V., Lehmuskallio, A., Tamminen, S.: We’re in it together: interpersonal management of disclosure in social network services. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI 2011, pp. 3217–3226. ACM, New York (2011).  https://doi.org/10.1145/1978942.1979420
  161. 161.
    Lanier, J.: You Are Not a Gadget: A Manifesto, Large Print edn. Thorndike Press, Waterville (2010)Google Scholar
  162. 162.
    Lathia, N., Hailes, S., Capra, L.: Private distributed collaborative filtering using estimated concordance measures. In: Proceedings of the 2007 ACM Conference on Recommender Systems, RecSys 2007, pp. 1–8. ACM, New York (2007)Google Scholar
  163. 163.
    Laufer, R.S., Proshansky, H.M., Wolfe, M.: Some analytic dimensions of privacy. In: Küller, R. (ed.) Proceedings of the Lund Conference on Architectural Psychology. Dowden, Hutchinson & Ross, Lund (1973)Google Scholar
  164. 164.
    Laufer, R.S., Wolfe, M.: Privacy as a concept and a social issue: a multidimensional developmental theory. J. Soc. Issues 33(3), 22–42 (1977).  https://doi.org/10.1111/j.1540-4560.1977.tb01880.xCrossRefGoogle Scholar
  165. 165.
    Leary, M.R.: Self-presentation: Impression Management and Interpersonal Behavior. Routledge, Boulder (1996). ISBN 978-0-8133-3004-4Google Scholar
  166. 166.
    Lederer, S., Hong, J.I., Dey, A.K., Landay, J.A.: Personal privacy through understanding and action: five pitfalls for designers. Pers. Ubiquit. Comput. 8(6), 440–454 (2004).  https://doi.org/10.1007/s00779-004-0304-9CrossRefGoogle Scholar
  167. 167.
    Lederer, S., Mankoff, J., Dey, A.K.: Who wants to know what when? Privacy preference determinants in ubiquitous computing. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI 2003, pp. 724–725. ACM, Ft. Lauderdale (2003).  https://doi.org/10.1145/765891.765952
  168. 168.
    Lee, D., Brusilovsky, P.: Recommendations based on social links. In: Brusilovsky, P., He, D. (eds.) Social Information Access. LNCS, vol. 10100, pp. 391–440. Springer, Cham (2018)Google Scholar
  169. 169.
    Lee, H., Park, S.J.: MONERS: a news recommender for the mobile web. Expert Syst. Appl. 32(1), 143–150 (2007).  https://doi.org/10.1016/j.eswa.2005.11.010CrossRefGoogle Scholar
  170. 170.
    Lee, J.S., Lee, J.C.: Context awareness by case-based reasoning in a music recommendation system. In: Ichikawa, H., Cho, W.-D., Satoh, I., Youn, H.Y. (eds.) UCS 2007. LNCS, vol. 4836, pp. 45–58. Springer, Heidelberg (2007).  https://doi.org/10.1007/978-3-540-76772-5_4CrossRefGoogle Scholar
  171. 171.
    Li, H., Sarathy, R., Xu, H.: The role of affect and cognition on online consumers’ decision to disclose personal information to unfamiliar online vendors. Decis. Support Syst. 51(3), 434–445 (2011).  https://doi.org/10.1016/j.dss.2011.01.017CrossRefGoogle Scholar
  172. 172.
    Li, Y.: Theories in online information privacy research: a critical review and an integrated framework. Decis. Support Syst. 54(1), 471–481 (2012).  https://doi.org/10.1016/j.dss.2012.06.010CrossRefGoogle Scholar
  173. 173.
    Litt, E.: Knock, knock. who’s there? The imagined audience. J. Broadcast. Electron. Media 56(3), 330–345 (2012).  https://doi.org/10.1080/08838151.2012.705195CrossRefGoogle Scholar
  174. 174.
    Liu, Y., Gummadi, K.P., Krishnamurthy, B., Mislove, A.: Analyzing Facebook privacy settings: user expectations vs. reality. In: Proceedings of the 2011 ACM SIGCOMM Conference on Internet Measurement Conference, IMC 2011, pp. 61–70. ACM, Berlin (2011).  https://doi.org/10.1145/2068816.2068823
  175. 175.
    Lou, J., Fang, Y., Lim, K.H., Peng, J.Z.: Contributing high quantity and quality knowledge to online Q&A communities. J. Am. Soc. Inf. Sci. Technol. 64(2), 356–371 (2013).  https://doi.org/10.1002/asi.22750CrossRefGoogle Scholar
  176. 176.
    Lowry, P.B., Moody, G., Vance, A., Jensen, M., Jenkins, J., Wells, T.: Using an elaboration likelihood approach to better understand the persuasiveness of website privacy assurance cues for online consumers. J. Am. Soc. Inf. Sci. Technol. 63(4), 755–776 (2012).  https://doi.org/10.1002/asi.21705CrossRefGoogle Scholar
  177. 177.
    Lustig, C., Pine, K., Nardi, B., Irani, L., Lee, M.K., Nafus, D., Sandvig, C.: Algorithmic authority: the ethics, politics, and economics of algorithms that interpret, decide, and manage. In: Proceedings of the 2016 CHI Conference Extended Abstracts on Human Factors in Computing Systems, CHI EA 2016, pp. 1057–1062. ACM, New York (2016).  https://doi.org/10.1145/2851581.2886426
  178. 178.
    Machanavajjhala, A., Korolova, A., Sarma, A.D.: Personalized social recommendations: accurate or private. Proc. VLDB Endow. 4(7), 440–450 (2011).  https://doi.org/10.14778/1988776.1988780CrossRefGoogle Scholar
  179. 179.
    Madden, M.: Privacy management on social media sites. Technical report, Pew Internet & American Life Project, Pew Research Center, Washington, DC (2012). http://www.pewinternet.org/2012/02/24/privacy-management-on-social-media-sites/
  180. 180.
    Madejski, M., Johnson, M., Bellovin, S.: A study of privacy settings errors in an online social network. In: 2012 IEEE International Conference on Pervasive Computing and Communications Workshops (PERCOM Workshops), SESOC 2012, Lugano, Switzerland, pp. 340–345 (2012).  https://doi.org/10.1109/PerComW.2012.6197507
  181. 181.
    Marwick, A.E., Boyd, D.: I Tweet honestly, I Tweet passionately: Twitter users, context collapse, and the imagined audience. New Media Soc. 13(1), 114–133 (2011).  https://doi.org/10.1177/1461444810365313CrossRefGoogle Scholar
  182. 182.
    McGinty, L., Smyth, B.: Adaptive selection: an analysis of critiquing and preference-based feedback in conversational recommender systems. Int. J. Electron. Commer. 11(2), 35–57 (2006)CrossRefGoogle Scholar
  183. 183.
    McKenzie, C.R.M., Liersch, M.J., Finkelstein, S.R.: Recommendations implicit in policy defaults. Psychol. Sci. 17(5), 414–420 (2006).  https://doi.org/10.1111/j.1467-9280.2006.01721.xCrossRefGoogle Scholar
  184. 184.
    McSherry, F., Mironov, I.: Differentially private recommender systems: building privacy into the net. In: Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2009, pp. 627–636. ACM, Paris (2009).  https://doi.org/10.1145/1557019.1557090
  185. 185.
    Meisler, B.: Why Are Dead People Liking Stuff on Facebook? (2012). http://readwrite.com/2012/12/11/why-are-dead-people-liking-stuff-on-facebook
  186. 186.
    Metzger, M.J.: Privacy, trust, and disclosure: exploring barriers to electronic commerce. J. Comput.-Mediat. Commun. 9(4) (2004).  https://doi.org/10.1111/j.1083-6101.2004.tb00292.xCrossRefGoogle Scholar
  187. 187.
    Metzger, M.J.: Effects of site, vendor, and consumer characteristics on web site trust and disclosure. Commun. Res. 33(3), 155–179 (2006).  https://doi.org/10.1177/0093650206287076CrossRefGoogle Scholar
  188. 188.
    Metzger, M.J.: Communication privacy management in electronic commerce. J. Comput.-Mediat. Commun. 12(2), 335–361 (2007).  https://doi.org/10.1111/j.1083-6101.2007.00328.xCrossRefGoogle Scholar
  189. 189.
    Meyers, J.: How to Remove Your Name and Profile Picture from Facebook’s Social Ads (2011). http://internet.wonderhowto.com/how-to/remove-your-name-and-profile-picture-from-facebooks-social-ads-0126187/
  190. 190.
    Mikians, J., Gyarmati, L., Erramilli, V., Laoutaris, N.: Detecting price and search discrimination on the internet. In: Proceedings of the 11th ACM Workshop on Hot Topics in Networks, HotNets-XI, pp. 79–84. ACM, Redmond (2012).  https://doi.org/10.1145/2390231.2390245
  191. 191.
    Mikians, J., Gyarmati, L., Erramilli, V., Laoutaris, N.: Crowd-assisted search for price discrimination in e-commerce: first results. In: Proceedings of the Ninth ACM Conference on Emerging Networking Experiments and Technologies, CoNEXT 2013, pp. 1–6. ACM, Santa Barbara (2013).  https://doi.org/10.1145/2535372.2535415
  192. 192.
    Milberg, S.J., Burke, S.J., Smith, H.J., Kallman, E.A.: Values, personal information, privacy and regulatory approaches. Commun. ACM 38(12), 65–74 (1995).  https://doi.org/10.1145/219663.219683CrossRefGoogle Scholar
  193. 193.
    Milne, G.R.: Consumer participation in mailing lists: a field experiment. J. Public Policy Mark. 16(2), 298–309 (1997)Google Scholar
  194. 194.
    Milne, G.R., Gordon, M.E.: Direct mail privacy-efficiency trade-offs within an implied social contract framework. J. Public Policy Mark. 12(2), 206–215 (1993).  https://doi.org/10.2307/30000091CrossRefGoogle Scholar
  195. 195.
    Mirzadeh, N., Ricci, F., Bansal, M.: Feature selection methods for conversational recommender systems. In: Proceedings of the 2005 IEEE International Conference on e-Technology, e-Commerce and e-Service, EEE 2005, Hong Kong, China, pp. 772–777 (2005).  https://doi.org/10.1109/EEE.2005.75
  196. 196.
    Moult, J.: Woman sacked on Facebook for complaining about her boss after forgetting she had added him as a friend (2009). http://www.dailymail.co.uk/news/article-1206491/Woman-sacked-Facebook-boss-insult-forgetting-added-friend.html
  197. 197.
    Mulligan, D., Schwartz, A.: Your place or mine?: privacy concerns and solutions for server and client-side storage of personal information. In: Tenth Conference on Computers, Freedom and Privacy, Toronto, Ontario, pp. 81–84 (2000).  https://doi.org/10.1145/332186.332255
  198. 198.
    Narayanan, A., Shmatikov, V.: Robust de-anonymization of large sparse datasets. In: 2008 IEEE Symposium on Security and Privacy, pp. 111–125. IEEE (2008).  https://doi.org/10.1109/SP.2008.33
  199. 199.
    Navarro Bullock, B., Hotho, A., Stumme, G.: Accessing information with tags: search and ranking. In: Brusilovsky, P., He, D. (eds.) Social Information Access. LNCS, vol. 10100, pp. 310–343. Springer, Cham (2018)Google Scholar
  200. 200.
    Newman, A.L.: What the “right to be forgotten” means for privacy in a digital age. Science 347(6221), 507–508 (2015).  https://doi.org/10.1126/science.aaa4603CrossRefGoogle Scholar
  201. 201.
    Nissenbaum, H.: Privacy as contextual integrity. Wash. Law Rev. 79, 119–157 (2004)Google Scholar
  202. 202.
    Nissenbaum, H.: Privacy in Context: Technology, Policy, and the Integrity of Social Life. Stanford University Press, Stanford (2009)Google Scholar
  203. 203.
    Norberg, P.A., Horne, D.R., Horne, D.A.: The privacy paradox: personal information disclosure intentions versus behaviors. J. Consum. Aff. 41(1), 100–126 (2007).  https://doi.org/10.1111/j.1745-6606.2006.00070.xCrossRefGoogle Scholar
  204. 204.
    Norcie, G., Blythe, J., Caine, K., Camp, L.J.: Why Johnny can’t blow the whistle: identifying and reducing usability issues in anonymity systems. In: NDSS 2014 Workshop on Usable Security, USEC 2014. Internet Society, San Diego (2014).  https://doi.org/10.14722/usec.2014.23022
  205. 205.
    Oh, J.M., Moon, N.: User-selectable interactive recommendation system in mobile environment. Multimedia Tools Appl. 57(2), 295–313 (2012).  https://doi.org/10.1007/s11042-011-0737-xCrossRefGoogle Scholar
  206. 206.
    Oh, S.: Social Q&A. In: Brusilovsky, P., He, D. (eds.) Social Information Access. LNCS, vol. 10100, pp. 75–107. Springer, Cham (2018)Google Scholar
  207. 207.
    Olivero, N., Lunt, P.: Privacy versus willingness to disclose in e-commerce exchanges: the effect of risk awareness on the relative role of trust and control. J. Econ. Psychol. 25(2), 243–262 (2004).  https://doi.org/10.1016/S0167-4870(02)00172-1CrossRefGoogle Scholar
  208. 208.
    Olson, J.S., Grudin, J., Horvitz, E.: A study of preferences for sharing and privacy. In: CHI 2005 Extended Abstracts, pp. 1985–1988. ACM, Portland (2005).  https://doi.org/10.1145/1056808.1057073
  209. 209.
    O’Mahoney, M., Smyth, B.: From opinions to recommendations. In: Brusilovsky, P., He, D. (eds.) Social Information Access. LNCS, vol. 10100, pp. 480–509. Springer, Cham (2018)Google Scholar
  210. 210.
    Orwell, G.: Nineteen Eighty-Four. A Novel. Secker & Warburg, London (1949)Google Scholar
  211. 211.
    Page, X., Knijnenburg, B.P., Kobsa, A.: FYI: communication style preferences underlie differences in location-sharing adoption and usage. In: Proceedings of the 2013 ACM International Joint Conference on Pervasive and Ubiquitous Computing, UbiComp 2013, pp. 153–162. ACM, Zurich (2013).  https://doi.org/10.1145/2493432.2493487
  212. 212.
    Page, X., Knijnenburg, B.P., Kobsa, A.: What a tangled web we weave: lying backfires in location-sharing social media. In: Proceedings of the 2013 Conference on Computer Supported Cooperative Work, CSCW 2013, pp. 273–284. ACM, San Antonio (2013).  https://doi.org/10.1145/2441776.2441808
  213. 213.
    Page, X., Kobsa, A., Knijnenburg, B.P.: Don’t disturb my circles! boundary preservation is at the center of location-sharing concerns. In: Proceedings of the Sixth International AAAI Conference on Weblogs and Social Media, ICWSM 2012, pp. 266–273. AAAI Publications, Dublin (2012)Google Scholar
  214. 214.
    Page, X., Tang, K., Stutzman, F., Lampinen, A.: Measuring networked social privacy. In: Proceedings of the 2013 Conference on Computer Supported Cooperative Work Companion, CSCW 2013, pp. 315–320. ACM, San Antonio (2013).  https://doi.org/10.1145/2441955.2442032
  215. 215.
    Page, X.W.: Factors that influence adoption and use of location-sharing social media. Ph.D. thesis, University of California, Irvine, Irvine, CA (2014). http://gradworks.umi.com/36/06/3606987.html
  216. 216.
    Pallapa, G., Das, S.K., Di Francesco, M., Aura, T.: Adaptive and context-aware privacy preservation exploiting user interactions in smart environments. Pervasive Mob. Comput. 12, 232–243 (2014).  https://doi.org/10.1016/j.pmcj.2013.12.004CrossRefGoogle Scholar
  217. 217.
    Pariser, E.: The Filter Bubble: How the New Personalized Web is Changing What We Read and How We Think. Penguin Books, New York (2012)CrossRefGoogle Scholar
  218. 218.
    Park, C.W., Jun, S.Y., MacInnis, D.J.: Choosing what I want versus rejecting what I do not want: an application of decision framing to product option choice decisions. J. Mark. Res. 37(2), 187–202 (2000).  https://doi.org/10.1509/jmkr.37.2.187.18731CrossRefGoogle Scholar
  219. 219.
    Patil, S., Lai, J.: Who gets to know what when: configuring privacy permissions in an awareness application. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI 2005, pp. 101–110. ACM, Portland (2005).  https://doi.org/10.1145/1054972.1054987
  220. 220.
    Patil, S., Norcie, G., Kapadia, A., Lee, A.J.: Reasons, rewards, regrets: privacy considerations in location sharing as an interactive practice. In: Proceedings of the Eighth Symposium on Usable Privacy and Security, SOUPS 2012, pp. 5:1–5:15. ACM, Washington, DC (2012).  https://doi.org/10.1145/2335356.2335363
  221. 221.
    Patil, S., Page, X., Kobsa, A.: With a little help from my friends: can social navigation inform interpersonal privacy preferences? In: Proceedings of the ACM 2011 Conference on Computer Supported Cooperative Work, CSCW 2011, pp. 391–394. ACM, Hangzhou (2011).  https://doi.org/10.1145/1958824.1958885
  222. 222.
    Pavlou, P.A.: Consumer acceptance of electronic commerce: integrating trust and risk with the technology acceptance model. Int. J. Electron. Commer. 7(3), 101–134 (2003)Google Scholar
  223. 223.
    Pavlou, P.A.: State of the information privacy literature: where are we now and where should we go. MIS Q. 35(4), 977–988 (2011)CrossRefGoogle Scholar
  224. 224.
    Pedersen, D.M.: Psychological functions of privacy. J. Environ. Psychol. 17(2), 147–156 (1997).  https://doi.org/10.1006/jevp.1997.0049CrossRefGoogle Scholar
  225. 225.
    Perlow, J.: New in labs: stop sending mail you later regret (2008). http://gmailblog.blogspot.com/2008/10/new-in-labs-stop-sending-mail-you-later.html
  226. 226.
    Petronio, S.: Communication boundary management: a theoretical model of managing disclosure of private information between marital couples. Commun. Theory 1(4), 311–335 (1991).  https://doi.org/10.1111/j.1468-2885.1991.tb00023.xCrossRefGoogle Scholar
  227. 227.
    Petronio, S.: Communication privacy management theory: what do we know about family privacy regulation? J. Fam. Theory Rev. 2(3), 175–196 (2010).  https://doi.org/10.1111/j.1756-2589.2010.00052.xCrossRefGoogle Scholar
  228. 228.
    Phelps, J., Nowak, G., Ferrell, E.: Privacy concerns and consumer willingness to provide personal information. J. Public Policy Mark. 19(1), 27–41 (2000).  https://doi.org/10.1509/jppm.19.1.27.16941CrossRefGoogle Scholar
  229. 229.
    Preibusch, S., Krol, K., Beresford, A.R.: The privacy economics of voluntary over-disclosure in web forms. In: Böhme, R. (ed.) WEIS 2012, pp. 183–203. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-39498-0_9CrossRefGoogle Scholar
  230. 230.
    Raban, D.R., Danan, A., Ronen, I., Guy, I.: Impression management through people tagging in the enterprise: implications for social media sampling and design. J. Inf. Sci. 43, 295–315 (2016).  https://doi.org/10.1177/0165551516636305CrossRefGoogle Scholar
  231. 231.
    Rashid, A.M., Albert, I., Cosley, D., Lam, S.K., McNee, S.M., Konstan, J.A., Riedl, J.: Getting to know you: learning new user preferences in recommender systems. In: Proceedings of the 7th International Conference on Intelligent User Interfaces, IUI 2002, pp. 127–134. ACM, San Francisco (2002).  https://doi.org/10.1145/502716.502737
  232. 232.
    Ravichandran, R., Benisch, M., Kelley, P.G., Sadeh, N.M.: Capturing social networking privacy preferences. In: Goldberg, I., Atallah, M.J. (eds.) PETS 2009. LNCS, vol. 5672, pp. 1–18. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-03168-7_1CrossRefGoogle Scholar
  233. 233.
    Razavi, M.N., Iverson, L.: Improving personal privacy in social systems with people-tagging. In: Proceedings of the ACM 2009 International Conference on Supporting Group Work, GROUP 2009, pp. 11–20. ACM, New York (2009).  https://doi.org/10.1145/1531674.1531677
  234. 234.
    Resnick, P., Kuwabara, K., Zeckhauser, R., Friedman, E.: Reputation systems. Commun. ACM 43(12), 45–48 (2000).  https://doi.org/10.1145/355112.355122CrossRefGoogle Scholar
  235. 235.
    Riboni, D., Bettini, C.: Private context-aware recommendation of points of interest: an initial investigation. In: Proceedings of the IEEE International Conference on Pervasive Computing and Communications Workshops, pp. 584–589. IEEE Computer Society, Los Alamitos (2012).  https://doi.org/10.1109/PerComW.2012.6197582
  236. 236.
    Richmond, R.: LinkedIn’s Social-Ad Misstep (2011). http://gadgetwise.blogs.nytimes.com/2011/08/17/linkedins-social-ad-misstep/
  237. 237.
    Riva, G.: The sociocognitive psychology of computer-mediated communication: the present and future of technology-based interactions. CyberPsychol. Behav. 5(6), 581–598 (2002).  https://doi.org/10.1089/109493102321018222CrossRefGoogle Scholar
  238. 238.
    Ronson, J.: How One Stupid Tweet Blew Up Justine Sacco’s Life. The New York Times (2015). http://www.nytimes.com/2015/02/15/magazine/how-one-stupid-tweet-ruined-justine-saccos-life.html
  239. 239.
    Rubinstein, I.S., Good, N.: Privacy by design: a counterfactual analysis of Google and Facebook privacy incidents. Berkeley Technol. Law J. 28, 1333–1414 (2013).  https://doi.org/10.15779/Z38G11NCrossRefGoogle Scholar
  240. 240.
    Rust, R.T., Kannan, P.K., Peng, N.: The customer economics of internet privacy. J. Acad. Mark. Sci. 30(4), 455–464 (2002).  https://doi.org/10.1177/009207002236917CrossRefGoogle Scholar
  241. 241.
    Sadeh, N., Hong, J., Cranor, L., Fette, I., Kelley, P., Prabaker, M., Rao, J.: Understanding and capturing people’s privacy policies in a mobile social networking application. Pers. Ubiquit. Comput. 13(6), 401–412 (2009).  https://doi.org/10.1007/s00779-008-0214-3CrossRefGoogle Scholar
  242. 242.
    Samuelson, W., Zeckhauser, R.: Status quo bias in decision making. J. Risk Uncertain. 1(1), 7–59 (1988).  https://doi.org/10.1007/BF00055564CrossRefGoogle Scholar
  243. 243.
  244. 244.
    Schafer, J.B., Konstan, J.A., Riedl, J.: E-commerce recommendation applications. Data Min. Knowl. Disc. 5, 115–153 (2001).  https://doi.org/10.1023/A:1009804230409CrossRefzbMATHGoogle Scholar
  245. 245.
    Schau, H.J., Gilly, M.C.: We are what we post? Self-presentation in personal web space. J. Consum. Res. 30(3), 385–404 (2003).  https://doi.org/10.1086/378616CrossRefGoogle Scholar
  246. 246.
    Sheehan, K.B.: Toward a typology of internet users and online privacy concerns. Inf. Soc. 18(1), 21–32 (2002).  https://doi.org/10.1080/01972240252818207MathSciNetCrossRefGoogle Scholar
  247. 247.
    Shelton, M., Lo, K., Nardi, B.: Online media forums as separate social lives: a qualitative study of disclosure within and beyond Reddit. In: iConference 2015 Proceedings, Newport Beach, CA (2015)Google Scholar
  248. 248.
    Sheng, H., Nah, F.F.H., Siau, K.: An experimental study on ubiquitous commerce adoption: impact of personalization and privacy concerns. J. Assoc. Inf. Syst. 9(6), 344–376 (2008)Google Scholar
  249. 249.
    Sher, S., McKenzie, C.R.M.: Information leakage from logically equivalent frames. Cognition 101(3), 467–494 (2006).  https://doi.org/10.1016/j.cognition.2005.11.001CrossRefGoogle Scholar
  250. 250.
    Shi, P., Xu, H., Erickson, L., Zhang, C.: See friendship: interpersonal privacy management in a collective world. In: AMCIS 2012 Proceedings (2012)Google Scholar
  251. 251.
    Shklovski, I., Mainwaring, S.D., Skúladóttir, H.H., Borgthorsson, H.: Leakiness and creepiness in app space: perceptions of privacy and mobile app use. In: Proceedings of the 32nd Annual ACM Conference on Human Factors in Computing Systems, CHI 2014, pp. 2347–2356. ACM, Toronto (2014).  https://doi.org/10.1145/2556288.2557421
  252. 252.
    Shokri, R., Pedarsani, P., Theodorakopoulos, G., Hubaux, J.P.: Preserving privacy in collaborative filtering through distributed aggregation of offline profiles. In: RecSys, pp. 157–164 (2009)Google Scholar
  253. 253.
    Simonson, I.: Choice based on reasons: the case of attraction and compromise effects. J. Consum. Res. 16(2), 158–174 (1989)CrossRefGoogle Scholar
  254. 254.
    Singel, R.: Netflix Spilled Your Brokeback Mountain Secret, Lawsuit Claims (2009). http://www.wired.com/2009/12/netflix-privacy-lawsuit
  255. 255.
    Sleeper, M., Balebako, R., Das, S., McConahy, A.L., Wiese, J., Cranor, L.F.: The post that wasn’t: exploring self-censorship on Facebook. In: Proceedings of the 2013 Conference on Computer Supported Cooperative Work, CSCW 2013, pp. 793–802. ACM, San Antonio (2013).  https://doi.org/10.1145/2441776.2441865
  256. 256.
    Smith, A.: 6 new facts about Facebook (2014)Google Scholar
  257. 257.
    Smith, C., Kanalley, C.: Fired Over Facebook: 13 Facebook Posts That Got People CANNED (2010). http://www.huffingtonpost.com/2010/07/26/fired-over-facebook-posts_n_659170.html
  258. 258.
    Smith, H.J., Dinev, T., Xu, H.: Information privacy research: an interdisciplinary review. MIS Q. 35(4), 989–1016 (2011)CrossRefGoogle Scholar
  259. 259.
    Smith, H.J., Milberg, S.J., Burke, S.J.: Information privacy: measuring individuals’ concerns about organizational practices. MIS Q. 20(2), 167–196 (1996).  https://doi.org/10.2307/249477CrossRefGoogle Scholar
  260. 260.
    Smith, H.J., Rogers, Y.: Managing one’s social network: does age make a difference? In: Human Computer Interaction - INTERACT 2003, pp. 551–558. IOS Press (2003)Google Scholar
  261. 261.
    Smith, N.C., Goldstein, D.G., Johnson, E.J.: Choice without awareness: ethical and policy implications of defaults. J. Public Policy Mark. 32(2), 159–172 (2013).  https://doi.org/10.1509/jppm.10.114CrossRefGoogle Scholar
  262. 262.
    Solove, D.J.: The Digital Person: Technology and Privacy in the Information Age. New York University Press, New York (2004)Google Scholar
  263. 263.
    Solove, D.J.: A taxonomy of privacy. Univ. Pa. Law Rev. 154(3), 477–564 (2006).  https://doi.org/10.2307/40041279CrossRefGoogle Scholar
  264. 264.
    Solove, D.J.: Understanding Privacy. Harvard University Press, Cambridge (2008)Google Scholar
  265. 265.
    Solove, D.J.: Privacy self-management and the consent dilemma. Harv. Law Rev. 126, 1880–1903 (2013)Google Scholar
  266. 266.
    Spiekermann, S.: User Control in Ubiquitous Computing: Design Alternatives and User Acceptance. Shaker Verlag, Aachen (2008)Google Scholar
  267. 267.
    Spiekermann, S., Grossklags, J., Berendt, B.: E-privacy in 2nd generation e-commerce: privacy preferences versus actual behavior. In: Proceedings of the 3rd ACM Conference on Electronic Commerce, Tampa, FL, pp. 38–47 (2001).  https://doi.org/10.1145/501158.501163
  268. 268.
    Stilgherrian: Why big data evangelists need to be reprogrammed (2014). http://www.zdnet.com/article/why-big-data-evangelists-need-to-be-reprogrammed/
  269. 269.
    Stone, D.L.: The effects of the valence of outcomes for providing data and the perceived relevance of the data requested on privacy-related behaviors, beliefs, and attitudes. Ph.D. thesis, Purdue University (1981)Google Scholar
  270. 270.
    Strater, K., Lipford, H.R.: Strategies and struggles with privacy in an online social networking community. In: Proceedings of the 22nd British HCI Group Annual Conference on People and Computers, BCS-HCI 2008, pp. 111–119. British Computer Society, Swinton (2008)Google Scholar
  271. 271.
    Stutzman, F., Kramer-Duffield, J.: Friends only: examining a privacy-enhancing behavior in Facebook. In: Proceedings of the 28th International Conference on Human Factors in Computing Systems, CHI 2010, pp. 1553–1562. ACM, Atlanta (2010).  https://doi.org/10.1145/1753326.1753559
  272. 272.
    Suler, J.: The online disinhibition effect. CyberPsychol. Behav. 7(3), 321–326 (2004).  https://doi.org/10.1089/1094931041291295CrossRefGoogle Scholar
  273. 273.
    Sunstein, C.R., Thaler, R.H.: Libertarian paternalism is not an oxymoron. Univ. Chicago Law Rev. 70(4), 1159–1202 (2003).  https://doi.org/10.2307/1600573CrossRefGoogle Scholar
  274. 274.
    Sutanto, J., Palme, E., Tan, C.H., Phang, C.W.: Addressing the personalization-privacy paradox: an empirical assessment from a field experiment on smartphone users. MIS Q. 37(4), 1141–1164 (2013)CrossRefGoogle Scholar
  275. 275.
    Tang, K., Hong, J., Siewiorek, D.: The implications of offering more disclosure choices for social location sharing. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI 2012, pp. 391–394. ACM, Austin (2012).  https://doi.org/10.1145/2207676.2207730
  276. 276.
    Tang, K., Lin, J., Hong, J., Siewiorek, D., Sadeh, N.: Rethinking location sharing: exploring the implications of social-driven vs. purpose-driven location sharing. In: Proceedings of the 12th ACM International Conference Adjunct Papers on Ubiquitous Computing, UbiComp 2010, pp. 85–94. ACM, Copenhagen (2010).  https://doi.org/10.1145/1864349.1864363
  277. 277.
    Taylor, C.: Twitter Turns Ugly Over PR Person’s Idiotic Tweet (2013). http://mashable.com/2013/12/20/justine-sacco/
  278. 278.
    Taylor, D., Davis, D., Jillapalli, R.: Privacy concern and online personalization: the moderating effects of information control and compensation. Electron. Commer. Res. 9(3), 203–223 (2009).  https://doi.org/10.1007/s10660-009-9036-2CrossRefGoogle Scholar
  279. 279.
    Taylor, H.: Most people are “Privacy Pragmatists” who, while concerned about privacy, will sometimes trade it off for other benefits. Technical report 17, Harris Interactive, Inc. (2003)Google Scholar
  280. 280.
    Teltzrow, M., Kobsa, A.: Impacts of user privacy preferences on personalized systems: a comparative study. In: Karat, C.M., Blom, J., Karat, J. (eds.) Designing Personalized User Experiences for eCommerce, pp. 315–332. Kluwer Academic Publishers, Dordrecht (2004).  https://doi.org/10.1007/1-4020-2148-8_17CrossRefGoogle Scholar
  281. 281.
    Tene, O., Polonetsky, J.: Big data for all: privacy and user control in the age of analytics. Northwest. J. Technol. Intellect. Prop. 11(5), 239–272 (2012)Google Scholar
  282. 282.
    Tene, O., Polonetsky, J.: A theory of creepy: technology, privacy and shifting social norms. Yale J. Law Technol. 16, 59–102 (2013)Google Scholar
  283. 283.
    Thaler, R.H., Sunstein, C.: Nudge: Improving Decisions About Health, Wealth, and Happiness. Yale University Press, New Haven, London (2008)Google Scholar
  284. 284.
    Tintarev, N., Masthoff, J.: Evaluating the effectiveness of explanations for recommender systems. User Model. User-Adap. Interact. 22(4–5), 399–439 (2012).  https://doi.org/10.1007/s11257-011-9117-5CrossRefGoogle Scholar
  285. 285.
    Tippmann, S., Powles, J.: Google accidentally reveals data on ‘right to be forgotten’ requests. The Guardian (2015). http://www.theguardian.com/technology/2015/jul/14/google-accidentally-reveals-right-to-be-forgotten-requests
  286. 286.
    Toch, E., Cranshaw, J., Drielsma, P.H., Tsai, J.Y., Kelley, P.G., Springfield, J., Cranor, L., Hong, J., Sadeh, N.: Empirical models of privacy in location sharing. In: Proceedings of the 12th ACM International Conference on Ubiquitous Computing, UbiComp 2010, pp. 129–138. ACM, Copenhagen (2010).  https://doi.org/10.1145/1864349.1864364
  287. 287.
    Treiblmaier, H., Pollach, I.: Users’ perceptions of benefits and costs of personalization. In: ICIS 2007 Proceedings (2007)Google Scholar
  288. 288.
    Tsai, J.Y., Kelley, P., Drielsma, P., Cranor, L.F., Hong, J., Sadeh, N.: Who’s viewed you?: the impact of feedback in a mobile location-sharing application. In: Proceedings of the 27th International Conference on Human Factors in Computing Systems, CHI 2009, pp. 2003–2012. ACM, Boston (2009).  https://doi.org/10.1145/1518701.1519005
  289. 289.
    Tufekci, Z.: Can you see me now? Audience and disclosure regulation in online social network sites. Bull. Sci. Technol. Soc. 28(1), 20–36 (2008).  https://doi.org/10.1177/0270467607311484CrossRefGoogle Scholar
  290. 290.
    Turner, M.A., Varghese, R.: Making sense of the privacy debate: a comparative analysis of leading consumer privacy surveys. Technical report, Privacy & American Business (2002)Google Scholar
  291. 291.
    Tversky, A.: Elimination by aspects: a theory of choice. Psychol. Rev. 79(4), 281–299 (1972).  https://doi.org/10.1037/h0032955CrossRefGoogle Scholar
  292. 292.
  293. 293.
    Vallet, D., Friedman, A., Berkovsky, S.: Matrix factorization without user data retention. In: Tseng, V.S., Ho, T.B., Zhou, Z.-H., Chen, A.L.P., Kao, H.-Y. (eds.) PAKDD 2014. LNCS (LNAI), vol. 8443, pp. 569–580. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-06608-0_47CrossRefGoogle Scholar
  294. 294.
    Vickery, J.R.: The curious case of Confession Bear: the reappropriation of online macro-image memes. Inf. Commun. Soc. 17(3), 301–325 (2014).  https://doi.org/10.1080/1369118X.2013.871056CrossRefGoogle Scholar
  295. 295.
    Vig, J., Sen, S., Riedl, J.: Tagsplanations: explaining recommendations using tags. In: Proceedings of the 14th International Conference on Intelligent User Interfaces, IUI 2009, pp. 47–56. ACM, Sanibel Island (2009).  https://doi.org/10.1145/1502650.1502661
  296. 296.
    Vitak, J., Blasiola, S., Litt, E., Patil, S.: Balancing audience and privacy tensions on social network sites: strategies of highly engaged users. Int. J. Commun. 9, 1485–1504 (2015)Google Scholar
  297. 297.
    Walther, J.B., Parks, M.R.: Cues filtered out, cues filtered in. In: Knapp, M.L., Daly, J.A. (eds.) Handbook of Interpersonal Communication, 4th edn, pp. 529–563. SAGE Publications Inc., Thousand Oaks (2002)Google Scholar
  298. 298.
    Wang, N., Grossklags, J., Xu, H.: An online experiment of privacy authorization dialogues for social applications. In: Proceedings of the 2013 Conference on Computer Supported Cooperative Work, CSCW 2013, pp. 261–272. ACM, San Antonio (2013).  https://doi.org/10.1145/2441776.2441807
  299. 299.
    Wang, W., Benbasat, I.: Recommendation agents for electronic commerce: effects of explanation facilities on trusting beliefs. J. Manag. Inf. Syst. 23(4), 217–246 (2007).  https://doi.org/10.2753/MIS0742-1222230410CrossRefGoogle Scholar
  300. 300.
    Wang, Y., Leon, P.G., Acquisti, A., Cranor, L.F., Forget, A., Sadeh, N.: A field trial of privacy nudges for Facebook. In: Proceedings of the 32nd Annual ACM Conference on Human Factors in Computing Systems, CHI 2014, pp. 2367–2376. ACM, Toronto (2014).  https://doi.org/10.1145/2556288.2557413
  301. 301.
    Wang, Y., Leon, P.G., Scott, K., Chen, X., Acquisti, A., Cranor, L.F.: Privacy nudges for social media: an exploratory Facebook study. In: Second International Workshop on Privacy and Security in Online Social Media, PSOSM 2013, Rio De Janeiro, Brazil, pp. 763–770 (2013)Google Scholar
  302. 302.
    Wang, Y., Norcie, G., Komanduri, S., Acquisti, A., Leon, P.G., Cranor, L.F.: “I regretted the minute I pressed share”: a qualitative study of regrets on Facebook. In: Proceedings of the Seventh Symposium on Usable Privacy and Security, pp. 10:1–10:16. ACM, Pittsburgh (2011).  https://doi.org/10.1145/2078827.2078841
  303. 303.
    Watson, J., Besmer, A., Lipford, H.R.: +Your circles: sharing behavior on Google+. In: Proceedings of the 8th Symposium on Usable Privacy and Security, SOUPS 2012, pp. 12:1–12:10. ACM, Pittsburgh (2012).  https://doi.org/10.1145/2335356.2335373
  304. 304.
    Westin, A.F., Harris (Louis) and Associates, Inc.: The Dimensions of Privacy: A National Opinion Research Survey of Attitudes Toward Privacy. Garland Publishing, New York (1981)Google Scholar
  305. 305.
    Westin, A.F., Maurici, D.: E-commerce & privacy: what the net users want. Technical report, Privacy & American Business, and PricewaterhouseCoopers LLP (1998). http://www.pwcglobal.com/gx/eng/svcs/privacy/images/E-Commerce.pdf
  306. 306.
  307. 307.
    Wilkinson, D., Sivakumar, S., Cherry, D., Knijnenburg, B.P., Raybourn, E.M., Wisniewski, P., Sloan, H.: User-tailored privacy by design. In: Submitted to USEC 2017 (2017)Google Scholar
  308. 308.
    Wilson, D., Proudfoot, J., Valacich, J.: Saving face on Facebook: privacy concerns, social benefits, and impression management. In: ICIS 2014 Proceedings (2014)Google Scholar
  309. 309.
    Wisniewski, P., Islam, A.N., Knijnenburg, B.P., Patil, S.: Give social network users the privacy they want. In: Proceedings of the 18th ACM Conference on Computer Supported Cooperative Work & Social Computing, CSCW 2015, pp. 1427–1441. ACM, Vancouver (2015).  https://doi.org/10.1145/2675133.2675256
  310. 310.
    Wisniewski, P., Knijnenburg, B.P., Richter Lipford, H.: Profiling Facebook users’ privacy behaviors. In: SOUPS2014 Workshop on Privacy Personas and Segmentation, PPS 2014, Menlo Park, CA (2014)Google Scholar
  311. 311.
    Wisniewski, P., Lipford, H., Wilson, D.: Fighting for my space: coping mechanisms for SNS boundary regulation. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI 2012, pp. 609–618. ACM, Austin (2012).  https://doi.org/10.1145/2207676.2207761
  312. 312.
    Wisniewski, P., Xu, H., Chen, Y.: Understanding user adaptation strategies for the launching of Facebook timeline. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI 2014, pp. 2421–2430. ACM, Toronto (2014).  https://doi.org/10.1145/2556288.2557363
  313. 313.
    Wisniewski, P.J., Knijnenburg, B.P., Lipford, H.R.: Making privacy personal: profiling social network users to inform privacy education and nudging. Int. J. Hum.-Comput. Stud. 98, 95–108 (2017).  https://doi.org/10.1016/j.ijhcs.2016.09.006CrossRefGoogle Scholar
  314. 314.
    Woong Yun, G., Park, S.Y.: Selective posting: willingness to post a message online. J. Comput.-Mediat. Commun. 16(2), 201–227 (2011).  https://doi.org/10.1111/j.1083-6101.2010.01533.xCrossRefGoogle Scholar
  315. 315.
    Wyer, R.S., Budesheim, T.L.: Person memory and judgments: the impact of information that one is told to disregard. J. Pers. Soc. Psychol. 53(1), 14–29 (1987).  https://doi.org/10.1037/0022-3514.53.1.14CrossRefGoogle Scholar
  316. 316.
    Xie, J., Knijnenburg, B.P., Jin, H.: Location sharing privacy preference: analysis and personalized recommendation. In: Proceedings of the 19th International Conference on Intelligent User Interfaces, IUI 2014, pp. 189–198. ACM, Haifa (2014).  https://doi.org/10.1145/2557500.2557504
  317. 317.
    Xu, H., Luo, X.R., Carroll, J.M., Rosson, M.B.: The personalization privacy paradox: an exploratory study of decision making process for location-aware marketing. Decis. Support Syst. 51(1), 42–52 (2011).  https://doi.org/10.1016/j.dss.2010.11.017CrossRefGoogle Scholar
  318. 318.
    Xu, H., Teo, H.H., Tan, B.C.Y., Agarwal, R.: The role of push-pull technology in privacy calculus: the case of location-based services. J. Manag. Inf. Syst. 26(3), 135–174 (2009).  https://doi.org/10.2753/MIS0742-1222260305CrossRefGoogle Scholar
  319. 319.
    Xu, H., Wang, N., Grossklags, J.: Privacy-by-redesign: alleviating privacy concerns for third-party applications. In: ICIS 2012 Proceedings, Orlando, FL (2012)Google Scholar
  320. 320.
    Yang, J., Morris, M.R., Teevan, J., Adamic, L.A., Ackerman, M.S.: Culture matters: a survey study of social Q&A behavior. In: Fifth International AAAI Conference on Weblogs and Social Media, ICWSM 2011, pp. 409–416. AAAI Publications (2011)Google Scholar
  321. 321.
    Yang, S.C., Hung, W.C., Sung, K., Farn, C.K.: Investigating initial trust toward e-tailers from the elaboration likelihood model perspective. Psychol. Mark. 23(5), 429–445 (2006).  https://doi.org/10.1002/mar.20120CrossRefGoogle Scholar
  322. 322.
    Young, A.L., Quan-Haase, A.: Information revelation and internet privacy concerns on social network sites: a case study of Facebook. In: Proceedings of the Fourth International Conference on Communities and Technologies, pp. 265–274. ACM, University Park (2009).  https://doi.org/10.1145/1556460.1556499
  323. 323.
    Yue, Z., He, D.: Collaborative search. In: Brusilovsky, P., He, D. (eds.) Social Information Access. LNCS, vol. 10100, pp. 108–141. Springer, Cham (2018)Google Scholar
  324. 324.
    Zaslow, J.: If TiVo Thinks You Are Gay, Here’s How to Set It Straight (2002). http://www.wsj.com/articles/SB1038261936872356908
  325. 325.
    Zhang, B., Wang, N., Jin, H.: Privacy concerns in online recommender systems: influences of control and user data input. In: Symposium on Usable Privacy and Security, SOUPS 2014, Menlo Park, CA, pp. 159–173 (2014)Google Scholar
  326. 326.
    Zheng, V.W., Zheng, Y., Xie, X., Yang, Q.: Towards mobile intelligence: learning from GPS history data for collaborative recommendation. Artif. Intell. 184–185, 17–37 (2012).  https://doi.org/10.1016/j.artint.2012.02.002MathSciNetCrossRefGoogle Scholar
  327. 327.
    Zhong, L.: My pins are my dreams: pinterest, collective daydreams, and the aspirational gap. M.S. thesis, Massachusetts Institute of Technology (2014)Google Scholar
  328. 328.
    Zhou, B., Pei, J.: Preserving privacy in social networks against neighborhood attacks. In: 2008 IEEE 24th International Conference on Data Engineering, pp. 506–515 (2008).  https://doi.org/10.1109/ICDE.2008.4497459
  329. 329.
    Zhou, T.: Understanding users’ initial trust in mobile banking: an elaboration likelihood perspective. Comput. Hum. Behav. 28(4), 1518–1525 (2012).  https://doi.org/10.1016/j.chb.2012.03.021CrossRefGoogle Scholar
  330. 330.
    Zhu, T., Ren, Y., Zhou, W., Rong, J., Xiong, P.: An effective privacy preserving algorithm for neighborhood-based collaborative filtering. Future Gener. Comput. Syst. 36, 142–155 (2014).  https://doi.org/10.1016/j.future.2013.07.019CrossRefGoogle Scholar
  331. 331.
    Zimmer, M.: OkCupid Study Reveals the Perils of Big-Data Science (2016). https://www.wired.com/2016/05/okcupid-study-reveals-perils-big-data-science/

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Clemson UniversityClemsonUSA

Personalised recommendations