Icy Grains in the Solar System: Cometary and Asteroidal Environments

  • Fernando Moreno
Part of the Astrophysics and Space Science Library book series (ASSL, volume 451)


Icy grains have been directly detected or inferred in the circumnuclear region of various short- and long-period comets. In particular, comets 103P/Hartley 2, C/2002 T7 (LINEAR), and, recently C/2013 OS10 (Catalina) and 67P/Churyumov–Gerasimenko have been found to eject dust particles with a variable proportion of ice content. In this chapter, we report on the theoretical computation of the equilibrium temperature of sublimating grains composed by a varying amount of water ice, silicate, and carbon materials, and its variation with grain size and heliocentric distance. It is shown that even a small addition of absorbing impurities to a pure water ice grain reduces dramatically its survival. A particular application to comet 67P, the ESA Rosetta Mission target, is provided.


  1. A’Hearn, M., et al.: Astrophys. J. 89, 579 (1984)Google Scholar
  2. Aspens, D.E.: Am. J. Phys. 50, 704 (1982)ADSCrossRefGoogle Scholar
  3. Bohren, C.F., Huffman, D.R.: Absorption and Scattering of Light by Small Particles. Wiley, New York (1983)Google Scholar
  4. Brent, R.P.: Algorithms for Minimization Without Derivatives. Prentice-Hall, Englewoods Cliffs, NJ (1973)zbMATHGoogle Scholar
  5. Combi, M., et al.: Icarus. 225, 740 (2013)ADSCrossRefGoogle Scholar
  6. Cox, A.N.: Allen’s Astrophysical Quantities, 4th edn. Springer, New York (2000)Google Scholar
  7. Cremonese, G., et al.: Astron. Astrophys. 588, 59 (2016)CrossRefGoogle Scholar
  8. Edoh, O.: Optical constants of carbon from the far infrared to the far ultraviolet. Ph.D. Thesis, University of Arizona (1983)Google Scholar
  9. Fulle, M., et al.: Astrophys. J. 821, 19 (2016)ADSCrossRefGoogle Scholar
  10. Gicquel, A., et al.: Astron. Astrophys. 542, A119 (2012)CrossRefGoogle Scholar
  11. Hartmann, W.K., Cruikshank, D.P.: Icarus. 57, 55 (1984)ADSCrossRefGoogle Scholar
  12. Jäger, C., et al.: Astron. Astrophys. 408, 193 (2003)ADSCrossRefGoogle Scholar
  13. Jewitt, D., et al.: Astrophys. J. 784, L8 (2014)ADSCrossRefGoogle Scholar
  14. Jewitt, D., et al.: The active asteroids. In: Michel, P., DeMeo, F., Bottke, W.F. (eds.) Asteroids IV, pp. 221–242. University of Arizona, Tucson, AZ (2015)Google Scholar
  15. Kelley, K.K.: US Bur. Mines Rep. Invest. 383, 35 (1935) Google Scholar
  16. Lamy, P.L.: Astron. Astrophys. 35, 197 (1974)ADSGoogle Scholar
  17. Léger, A., et al.: Astron. Astrophys. 117, 164 (1983)ADSGoogle Scholar
  18. Maxwell-Garnett, J.C.: Philos. Trans. R. Soc. A. 203, 385 (1904)ADSCrossRefGoogle Scholar
  19. Moreno, F., et al.: Astrophys. J. 738, 130 (2011)ADSCrossRefGoogle Scholar
  20. Moreno, F., et al.: Astrophys. J. 752, 136 (2012)ADSCrossRefGoogle Scholar
  21. Mukai, T.: Astron. Astrophys. 164, 397 (1986)ADSGoogle Scholar
  22. Mukai, T., et al.: Icarus. 80, 254 (1989)ADSCrossRefGoogle Scholar
  23. Murphy, D.M., Koop, T.: Q. J. R. Meteorol. Soc. 131, 1539 (2005)ADSCrossRefGoogle Scholar
  24. Press, W.H., et al.: Numerical Recipes in FORTRAN. Cambridge University, Cambridge (1992)zbMATHGoogle Scholar
  25. Protopapa, S., et al.: Icarus. 238, 191 (2014)ADSCrossRefGoogle Scholar
  26. Schulz, R., et al.: Nature. 518, 216 (2015)ADSCrossRefGoogle Scholar
  27. Sekanina, Z., Farrell, J.A.: Astron. J. 85, 1538 (1980)ADSCrossRefGoogle Scholar
  28. Steckloff, J.K., Jacobson, S.A.: Icarus. 264, 160 (2016)ADSCrossRefGoogle Scholar
  29. Warren, S.G.: Appl. Opt. 23, 1206 (1984)ADSCrossRefGoogle Scholar
  30. Washburn, E.W.: International Critical Tables of Numerical Data, Physics, Chemistry and Technology, vol. III. McGraw-Hill, New York (1928)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Instituto de Astrofísica de Andalucía, CSICGranadaSpain

Personalised recommendations