From Soft Agents to Soft Component Automata and Back

  • Carolyn TalcottEmail author
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10865)


Rewriting Logic and Automata are complimentary approaches for developing executable models of concurrent/distributed systems that can be analyzed by prototyping, and multiple methods of model-checking. A joint project between my group at SRI and Farhad’s group at CWI is developing formal methods to diagnose the cause of undesired behavior of autonomous (cyber physical) systems operating in unpredictable environments. CWI is working on theory development based on automata, exploring composition mechanisms in multiple dimensions, and developing logic that supports reasoning about compositionality. The SRI work is based on rewriting logic and is focused on methods for system specification and model-checking in the context of faults and environmental threats. The two approaches share a common feature, namely the assignment of preferences to possible actions to model locally robust adaptive behavior. Preferences are elements of constraint semirings (soft constraints), structures that provide operations for comparison and composition.

In this paper we explore the similarities, differences and synergies highlighting the insights that arise by pursuing complimentary approaches.


  1. 1.
    Arbab, F., Mavaddat, F.: Coordination through channel composition. In: Arbab, F., Talcott, C. (eds.) COORDINATION 2002. LNCS, vol. 2315, pp. 22–39. Springer, Heidelberg (2002). Scholar
  2. 2.
    Arbab, F., Santini, F.: Preference and similarity-based behavioral discovery of services. In: ter Beek, M.H., Lohmann, N. (eds.) WS-FM 2012. LNCS, vol. 7843, pp. 118–133. Springer, Heidelberg (2013). Scholar
  3. 3.
    Bae, K., Meseguer, J.: The linear temporal logic of rewriting Maude model checker. In: Ölveczky, P.C. (ed.) WRLA 2010. LNCS, vol. 6381, pp. 208–225. Springer, Heidelberg (2010). Scholar
  4. 4.
    Bistarelli, S.: Semirings for Soft Constraint Solving and Programming. LNCS, vol. 2962. Springer, Heidelberg (2004). Scholar
  5. 5.
    Bistarelli, S., Martinelli, F., Matteucci, I., Santini, F.: A formal and run-time framework for the adaptation of local behaviours to match a global property. In: Kouchnarenko, O., Khosravi, R. (eds.) FACS 2016. LNCS, vol. 10231, pp. 134–152. Springer, Cham (2017). Scholar
  6. 6.
    Bistarelli, S., Montanari, U., Rossi, F.: Constraint solving over semirings. In: Proceedings of International Joint Conference on Artificial Intelligence (IJCAI), pp. 624–630 (1995)Google Scholar
  7. 7.
    Bistarelli, S., Montanari, U., Rossi, F.: Semiring-based constraint satisfaction and optimization. J. ACM 44(2), 201–236 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Why BNSF railway is using drones to inspect thousands of miles of rail lines. Accessed 11 Mar 2016
  9. 9.
    Choi, J.S., McCarthy, T., Yadav, M., Kim, M., Talcott, C., Gressier-Soudan, E.: Application patterns for cyber-physical systems. In: IEEE 1st International Conference on Cyber-Physical Systems, Networks, and Applications, pp. 52–59 (2013)Google Scholar
  10. 10.
    Choi, J.-S., McCarthy, T., Kim, M., Stehr, M.-O.: Adaptive wireless networks as an example of declarative fractionated systems. In: Stojmenovic, I., Cheng, Z., Guo, S. (eds.) MindCare 2014. LNICST, vol. 131, pp. 549–563. Springer, Cham (2014). Scholar
  11. 11.
    Clavel, M., Durán, F., Eker, S., Lincoln, P., Martí-Oliet, N., Meseguer, J., Talcott, C.: All About Maude: A High-Performance Logical Framework. LNCS, vol. 4350. Springer, Heidelberg (2007). Scholar
  12. 12.
    Das, J., Cross, G., Qu, C., Makineni, A., Tokekar, P., Mulgaonkar, Y., Kumar, V.: Devices, systems, and methods for automated monitoring enabling precision agriculture. In: IEEE International Conference on Automation Science and Engineering (2015)Google Scholar
  13. 13.
    Debouk, R., Lafortune, S., Teneketzis, D.: Coordinated decentralized protocols for failure diagnosis of discrete event systems. Discret. Event Dyn. Syst. 10(1–2), 33–86 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
  15. 15.
    Gadducci, F., Hölzl, M., Monreale, G.V., Wirsing, M.: Soft constraints for lexicographic orders. In: Castro, F., Gelbukh, A., González, M. (eds.) MICAI 2013. LNCS (LNAI), vol. 8265, pp. 68–79. Springer, Heidelberg (2013). Scholar
  16. 16.
    Goessler, G., Astefanoaei, L.: Blaming in component-based real-time systems. In: International Conference on Embedded Software, EMSOFT 2014, pp. 7:1–7:10 (2014)Google Scholar
  17. 17.
    Gössler, G., Stefani, J.-B.: Fault ascription in concurrent systems. In: Ganty, P., Loreti, M. (eds.) TGC 2015. LNCS, vol. 9533, pp. 79–94. Springer, Cham (2016). Scholar
  18. 18.
    Hölzl, M., Meier, M., Wirsing, M.: Which soft constraints do you prefer? In: Seventh International Workshop on Rewriting Logic and Its Applications (WRLA’2008). Electronic Notes in Theoretical Computer Science. Elsevier (2008)Google Scholar
  19. 19.
    Hölzl, M., Wirsing, M.: Towards a system model for ensembles. In: Agha, G., Danvy, O., Meseguer, J. (eds.) Formal Modeling: Actors, Open Systems, Biological Systems. LNCS, vol. 7000, pp. 241–261. Springer, Heidelberg (2011). Scholar
  20. 20.
    Hölzl, M.M., Meier, M., Wirsing, M.: Which soft constraints do you prefer? Electr. Notes Theoret. Comput. Sci. 238(3), 189–205 (2009)CrossRefzbMATHGoogle Scholar
  21. 21.
    Jongmans, S.T., Kappé, T., Arbab, F.: Constraint automata with memory cells and their composition. Sci. Comput. Program. 146, 50–86 (2017)CrossRefGoogle Scholar
  22. 22.
    Kappé, T., Arbab, F., Talcott, C.L.: A compositional framework for preference-aware agents. In: Proceedings of Workshop on Verification and Validation of Cyber-Physical Systems (V2CPS), pp. 21–35 (2016)Google Scholar
  23. 23.
    Kappé, T., Arbab, F., Talcott, C.: A component-oriented framework for autonomous agents. In: Proença, J., Lumpe, M. (eds.) FACS 2017. LNCS, vol. 10487, pp. 20–38. Springer, Cham (2017). Scholar
  24. 24.
    Kernbach, S., Schmickl, T., Timmis, J.: Collective adaptive systems: challenges beyond evolvability. In: Fundamentals of Collective Adaptive Systems. European Commission (2009)Google Scholar
  25. 25.
    Kim, M., Stehr, M.-O., Talcott, C.: A distributed logic for networked cyber-physical systems. In: Arbab, F., Sirjani, M. (eds.) FSEN 2011. LNCS, vol. 7141, pp. 190–205. Springer, Heidelberg (2012). Scholar
  26. 26.
    Kim, M., Stehr, M.O., Talcott, C.L.: A distributed logic for networked cyber-physical systems. Sci. Comput. Program. 78(12), 2453–2467 (2013)CrossRefzbMATHGoogle Scholar
  27. 27.
    Vijay Kumar Lab. Accessed 11 Mar 2016
  28. 28.
    Robots that Fly and Cooperate (2015). TED talk: Accessed 07 Mar 2016
  29. 29.
    Liquid Robotics. Accessed 11 Mar 2016
  30. 30.
    Loreti, M., Hillston, J.: Modelling and analysis of collective adaptive systems with CARMA and its tools. In: Bernardo, M., De Nicola, R., Hillston, J. (eds.) SFM 2016. LNCS, vol. 9700, pp. 83–119. Springer, Cham (2016). Scholar
  31. 31.
    Mason, I.A., Talcott, C.L.: IOP: the InterOperability platform & IMaude: an interactive extension of Maude. In: Fifth International Workshop on Rewriting Logic and Its Applications (WRLA’2004). Electronic Notes in Theoretical Computer Science. Elsevier (2004)Google Scholar
  32. 32.
    The Maude System. Accessed 15 Nov 2014
  33. 33.
    Meseguer, J.: Conditional rewriting logic as a unified model of concurrency. Theoret. Comput. Sci. 96(1), 73–155 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Neidig, J., Lunze, J.: Decentralised diagnosis of automata networks. In: IFAC Proceedings, vol. 38, no. 1, pp. 400–405 (2005)Google Scholar
  35. 35.
    Ölveczky, P.C., Meseguer, J.: Semantics and pragmatics of real-time Maude. High.-Order Symb. Comput. 20(1–2), 161–196 (2007)CrossRefzbMATHGoogle Scholar
  36. 36.
    Invetory Robotics. Accessed 11 Apr 2017
  37. 37.
    Sampath, M., Sengupta, R., Lafortune, S., Sinnamohideen, K., Teneketzis, D.: Failure diagnosis using discrete-event models. IEEE Trans. Control Syst. Technol. 4(2), 105–124 (1996)CrossRefzbMATHGoogle Scholar
  38. 38.
    Stehr, M.-O., Kim, M., Talcott, C.: Partially ordered knowledge sharing and fractionated systems in the context of other models for distributed computing. In: Iida, S., Meseguer, J., Ogata, K. (eds.) Specification, Algebra, and Software. LNCS, vol. 8373, pp. 402–433. Springer, Heidelberg (2014). Scholar
  39. 39.
    Stehr, M.-O., Talcott, C., Rushby, J., Lincoln, P., Kim, M., Cheung, S., Poggio, A.: Fractionated software for networked cyber-physical systems: research directions and long-term vision. In: Agha, G., Danvy, O., Meseguer, J. (eds.) Formal Modeling: Actors, Open Systems, Biological Systems. LNCS, vol. 7000, pp. 110–143. Springer, Heidelberg (2011). Scholar
  40. 40.
    Talcott, C., Arbab, F., Yadav, M.: Soft agents: exploring soft constraints to model robust adaptive distributed cyber-physical agent systems. In: De Nicola, R., Hennicker, R. (eds.) Software, Services, and Systems. LNCS, vol. 8950, pp. 273–290. Springer, Cham (2015). Scholar
  41. 41.
    Talcott, C., Nigam, V., Arbab, F., Kappé, T.: Formal specification and analysis of robust adaptive distributed cyber-physical systems. In: Bernardo, M., De Nicola, R., Hillston, J. (eds.) SFM 2016. LNCS, vol. 9700, pp. 1–35. Springer, Cham (2016). Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.SRI InternationalMenlo ParkUSA

Personalised recommendations