Advertisement

The Power of Tarski’s Relation Algebra on Trees

  • Jelle Hellings
  • Yuqing Wu
  • Marc Gyssens
  • Dirk Van Gucht
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10833)

Abstract

Fragments of Tarski’s relation algebra form the basis of many versatile graph and tree query languages including the regular path queries, XPath, and SPARQL. Surprisingly, however, a systematic study of the relative expressive power of relation algebra fragments on trees has not yet been undertaken. Our approach is to start from a basic fragment which only allows composition and union. We then study how the expressive power of the query language changes if we add diversity, converse, projections, coprojections, intersections, and/or difference, both for path queries and Boolean queries. For path queries, we found that adding intersection and difference yields more expressive power for some fragments, while adding one of the other operators always yields more expressive power. For Boolean queries, we obtain a similar picture for the relative expressive power, except for a few fragments where adding converse or projection yields no more expressive power. One challenging problem remains open, however, for both path and Boolean queries: does adding difference yields more expressive power to fragments containing at least diversity, coprojections, and intersection?

References

  1. 1.
    Barceló, P.: Querying graph databases. In: Proceedings 32nd Symposium on Principles of Database Systems, pp. 175–188. ACM (2013)Google Scholar
  2. 2.
    Barceló, P., Pérez, J., Reutter, J.L.: Relative expressiveness of nested regular expressions. In: Proceedings of 6th Alberto Mendelzon International Workshop on Foundations of Data Management, pp. 180–195. CEUR Workshop Proceedings (2012)Google Scholar
  3. 3.
    Benedikt, M., Fan, W., Kuper, G.: Structural properties of XPath fragments. Theor. Comput. Sci. 336(1), 3–31 (2005)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Benedikt, M., Koch, C.: XPath leashed. ACM Comput. Surv. 41(1), 3:1–3:54 (2009)Google Scholar
  5. 5.
    Bray, T., Paoli, J., Sperberg-McQueen, C.M., Maler, E., Yergeau, F., Cowan, J.: Extensible Markup Language (XML) 1.1 (Second Edition). W3C Recommendation, W3C (2006). http://www.w3.org/TR/2006/REC-xml11-20060816
  6. 6.
    ten Cate, B.: The expressivity of XPath with transitive closure. In: Proceedings of 25th Symposium on Principles of Database Systems, pp. 328–337. ACM (2006)Google Scholar
  7. 7.
    Clark, J., DeRose, S.: XML Path Language (XPath) Version 1.0. W3C Recommendation, W3C (1999). http://www.w3.org/TR/1999/REC-xpath-19991116
  8. 8.
    Cruz, I.F., Mendelzon, A.O., Wood, P.T.: A graphical query language supporting recursion. In: Proceedings of 1987 ACM SIGMOD International Conference on Management of Data, pp. 323–330. ACM, New York (1987)Google Scholar
  9. 9.
    Ecma International: The JSON data interchange format, 1st Edition (2013). http://www.ecma-international.org/publications/standards/Ecma-404.htm
  10. 10.
    Fletcher, G.H.L., Gyssens, M., Leinders, D., Van den Bussche, J., Van Gucht, D., Vansummeren, S., Wu, Y.: Relative expressive power of navigational querying on graphs. In: Proceedings of 14th International Conference on Database Theory, pp. 197–207. ACM (2011)Google Scholar
  11. 11.
    Fletcher, G.H.L., Gyssens, M., Leinders, D., Surinx, D., Van den Bussche, J., Van Gucht, D., Vansummeren, S., Wu, Y.: Relative expressive power of navigational querying on graphs. Inform. Sci. 298, 390–406 (2015)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Givant, S.: The calculus of relations as a foundation for mathematics. J. Autom. Reason. 37(4), 277–322 (2006)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Grädel, E., Otto, M.: On logics with two variables. Theor. Comput. Sci. 224(1–2), 73–113 (1999)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Grohe, M.: Finite variable logics in descriptive complexity theory. Bull. Symb. Logic 4, 345–398 (1998)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Hellings, J.: On Tarski’s Relation Algebra: querying trees and chains and the semi-join algebra. Ph.D. thesis, Hasselt University and Transnational University of Limburg (2018)Google Scholar
  16. 16.
    Hellings, J., Gyssens, M., Wu, Y., Van Gucht, D., Van den Bussche, J., Vansummeren, S., Fletcher, G.H.L.: Relative expressive power of downward fragments of navigational query languages on trees and chains. In: Proceedings of 15th Symposium on Database Programming Languages, pp. 59–68 (2015)Google Scholar
  17. 17.
    Hellings, J., Gyssens, M., Wu, Y., Van Gucht, D., Van den Bussche, J., Vansummeren, S., Fletcher, G.H.L.: Comparing downward fragments of the relational calculus with transitive closure on trees. Technical report. Hasselt University (2018). https://arxiv.org/abs/1803.01390
  18. 18.
    Hellings, J., Pilachowski, C.L., Van Gucht, D., Gyssens, M., Wu, Y.: From relation algebra to semi-join algebra: an approach for graph query optimization. In: Proceedings of 16th International Symposium on Database Programming Languages, pp. 5:1–5:10 (2017)Google Scholar
  19. 19.
    Hidders, J., Paredaens, J., Van den Bussche, J.: J-logic: logical foundations for JSON querying. In: Proceedings of 36th Symposium on Principles of Database Systems, pp. 137–149 (2017)Google Scholar
  20. 20.
    Kaushik, R., Bohannon, P., Naughton, J.F., Korth, H.F.: Covering indexes for branching path queries. In: Proceedings of 2002 ACM SIGMOD International Conference on Management of Data, pp. 133–144. ACM (2002)Google Scholar
  21. 21.
    Libkin, L.: Elements of Finite Model Theory. Springer, Heidelberg (2004).  https://doi.org/10.1007/978-3-662-07003-1CrossRefzbMATHGoogle Scholar
  22. 22.
    Marx, M.: Conditional XPath. ACM Trans. Database Syst. 30(4), 929–959 (2005)CrossRefGoogle Scholar
  23. 23.
    Marx, M., de Rijke, M.: Semantic characterizations of navigational XPath. SIGMOD Rec. 34(2), 41–46 (2005)CrossRefGoogle Scholar
  24. 24.
    Tarski, A.: On the calculus of relations. J. Symb. Log. 6(3), 73–89 (1941)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Tsichritzis, D.C., Lochovsky, F.H.: Hierarchical data-base management: a survey. ACM Comput. Surv. 8(1), 105–123 (1976)CrossRefGoogle Scholar
  26. 26.
    Wu, Y., Van Gucht, D., Gyssens, M., Paredaens, J.: A study of a positive fragment of path queries: expressiveness, normal form and minimization. Comput. J. 54(7), 1091–1118 (2011)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Jelle Hellings
    • 1
  • Yuqing Wu
    • 2
  • Marc Gyssens
    • 1
  • Dirk Van Gucht
    • 3
  1. 1.Hasselt UniversityHasseltBelgium
  2. 2.Pomona CollegeClaremontUSA
  3. 3.Indiana UniversityBloomingtonUSA

Personalised recommendations