Advertisement

A Note on Reactive Transitions and Reo Connectors

  • Daniel Figueiredo
  • Manuel A. Martins
  • Luís S. BarbosaEmail author
Chapter
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10865)

Abstract

The structure of a reactive transition system can to be modified on the fly by e.g. removing, reversing or adding new transitions. The topic has been studied by D. Gabbay and his collaborators in different contexts. In this paper we take their work a step further, introducing a suitable notion of bisimulation and obtaining a Hennessy-Milner theorem with respect to a hybrid logic in which transition properties can be expressed. Our motivation is to provide a characterisation of equivalence for such systems in order to exploit their possible roles in the formal description of software connectors in Reo, either from a behavioural (semantic) or spatial (syntactic) point of view.

Notes

Acknowledgments

This work is a result of project “SmartEGOV/NORTE-01-0145-FEDER-000037”, supported by Norte Portugal Regional Operational Programme (NORTE 2020), under the PORTUGAL 2020 Partnership Agreement, through the European Regional Development Fund (EFDR). Additional support was provided by the European Regional Development Fund through the Operational Programme for Competitiveness and Internationalisation - COMPETE 2020 and by National Funds through the Portuguese funding agency, FCT - Fundação para a Ciência e a Tecnologia within project UID/MAT/04106/2013 at CIDMA. The first author is also supported by an Individual Doctoral Grant (reference number PD/BD/114186/2016).

References

  1. 1.
    Arbab, F.: Reo: a channel-based coordination model for component composition. Math. Struct. Comput. Sci. 14(3), 329–366 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Arbab, F.: Abstract behavior types: a foundation model for components and their composition. Sci. Comput. Program. 55(1–3), 3–52 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Areces, C., Fervari, R., Hoffmann, G.: Swap logic. Logic J. IGPL 22(2), 309–332 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Areces, C., Fervari, R., Hoffmann, G.: Relation-changing modal operators. Logic J. IGPL 23(4), 601–627 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Baier, C., Sirjani, M., Arbab, F., Rutten, J.J.M.M.: Modeling component connectors in Reo by constraint automata. Sci. Comput. Program. 61(2), 75–113 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Barbosa, M.A., Barbosa, L.S.: A perspective on service orchestration. Sci. Comput. Program. 74(9), 671–687 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Blackburn, P.: Representation, reasoning, and relational structures: a hybrid logic manifesto. Logic J. IGPL 8(3), 339–365 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Bonsangue, M., Clarke, D., Silva, A.: Automata for context-dependent connectors. In: Field, J., Vasconcelos, V.T. (eds.) COORDINATION 2009. LNCS, vol. 5521, pp. 184–203. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-02053-7_10CrossRefGoogle Scholar
  9. 9.
    Brauner, T.: Hybrid Logic and its Proof-Theory. Applied Logic Series. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-94-007-0002-4zbMATHGoogle Scholar
  10. 10.
    Figueiredo, D.: Relating bisimulations with attractors in Boolean network models. In: Botón-Fernández, M., Martín-Vide, C., Santander-Jiménez, S., Vega-Rodríguez, M. (eds.) AlCoB 2016. LNCS, vol. 9702, pp. 17–25. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-319-38827-4_2
  11. 11.
    Figueiredo, D., Martins, M.A., Chaves, M.: Applying differential dynamic logic to reconfigurable biological networks. Math. Biosci. 291, 10–20 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Gabbay, D., Marcelino, S.: Modal logics of reactive frames. Stud. Logica 93(2), 405–446 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Gabbay, D., Marcelino, S.: Global view on reactivity: switch graphs and their logics. Ann. Math. Artif. Intell. 66(1–4), 1–32 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Jongmans, S.-S.T.Q., Arbab, F.: Overview of thirty semantic formalisms for Reo. Sci. Ann. Comp. Sci. 22(1), 201–251 (2012)Google Scholar
  15. 15.
    Kokash, N., Krause, C., de Vink, E.P.: Reo + mCRL2: a framework for model-checking dataflow in service compositions. Formal Asp. Comput. 24(2), 187–216 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Krause, C., Maraikar, Z., Lazovik, A., Arbab, F.: Modeling dynamic reconfigurations in Reo using high-level replacement systems. Sci. Comput. Program. 76(1), 23–36 (2011)CrossRefzbMATHGoogle Scholar
  17. 17.
    Oliveira, N., Barbosa, L.S.: Reasoning about software reconfigurations: the behavioural and structural perspectives. Sci. Comput. Program. 110, 78–103 (2015)CrossRefGoogle Scholar
  18. 18.
    van Benthem, J.: An essay on sabotage and obstruction. In: Hutter, D., Stephan, W. (eds.) Mechanizing Mathematical Reasoning. LNCS (LNAI), vol. 2605, pp. 268–276. Springer, Heidelberg (2005).  https://doi.org/10.1007/978-3-540-32254-2_16CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.CIDMA—Universidade de AveiroAveiroPortugal
  2. 2.HASLab—INESC TEC and QUANTALabUniversidade do MinhoBragaPortugal
  3. 3.UNU-EGOV, United Nations UniversityGuimarãesPortugal

Personalised recommendations