Advertisement

Greenhouse Gas Emissions from Selected Cropping Patterns in Bangladesh

  • M. M. Haque
  • J. C. Biswas
  • M. Maniruzzaman
  • A. K. Choudhury
  • U. A. Naher
  • B. Hossain
  • S. Akhter
  • F. Ahmed
  • N. Kalra
Chapter

Abstract

There are many cropping systems followed in Bangladesh for enhancing cropping intensity and increasing crop production, but greenhouse gas (GHG) emission from agricultural fields are mostly reported on country basis. In order to estimate of GHG emission from agriculture fields, Cool Farm Tool Beta-3 was used to determine total GHG from selected cropping systems. It was found that non-rice based cropping system had lower global warming potential (GWP) than rice based cropping systems. Among the rice based cropping systems, Onion-Jute-Fallow, Jute-Rice-Fallow, Wheat-Mungbean-Rice and Maize-Fallow-Rice systems are relatively more suitable for reducing GHG emission and subsequent GWP. There are spatial variations in CH4 emissions and the higher amounts were found in Mymensingh and Dinajpur districts in Bangladesh. In 2013–14, about 1.56 Tg year−1 CH4 emissions took place from paddy field in Bangladesh. Further study is required for validation and suggesting suitable mitigation strategies to check the GHG emission in Bangladesh.

Notes

Acknowledgement

We greatly acknowledge the financial support of Krishi Gobeshona Foundation (KGF) through CRP-II project.

References

  1. Alberto, M. C. R., Wassmann, R., Buresh, R. J., Quality, J. R., Correa, T. Q., Jr., Sandor, J. M., & Centeno, C. A. R. (2014). Measuring methane flux from irrigated rice fields by Eddy covariance method using open-path gas analyzer. Field Crops Research, 160, 12–21.CrossRefGoogle Scholar
  2. Biswas, J. C., Islam, M. R., Biswas, S. R., & Islam, M. J. (2004). Crop productivity at farmers fields: Options for soil test based fertilizer use and cropping patterns. Bangladesh Agronomy Journal, 10, 31–41.Google Scholar
  3. Fan, M. S., Shen, J. B., Yuan, L. X., et al. (2011). Improving crop productivity and resource use efficiency to ensure food security and environmental quality in China. Journal of Experimental Botany, 63, 13–24.CrossRefGoogle Scholar
  4. Gupta, P. K., Gupta, V., Sharma, C., Das, S. N., Purkait, N., Adhya, T. K., Pathak, H., Ramesh, R., Baruah, K. K., Venkataraman, L., Singh, G., & Iyer, C. S. P. (2009). Development of methane emission factors for Indian paddy fields and estimation of national methane budget. Chemophore, 74, 590–598.CrossRefGoogle Scholar
  5. Haque, M. M., Kim, S. Y., Pramanik, P., Kim, G. Y., & Kim, P. J. (2013). Optimum application level of winter cover crop biomass as green manure under considering methane emission and rice productivity in paddy soil. Biology and Fertility of Soils, 49, 487–493.CrossRefGoogle Scholar
  6. Haque, M. M., Kim, S. Y., Ali, M. A., & Kim, P. J. (2015a). Contribution of greenhouse gas emissions during cropping and fallow seasons on total global warming potential in mono-rice paddy soils. Plant and Soil, 387, 251–264.CrossRefGoogle Scholar
  7. Haque, M. M., Kim, S. Y., Kim, G. W., & Kim, P. J. (2015b). Optimization of removal and recycling ratio of cover crop biomass using carbon balance to sustain soil organic carbon stocks in a mono-rice paddy system. Agriculture, Ecosystems and Environment, 207, 119–125.CrossRefGoogle Scholar
  8. Haque, M. M., Biswas, J. C., Kim, S. Y., & Kim, P. J. (2016a). Intermittent drainage in paddy soil: Ecosystem carbon budget and global warming potential. Paddy and Water Environment.  https://doi.org/10.1007/s10333-016-0558-7.
  9. Haque, M. M., Biswas, J. C., Waghmode, T. R., & Kim, P. J. (2016b). Global warming as affected by incorporation of variably aged biomass of hairy vetch for rice cultivation. Soil Research.  https://doi.org/10.1071/SR15061.
  10. Haque, M. M., Biswas, J. C., Kim, S. Y., & Kim, P. J. (2016c). Suppressing methane emission and global warming potential from rice fields through intermittent drainage and green biomass amendment. Soil Use and Management.  https://doi.org/10.1111/sum.12229.
  11. Hillier, J., Walter, C., Malin, D., Garcia-Suarez, T., Mila-i-Canals, L., & Smith, P. (2011). A farm-focused calculator for emissions from crop and livestock production. Environmental Modelling & Software, 26, 1070–1078.CrossRefGoogle Scholar
  12. Hossain Sk, G., Chowdhury, M. K. A., & Chowdhury, M. A. H. (2012). Land suitability assessment and crop zoning of Bangladesh (pp. 1215–1110). Dhaka: Bangladesh Agricultural Research Council.Google Scholar
  13. IPCC. (2014). Climate change 2014: Mitigation of climate change. In O. Edenhofer, R. Pichs-Madruga, Y. Sokona, E. Farahani, S. Kadner, K. Seyboth, A. Adler, I. Baum, S. Brunner, P. Eickemeier, B. Kriemann, J. Savolainen, S. Schomer, C. von Stechow, T. Zwickel, & J. C. Minx (Eds.), Contribution of working group III to the fifth assessment report of the intergovernmental panel on climate change. Cambridge and New York: Cambridge University Press.Google Scholar
  14. Iserman, K. (1994). Agriculture’s share in the emission of trace gases affecting the climate and some cause-oriented proposals for sufficiently reducing this share. Environmental Pollution, 83, 95–111.CrossRefGoogle Scholar
  15. Lee, Y. H. (2010). Evaluation of no-tillage rice cover crop cropping system for organic farming. Korean Journal of Soil Science and Fertilizer, 43, 200–208.Google Scholar
  16. SAS Institute. (1995). System for windows release (Vol. 6, p. 11). Cary: SAS Institute.Google Scholar
  17. Solomon, S., Qin, D., Manning, M., Chen, Z., & Marquis, M. (2007). Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge: Cambridge University Press.Google Scholar
  18. Xu, X., Zhang, B., Liu, Y., Yanni, Y., & BDi, X. (2013). Carbon footprints of rice production in five typical rice districts in China. Acta Ecologica Sinica, 33, 227–232.CrossRefGoogle Scholar
  19. Zhang F S, Cui Z L, Chen X P et al (2012). Integrated nutrient management for food security and environmental quality in China. In: Sparks, D L (ed) Advances in Agronomy 116, 1–40.Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • M. M. Haque
    • 1
  • J. C. Biswas
    • 1
  • M. Maniruzzaman
    • 1
  • A. K. Choudhury
    • 1
  • U. A. Naher
    • 1
  • B. Hossain
    • 1
  • S. Akhter
    • 1
  • F. Ahmed
    • 1
  • N. Kalra
    • 2
  1. 1.Bangladesh Rice Research InstituteGazipurBangladesh
  2. 2.Division of Agricultural PhysicsIARINew DelhiIndia

Personalised recommendations