Advertisement

A Decidable Multi-agent Logic with Iterations of Upper and Lower Probability Operators

  • Dragan Doder
  • Nenad Savić
  • Zoran Ognjanović
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10833)

Abstract

We present a propositional logic for reasoning about higher-order upper and lower probabilities. The main technical result is the proof of decidability of the introduced logical system. We also show that the axiomatization for the corresponding logic without iterations of operators, which we developed in our previous work, is also complete for the new class of models presented in this paper.

Keywords

Probabilistic logic Upper and lower probabilities Decidability Completeness theorem 

Notes

Acknowledgments

This work was supported by the SNSF project 200021\(\_\)165549 Justifications and non-classical reasoning, by the Serbian Ministry of Education and Science through projects ON174026, III44006 and ON174008, and by ANR-11-LABX-0040-CIMI.

References

  1. 1.
    Abadi, M., Halpern, J.Y.: Decidability and expressiveness for first-order logics of probability. Inf. Comput. 112, 1–36 (1994)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Anger, B., Lembcke, J.: Infinitely subadditive capacities as upper envelopes of measures. Zeitschrift fur Wahrscheinlichkeitstheorie und Verwandte Gebiete 68, 403–414 (1985)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Cintula, P., Noguera, C.: Modal logics of uncertainty with two-layer syntax: a general completeness theorem. In: Kohlenbach, U., Barceló, P., de Queiroz, R. (eds.) WoLLIC 2014. LNCS, vol. 8652, pp. 124–136. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-662-44145-9_9CrossRefGoogle Scholar
  4. 4.
    de Cooman, G., Hermans, F.: Imprecise probability trees: bridging two theories of imprecise probability. Artif. Intell. 172(11), 1400–1427 (2008)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Dubois, D., Prade, H.: Possibility Theory. Plenum Press, New York (1988)CrossRefGoogle Scholar
  6. 6.
    Fagin, R., Halpern, J., Megiddo, N.: A logic for reasoning about probabilities. Inf. Comput. 87(1–2), 78–128 (1990)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Fagin, R., Halpern, J.: Reasoning about knowledge and probability. J. ACM 41(2), 340–367 (1994)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Fattorosi-Barnaba, M., Amati, G.: Modal operators with probabilistic interpretations I. Stud. Log. 46(4), 383–393 (1989)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Frish, A., Haddawy, P.: Anytime deduction for probabilistic logic. Artif. Intell. 69, 93–122 (1994)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Gaifman, H., Haddawy, P.: A theory of higher order probabilities. In: Skyrms, B., Harper, W.L. (eds.) Causation, Chance and Credence. Proceedings of the Irvine Conference on Probability and Causation, vol. 1, pp. 191–219. Springer, Dordrecht (1988)CrossRefGoogle Scholar
  11. 11.
    Halpern, J.Y.: An analysis of first-order logics of probability. Artif. Intell. 46, 311–350 (1990)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Halpern, J.Y., Pucella, R.: A logic for reasoning about evidence. J. Artif. Intell. Res. 1, 1–34 (2006)MathSciNetMATHGoogle Scholar
  13. 13.
    Halpern, J.Y., Pucella, R.: A logic for reasoning about upper probabilities. J. Artif. Intell. Res. 17, 57–81 (2002)MathSciNetMATHGoogle Scholar
  14. 14.
    Huber, P.J.: Robust Statistics. Wiley, New York (1981)CrossRefGoogle Scholar
  15. 15.
    Hughes, G.E., Cresswell, M.J.: A Companion to Modal Logic. Methuen, London (1984)MATHGoogle Scholar
  16. 16.
    Heifetz, A., Mongin, P.: Probability logic for type spaces. Games Econ. Behav. 35, 31–53 (2001)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Ikodinović, N., Ognjanović, Z., Rašković, M., Perović, A.: Hierarchies of probabilistic logics. Int. J. Approx. Reason. 55(9), 1830–1842 (2014)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Ikodinović, N., Rašković, M., Marković, Z., Ognjanović, Z.: A first-order probabilistic logic with approximate conditional probabilities. Log. J. IGPL 22(4), 539–564 (2014)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Ilić-Stepić, A., Ognjanović, Z.: Complex valued probability logics. Publications de l’Institut Mathematique, N.s. tome 95(109), 73–86 (2014)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Ilić-Stepić, A., Ognjanović, Z., Ikodinović, N.: Conditional p-adic probability logic. Int. J. Approx. Reason. 55(9), 1843–1865 (2014)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Kokkinis, I.: The complexity of satisfiability in non-iterated and iterated probabilistic logics. arXiv:1712.00810v1
  22. 22.
    Kyburg, H.E.: Probability and the Logic of Rational Belief. Wesleyan University Press, Middletown (1961)Google Scholar
  23. 23.
    Levi, I.: The Enterprise of Knowledge. MIT Press, London (1980)Google Scholar
  24. 24.
    Lorentz, G.G.: Multiply subadditive functions. Can. J. Math. 4(4), 455–462 (1952)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Meier, M.: An infinitary probability logic for type spaces. Isr. J. Math. 192(1), 1–58 (2012)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Miranda, E.: A survey of the theory of coherent lower previsions. Int. J. Approx. Reas. 48(2), 628–658 (2008)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Milošević, M., Ognjanović, Z.: A first-order conditional probability logic. Log. J. IGPL 20(1), 235–253 (2012)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Nilsson, N.: Probabilistic logic. Artif. Intell. 28, 71–87 (1986)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Ognjanović, Z., Rašković, M.: Some probability logics with new types of probability operators. J. Log. Comput. 9(2), 181–195 (1999)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Ognjanović, Z., Rašković, M.: Some first-order probability logics. Theoret. Comput. Sci. 247(1–2), 191–212 (2000)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Ognjanović, Z., Rasković, M., Marković, Z.: Probability Logics - Probability-Based Formalization of Uncertain Reasoning. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-319-47012-2CrossRefMATHGoogle Scholar
  32. 32.
    Rašković, M., Marković, Z., Ognjanović, Z.: A logic with approximate conditional probabilities that can model default reasoning. Int. J. Approx. Reason. 49(1), 52–66 (2008)MathSciNetCrossRefGoogle Scholar
  33. 33.
    Savić, N., Doder, D., Ognjanović, Z.: Logics with lower and upper probability operators. Int. J. Approx. Reason. 88, 148–168 (2017)MathSciNetCrossRefGoogle Scholar
  34. 34.
    Savić, N., Doder, D., Ognjanović, Z.: A first-order logic for reasoning about higher-order upper and lower probabilities. In: Antonucci, A., Cholvy, L., Papini, O. (eds.) ECSQARU 2017. LNCS (LNAI), vol. 10369, pp. 491–500. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-61581-3_44CrossRefMATHGoogle Scholar
  35. 35.
    Shafer, G.: A Mathematical Theory of Evidence. Princeton University Press, Princeton (1976)MATHGoogle Scholar
  36. 36.
    Walley, P.: Statistical Reasoning with Imprecise Probabilities. Chapman and Hall, London (1991)CrossRefGoogle Scholar
  37. 37.
    Walley, P.: Towards a unified theory of imprecise probability. Int. J. Approx. Reason. 24(2–3), 125–148 (2000)MathSciNetCrossRefGoogle Scholar
  38. 38.
    van der Hoek, W.: Some consideration on the logics \(P_{F}D\). J. Appl. Non-Class. Logics 7(3), 287–307 (1997)CrossRefGoogle Scholar
  39. 39.
    Zadeh, L.A.: Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets Syst. 1, 3–28 (1978)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Université Paul Sabatier – CNRS, IRITToulouse CEDEX 9France
  2. 2.Institute of Computer ScienceUniversity of BernBernSwitzerland
  3. 3.Mathematical Institute of Serbian Academy of Sciences and ArtsBelgradeSerbia

Personalised recommendations