Advertisement

On the Relation Between Control-Based and Data-Based Coordination Languages

  • Jean-Marie JacquetEmail author
  • Isabelle Linden
  • Denis Darquennes
Chapter
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10865)

Abstract

Coordination languages have classically been divided into control-based coordination languages, on the one hand, and data-based coordination languages, on the other hand. The great majority of work on coordination addresses the one family or the another but rarely connects the two. In the honor of the retirement of a leading expert of control-based coordination languages, the authors, who devoted many research efforts on data-based coordination languages, aim at addressing the connection between the two families of coordination languages. To that end, a Reo-like dialect, named ReoD, is first presented. Variants of a Linda-like language, named BachT, VBachT and MRT, are then described and subsequently used to translate and simulate the ReoD language.

Keywords

Coordination languages Control Data Reo Linda Bach 

Notes

Acknowledgment

We thank the anonymous reviewers for their comments and suggestions. We also wish to Farhad a wonderful retirement and thank him for what he has done, directly or indirectly, to promote coordination as a research field.

References

  1. 1.
    Arbab, F.: Reo: a channel-based coordination model for component composition. Math. Struct. Comput. Sci. 14(3), 329–366 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Arbab, F.: Puff, the magic protocol. In: Agha, G., Danvy, O., Meseguer, J. (eds.) Formal Modeling: Actors, Open Systems, Biological Systems. LNCS, vol. 7000, pp. 169–206. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-24933-4_9CrossRefGoogle Scholar
  3. 3.
    Arbab, F., Baier, C., de Boer, F.S., Rutten, J.J.M.M.: Models and temporal logical specifications for timed component connectors. Softw. Syst. Model. 6(1), 59–82 (2007)CrossRefGoogle Scholar
  4. 4.
    Arbab, F., Rutten, J.J.M.M.: A coinductive calculus of component connectors. In: Wirsing, M., Pattinson, D., Hennicker, R. (eds.) WADT 2002. LNCS, vol. 2755, pp. 34–55. Springer, Heidelberg (2003).  https://doi.org/10.1007/978-3-540-40020-2_2CrossRefGoogle Scholar
  5. 5.
    Banâtre, J.-P., Le Métayer, D.: Programming by multiset transformation. Commun. ACM 36(1), 98–111 (1993)CrossRefGoogle Scholar
  6. 6.
    Banâtre, J.-P., Métayer, D.L.: Gamma and the chemical reaction model: ten years after. In: Coordination Programming, pp. 3–41. Imperial College Press, London (1996)Google Scholar
  7. 7.
    Berry, G., Gonthier, G.: The Esterel synchronous programming language: design, semantics, implementation. Sci. Comput. Program. 19, 87–152 (1992)CrossRefzbMATHGoogle Scholar
  8. 8.
    Brogi, A., Jacquet, J.-M.: On the expressiveness of linda-like concurrent languages. Electron. Notes Theor. Comput. Sci. 16(2), 61–82 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Brogi, A., Jacquet, J.-M.: On the expressiveness of coordination models. In: Ciancarini, P., Wolf, A.L. (eds.) COORDINATION 1999. LNCS, vol. 1594, pp. 134–149. Springer, Heidelberg (1999).  https://doi.org/10.1007/3-540-48919-3_11CrossRefGoogle Scholar
  10. 10.
    Brogi, A., Jacquet, J.-M. (eds.): Foclasa 2002, Foundations of Coordination Languages and Software Architectures (Satellite Workshop of CONCUR 2002), vol. 68, no. 3 (2003)Google Scholar
  11. 11.
    Brogi, A., Jacquet, J.-M.: On the expressiveness of coordination via shared dataspaces. Sci. Comput. Program. 46(1–2), 71–98 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Clarke, D., Costa, D., Arbab, F.: Connector colouring I: synchronisation and context dependency. Sci. Comput. Program. 66(3), 205–225 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Clarke, D., Proença, J., Lazovik, A., Arbab, F.: Deconstructing Reo. Electron. Notes Theor. Comput. Sci. 229(2), 43–58 (2009)CrossRefzbMATHGoogle Scholar
  14. 14.
    Clarke, D., Proença, J., Lazovik, A., Arbab, F.: Channel-based coordination via constraint satisfaction. Sci. Comput. Program. 76(8), 681–710 (2011)CrossRefzbMATHGoogle Scholar
  15. 15.
    Darquennes, D.: On multiplicities in coordination languages. Ph.D. thesis, Faculty of Computer Science, University of Namur, Namur, Belgium (2017)Google Scholar
  16. 16.
    Jacquet, J.-M., Linden, I., Darquennes, D.: On density in coordination languages. In: Canal, C., Villari, M. (eds.) ESOCC 2013. CCIS, vol. 393, pp. 189–203. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-45364-9_16CrossRefGoogle Scholar
  17. 17.
    Jacquet, J.-M., Linden, I., Darquennes, D.: On the introduction of density in tuple-space coordination languages. Sci. Comput. Program. 115–116, 149–176 (2016)CrossRefGoogle Scholar
  18. 18.
    Darquennes, D., Jacquet, J.-M., Linden, I.: On distributed density in tuple-based coordination languages. In: Cámara, J., Proença, J. (eds.) Proceedings 13th International Workshop on Foundations of Coordination Languages and Self-Adaptive Systems, Rome, Italy. EPTCS, vol. 175, pp. 36–53 (2015)Google Scholar
  19. 19.
    de Boer, F., Palamidessi, C.: Embedding as a tool for language comparison. Inf. Comput. 108(1), 128–157 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    de Boer, F.S., Palamidessi, C.: A fully abstract model for concurrent constraint programming. In: Abramsky, S., Maibaum, T.S.E. (eds.) CAAP 1991. LNCS, vol. 493, pp. 296–319. Springer, Heidelberg (1991).  https://doi.org/10.1007/3-540-53982-4_17Google Scholar
  21. 21.
    Fokkink, W.: Introduction to Process Algebra. Texts in Theoretical Computer Science. An EATCS Series. Springer, Heidelberg (2000).  https://doi.org/10.1007/978-3-662-04293-9CrossRefzbMATHGoogle Scholar
  22. 22.
    Gelernter, D.: Generative communication in Linda. ACM Trans. Program. Lang. Syst. 7(1), 80–112 (1985)CrossRefzbMATHGoogle Scholar
  23. 23.
    Gelernter, D., Carriero, N.: Coordination languages and their significance. Commun. ACM 35(2), 97–107 (1992)CrossRefGoogle Scholar
  24. 24.
    Jacquet, J.-M., De Bosschere, K., Brogi, A.: On timed coordination languages. In: Porto, A., Roman, G.-C. (eds.) COORDINATION 2000. LNCS, vol. 1906, pp. 81–98. Springer, Heidelberg (2000).  https://doi.org/10.1007/3-540-45263-X_6CrossRefGoogle Scholar
  25. 25.
    Jacquet, J.-M., Linden, I.: Coordinating context-aware applications in mobile ad-hoc networks. In: Braun, T., Konstantas, D., Mascolo, S., Wulff, M. (eds.) Proceedings of the First ERCIM Workshop on eMobility, pp. 107–118. The University of Bern (2007)Google Scholar
  26. 26.
    Jacquet, J.-M., Linden, I.: Fully abstract models and refinements as tools to compare agents in timed coordination languages. Theoret. Comput. Sci. 410(2–3), 221–253 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Jongmans, S.T.Q., Arbab, F.: Correlating formal semantic models of reo connectors: connector coloring and constraint automata. In: Silva, A., Bliudze, S., Bruni, R., Carbone, M. (eds.) Proceedings Fourth Interaction and Concurrency Experience, ICE 2011, Reykjavik, Iceland, 9 June 2011. EPTCS, vol. 59, pp. 84–103 (2011)Google Scholar
  28. 28.
    Jongmans, S.-S.T.Q., Krause, C., Arbab, F.: Encoding context-sensitivity in Reo into non-context-sensitive semantic models. In: De Meuter, W., Roman, G.-C. (eds.) COORDINATION 2011. LNCS, vol. 6721, pp. 31–48. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-21464-6_3CrossRefGoogle Scholar
  29. 29.
    Kemper, S.: SAT-based verification for timed component connectors. Electron. Notes Theor. Comput. Sci. 255, 103–118 (2009)CrossRefzbMATHGoogle Scholar
  30. 30.
    Kokash, N., Krause, C., de Vink, E.P.: Data-aware design and verification of service compositions with Reo and mCRL2. In: Shin, S.Y., Ossowski, S., Schumacher, M., Palakal, M.J., Hung, C. (eds.) Proceedings of the 2010 ACM Symposium on Applied Computing (SAC), Sierre, Switzerland, 22–26 March 2010, pp. 2406–2413. ACM (2010)Google Scholar
  31. 31.
    Kokash, N., Krause, C., de Vink, E.P.: Verification of context-dependent channel-based service models. In: de Boer, F.S., Bonsangue, M.M., Hallerstede, S., Leuschel, M. (eds.) FMCO 2009. LNCS, vol. 6286, pp. 21–40. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-17071-3_2CrossRefGoogle Scholar
  32. 32.
    Linden, I., Jacquet, J.-M.: On the expressiveness of absolute-time coordination languages. In: De Nicola, R., Ferrari, G.-L., Meredith, G. (eds.) COORDINATION 2004. LNCS, vol. 2949, pp. 232–247. Springer, Heidelberg (2004).  https://doi.org/10.1007/978-3-540-24634-3_18CrossRefGoogle Scholar
  33. 33.
    Linden, I., Jacquet, J.-M.: On the expressiveness of timed coordination via shared dataspaces. Electron. Notes Theor. Comput. Sci. 180(2), 71–89 (2007)CrossRefGoogle Scholar
  34. 34.
    Linden, I., Jacquet, J.-M., Bosschere, K.D., Brogi, A.: On the expressiveness of relative-timed coordination models. Electron. Notes Theor. Comput. Sci. 97, 125–153 (2004)CrossRefzbMATHGoogle Scholar
  35. 35.
    Papadopoulos, G., Arbab, F.: Coordination models and languages. Technical report SEN-R9834. Centrum voor Wiskunde en Informatica (CWI) (1998). ISSN 1386–369XGoogle Scholar
  36. 36.
    Plotkin, G.: A structured approach to operational semantics. Computer Science Department, Aarhus University, DAIMI FN-19 (1981)Google Scholar
  37. 37.
    Proença, J.: Coordination of distributed components. Ph.D. thesis, Leiden University, Leiden, Netherland (2011)Google Scholar
  38. 38.
    Proença, J.: Synchronous coordination of distributed components. Ph.D. thesis, Leiden University, May 2011Google Scholar
  39. 39.
    Proenca, J., Clarke, D., de Vink, E., Arbab, F.: Decoupled execution of synchronous coordination models via behavioural automata. In: Mousavi, M., Ravara, A. (eds.) Proceedings 10th International Workshop on the Foundations of Coordination Languages and Software Architectures. EPTCS, vol. 58, pp. 65–79 (2011)Google Scholar
  40. 40.
    Proença, J., Clarke, D., de Vink, E., Arbab, F.: Dreams: a framework for distributed synchronous coordination. In: Ossowski, S., Lecca, P. (eds.) Proceedings of the ACM Symposium on Applied Computing, pp. 1510–1515. ACM (2012)Google Scholar
  41. 41.
    Soede, D., Arbab, F., Herman, I., ten Hagen, P.J.W.: The GKS input model in MANIFOLD. Comput. Graph. Forum 10(3), 209–224 (1991)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Jean-Marie Jacquet
    • 1
    Email author
  • Isabelle Linden
    • 2
  • Denis Darquennes
    • 1
  1. 1.Faculty of Computer ScienceUniversity of NamurNamurBelgium
  2. 2.Business Administration DepartmentUniversity of NamurNamurBelgium

Personalised recommendations