Advertisement

Infrared Spectroscopy of Ions of Astrophysical Interest

  • José-Luis Doménech
Chapter
Part of the Astrophysics and Space Science Library book series (ASSL, volume 451)

Abstract

Molecular ions are key species in the chemistry of the interstellar medium (ISM). Given the low temperatures and number densities typically occurring in the ISM, one of the few available mechanisms to form more complex molecules is through barrierless exothermic reactions, as it is the case for many ion-molecule reactions. Ions are highly reactive species but they can be formed efficiently in the ISM by cosmic-ray or ultraviolet ionization and can survive for relatively long times due to the few collisions they suffer. On earth, molecular ions are “exotic” species much more difficult to produce in appreciable quantities. Electrical discharges in low pressure gases form cold plasmas which can be used to produce molecular ions in abundances high enough to enable their spectroscopic study.

Notes

Acknowledgements

The work carried out at the laboratories of the Molecular Physics Department of IEM- CSIC has been partially funded by Spanish MINECO through grants CSD2009-00038 (Consolider Astromol project), FIS2012-38175, FIS2013-408087-C2-1P and FIS2016-77726-C3-1P. Additional partial support has been received from the European Research Council through the Synergy Grant ERC-2013-SyG-610256 NANOCOSMOS. Dr. O. Asvany and the support for a research stay at the University of Cologne by the Deutsche Forschungsgemeinschaft via SFB 956 project B2 are most gratefully acknowledged.

References

  1. Adams, D.: The Hitchhicker’s Guide to the Galaxy. Pan Books, London (1979)Google Scholar
  2. Asvany, O.: Understanding the infrared spectrum of bare CH\(_5^+\). Science 309(5738), 1219–1222 (2005).  https://doi.org/10.1126/science.1113729 ADSCrossRefGoogle Scholar
  3. Asvany, O., Krieg, J., Schlemmer, S.: Frequency comb assisted mid-infrared spectroscopy of cold molecular ions. Rev. Sci. Instrum. 83(9), 093110 (2012). https://doi.org/10.1063/1.4753930 ADSCrossRefGoogle Scholar
  4. Asvany, O., Brünken, S., Kluge, L., Schlemmer, S.: COLTRAP: a 22-pole ion trapping machine for spectroscopy at 4 K. Appl. Phys. B 114(1–2), 203–211 (2014). https://doi.org/10.1007/s00340-013-5684-y ADSCrossRefGoogle Scholar
  5. Berden, G., Engeln, R. (eds.): (2009) Cavity Ring-Down Spectroscopy: Techniques and Applications. Wiley, Chichester. https://doi.org/10.1002/9781444308259 Google Scholar
  6. Black, J.H., Hartquist, T.W., Dalgarno, A.: Models of interstellar clouds. II - the Zeta Persei cloud. Astrophys. J. 224, 448 (1978). https://doi.org/10.1086/156392 ADSCrossRefGoogle Scholar
  7. Carrington, A., Softley, T.P.: High-resolution infrared spectroscopy of molecular ions. In: Miller, T.A., Bondybey, V.E. (eds.) Molecular Ions: Spectroscopy, Structure and Chemistry, pp. 49–72. North-Holland, Amsterdam (1983)Google Scholar
  8. Cernicharo, J., Tercero, B., Fuente, A., Domenech, J.L., Cueto, M., Carrasco, E., Herrero, V.J., Tanarro, I., Marcelino, N., Roueff, E., Gerin, M., Pearson, J.: Detection of the ammonium ion in space. Astrophys. J. 771(1), L10 (2013). https://doi.org/10.1088/2041-8205/771/1/L10 ADSCrossRefGoogle Scholar
  9. Cheung, A.C., Rank, D.M., Townes, C.H., Thornton, D.D., Welch, W.J.: Detection of NH3 molecules in the interstellar medium by their microwave emission. Phys. Rev. Lett. 21(25), 1701–1705 (1968).  https://doi.org/10.1103/PhysRevLett.21.1701 ADSCrossRefGoogle Scholar
  10. Crabtree, K.N., Kauffman, C.A., McCall, B.J.: Note: A modular and robust continuous supersonic expansion discharge source. Rev. Sci. Instrum. 81(8), 086103 (2010). https://doi.org/10.1063/1.3478019 ADSCrossRefGoogle Scholar
  11. Davis, S., Fárnk, M., Uy, D., Nesbitt, D.J.: Concentration modulation spectroscopy with a pulsed slit supersonic discharge expansion source. Chem. Phys. Lett. 344(1-2), 23–30 (2001). https://doi.org/10.1016/S0009-2614(01)00746-1 ADSCrossRefGoogle Scholar
  12. De Lucia, F.C., Herbst, E.: The production of large concentrations of molecular ions in the lengthened negative glow region of a discharge. J. Chem. Phys. 78(5), 2312 (1983). https://doi.org/10.1063/1.445004 ADSCrossRefGoogle Scholar
  13. Doménech, J.L., Cueto, M., Herrero, V.J., Tanarro, I., Tercero, B., Fuente, A., Cernicharo, J.: Improved determination of the 10 − 00 rotational frequency of NH3D+ from the high-resolution spectrum of the ν 4 infrared band. Astrophys. J. 771(1), L11 (2013). https://doi.org/10.1088/2041-8205/771/1/L11 ADSCrossRefGoogle Scholar
  14. Doménech, J.L., Schlemmer, S., Asvany, O.: Accurate frequency determination of vibration-rotation and rotational transitions of SiH+. Astrophys. J. 849(1), 60 (2017). https://doi.org/10.3847/1538-4357/aa8fca ADSCrossRefGoogle Scholar
  15. Doménech, J.L., Jusko, P., Schlemmer, S., Asvany, O.: The First laboratory detection of vibration-rotation transitions of 12CH+ and 13CH+ and improved measurement of their rotational transition frequencies. Astrophys. J. 857, 61 (2018). https://doi.org/10.3847/1538-4357/aab36a ADSCrossRefGoogle Scholar
  16. Drever, R.W.P., Hall, J.L., Kowalski, F.V., Hough, J., Ford, G.M., Munley, A.J., Ward, H.: Laser phase and frequency stabilization using an optical resonator. Appl. Phys. B Photophysics. Laser Chem. 31(2), 97–105 (1983). https://doi.org/10.1007/BF00702605 ADSCrossRefGoogle Scholar
  17. Eddington, A.S.: Bakerian lecture. Diffuse matter in interstellar space. Proc. R. Soc. London Ser. A Contain. Pap. Math. Phys. Character A111, 424–456 (1926)CrossRefGoogle Scholar
  18. Foster, S.C., McKellar, A.R.W.: The ν 3 fundamental bands of HN\(_2^+\), DN\(_2^+\), and DCO+. J. Chem. Phys. 81(8), 3424–3428 (1984). https://doi.org/10.1063/1.448066 ADSCrossRefGoogle Scholar
  19. Fridman, A.: Plasma Chemistry. Cambridge University Press, Cambridge (2008).  https://doi.org/10.1017/CBO9780511546075
  20. Gerlich, D.: Ion-neutral collisions in a 22-pole trap at very low energies. Phys. Scr. T59, 256–263 (1995). https://doi.org/10.1088/0031-8949/1995/T59/035 ADSCrossRefGoogle Scholar
  21. Gudeman, C.S., Begemann, M.H., Pfaff, J., Saykally, R.J.: Velocity-modulated infrared laser spectroscopy of molecular ions: the ν 1 band of HCO+. Phys. Rev. Lett. 50(10), 727–731 (1983).  https://doi.org/10.1103/PhysRevLett.50.727 ADSCrossRefGoogle Scholar
  22. Herbst, E., Klemperer, W.: The formation and depletion of molecules in dense interstellar clouds. Astrophys. J. 185, 505 (1973). https://doi.org/10.1086/152436 ADSCrossRefGoogle Scholar
  23. Herzberg, G.: The interplay of molecular spectroscopy and astronomy. Highlights Astron. 5, 3–26 (1980). https://doi.org/10.1017/S1539299600003725 ADSCrossRefGoogle Scholar
  24. Hodges, J.N., Perry, A.J., Jenkins, P.A., Siller, B.M., McCall, B.J.: High-precision and high-accuracy rovibrational spectroscopy of molecular ions. J. Chem. Phys. 139(16):164201 (2013). https://doi.org/10.1063/1.4825251 ADSCrossRefGoogle Scholar
  25. Hollenbach, D., Salpeter, E.E.: Surface recombination of hydrogen molecules. Astrophys. J. 163, 155 (1971). https://doi.org/10.1086/150754 ADSCrossRefGoogle Scholar
  26. Kawaguchi, K., Yamada, C., Saito, S., Hirota, E.: Magnetic field modulated infrared laser spectroscopy of molecular ions: the ν 2 band of HCO+. J. Chem. Phys. 82(4), 1750 (1985). https://doi.org/10.1063/1.448407 ADSCrossRefGoogle Scholar
  27. Kroto, H.W.: The spectra of interstellar molecules. Int. Rev. Phys. Chem. 1(3), 309–376 (1981). https://doi.org/10.1080/01442358109353324 CrossRefGoogle Scholar
  28. Lindsay, C.M.: Highly-sensitive and efficient infrared spectroscopy of molecular ions. PhD thesis, Chicago (2002)Google Scholar
  29. Menten, K.M., Wyrowski, F.: Molecules detected in interstellar space. In: Yamada, K., Winnewisser, G. (eds.) Interstellar Molecules, pp. 27–42. Springer, Berlin (2011). https://doi.org/10.1007/978-3-642-16268-8_2 CrossRefGoogle Scholar
  30. Millar, T.J., Walsh, C., Field, T.A.: Negative ions in space. Chem. Rev. 117(3), 1765–1795 (2017).  https://doi.org/10.1021/acs.chemrev.6b00480 CrossRefGoogle Scholar
  31. Müller, H.S., Schlöder, F., Stutzki, J., Winnewisser, G.: The Cologne Database for Molecular Spectroscopy, CDMS: a useful tool for astronomers and spectroscopists. J Mol Struct 742(1–3):215–227 (2005). https://doi.org/10.1016/j.molstruc.2005.01.027 Google Scholar
  32. Müller, H.S.P., Thorwirth, S., Roth, D.A., Winnewisser, G.: The Cologne Database for Molecular Spectroscopy, CDMS. Astron. Astrophys. 370(3), L49–L52 (2001). https://doi.org/10.1051/0004-6361:20010367 ADSCrossRefGoogle Scholar
  33. Nakanaga, T., Amano, T.: Difference-frequency laser spectroscopy of the ν 4 fundamental band of NH3D+. Can. J. Phys. 64, 1356–1358 (1986)ADSCrossRefGoogle Scholar
  34. Oka, T.: Observation of the infrared spectrum of H\(_3^+\). Phys. Rev. Lett. 45(7), 531 (1980)ADSCrossRefGoogle Scholar
  35. Piel, A.: Plasma Physics. Springer, Berlin (2010). https://doi.org/10.1007/978-3-642-10491-6 CrossRefGoogle Scholar
  36. Pilbratt, G.L., Riedinger, J.R., Passvogel, T., Crone, G., Doyle, D., Gageur, U., Heras, A.M., Jewell, C., Metcalfe, L., Ott, S., Schmidt, M.: Herschel space observatory. Astron. Astrophys. 518, L1 (2010). https://doi.org/10.1051/0004-6361/201014759 ADSCrossRefGoogle Scholar
  37. Pine, A.S.: Doppler-limited molecular spectroscopy by difference-frequency mixing. J. Opt. Soc. Am. 64(12), 1683–1690 (1974)ADSCrossRefGoogle Scholar
  38. Pine, A.S.: High-resolution methane ν 3-band spectra using a stabilized tunable difference-frequency laser system. J. Opt. Soc. Am. 66(2), 97–108 (1976)ADSCrossRefGoogle Scholar
  39. Quinn, T.J.: Practical realization of the definition of the metre, including recommended radiations of other optical frequency standards (2001). Metrologia 40, 103–133 (2003)ADSCrossRefGoogle Scholar
  40. Saykally, R.J., Evenson, K.M.: Observation of pure rotational transitions in the HBr+ molecular ion by laser magnetic resonance. Phys. Rev. Lett. 43(7), 515–518 (1979).  https://doi.org/10.1103/PhysRevLett.43.515 ADSCrossRefGoogle Scholar
  41. Schlemmer, S., Lescop, E., von Richthofen, J., Gerlich, D., Smith, M.A.: Laser induced reactions in a 22-pole ion trap: C2H\(_2^+\)+hν 3+H2 →C2H\(_3^+\)+H. J. Chem. Phys. 117(5), 2068–2075 (2002). https://doi.org/10.1063/1.1487373 ADSCrossRefGoogle Scholar
  42. Snow, T.P., Bierbaum, V.M.: Ion chemistry in the interstellar medium. Annu. Rev. Anal. Chem. 1:229–59 (2008).  https://doi.org/10.1146/annurev.anchem.1.031207.112907 CrossRefGoogle Scholar
  43. Snow, T.P., McCall, B.J.: Diffuse atomic and molecular clouds. Annu. Rev. Astron. Astrophys. 44(1), 367–414 (2006).  https://doi.org/10.1146/annurev.astro.43.072103.150624 ADSCrossRefGoogle Scholar
  44. Stephenson, S.K., Saykally, R.J.: Velocity modulation spectroscopy of ions. Chem. Rev. 105(9), 3220–3234 (2005). https://doi.org/10.1021/cr040100d CrossRefGoogle Scholar
  45. Stoffels, A., Kluge, L., Schlemmer, S., Brünken, S.: Laboratory rotational ground state transitions of NH3D+ and CF+. Astron. Astrophys. 56, 1–7 (2016). https://doi.org/10.1051/0004-6361/201629101 Google Scholar
  46. Talicska, C.N., Porambo, M.W., Perry, A.J., McCall, B.J.: Mid-infrared concentration-modulated noise-immune cavity-enhanced optical heterodyne molecular spectroscopy of a continuous supersonic expansion discharge source. Rev. Sci. Instrum. 87(6), 063111 (2016). https://doi.org/10.1063/1.4953652 ADSCrossRefGoogle Scholar
  47. Tercero, B., Cernicharo, J., Pardo, J.R., Goicoechea, J.R.: A line confusion limited millimeter survey of Orion KL I. Sulfur carbon chains. Astron. Astrophys. 517, A96 (2010). https://doi.org/10.1051/0004-6361/200913501 ADSCrossRefGoogle Scholar
  48. Tercero, B., Vincent, L., Cernicharo, J., Viti, S., Marcelino, N.: A line-confusion limited millimeter survey of Orion KL. Astron. Astrophys. 528, A26 (2011). https://doi.org/10.1051/0004-6361/201015837 ADSCrossRefGoogle Scholar
  49. Tielens, A.G.G.M., Hagen, W.: Model calculations of the molecular composition of interstellar grain mantles. Astron. Astrophys. 114:245–260 (1982). https://doi.org/1982A&A...114..245T
  50. Verbraak, H., Ngai, A., Persijn, S., Harren, F., Linnartz, H.: Mid-infrared continuous wave cavity ring down spectroscopy of molecular ions using an optical parametric oscillator. Chem. Phys. Lett. 442(1–3), 145–149 (2007). https://doi.org/10.1016/j.cplett.2007.05.051 ADSCrossRefGoogle Scholar
  51. Watson, W.D.: The rate of formation of interstellar molecules by ion-molecule reactions. Astrophys. J. 183, L17 (1973). https://doi.org/10.1086/181242 ADSCrossRefGoogle Scholar
  52. Weinreb, S., Barett, A.H., Meeks, M.L., Henry, J.C.: Radio observations of OH in the interstellar medium. Nature 200(4909), 829–831 (1963). https://doi.org/10.1038/200829a0 ADSCrossRefGoogle Scholar
  53. White, J.U.: Long optical paths of large aperture. J. Opt. Soc. Am. 32(5), 285 (1942).  https://doi.org/10.1364/JOSA.32.000285 ADSCrossRefGoogle Scholar
  54. Wing, W.H., Ruff, G.A., Lamb, W.E., Spezeski, J.J.: Observation of the infrared spectrum of the hydrogen molecular ion HD+. Phys. Rev. Lett. 36(25), 1488–1491 (1976).  https://doi.org/10.1103/PhysRevLett.36.1488 ADSCrossRefGoogle Scholar
  55. Yunjie, X., Fukushima, M., Amano, T., McKellar, A.: Infrared absorption spectroscopy of molecular ions in a corona-discharge slit expansion. Chem. Phys. Lett. 242(1–2), 126–131 (1995). https://doi.org/10.1016/0009-2614(95)00720-O ADSCrossRefGoogle Scholar
  56. Zhao, D., Guss, J., Walsh, A.J., Linnartz, H.: Mid-infrared continuous wave cavity ring-down spectroscopy of a pulsed hydrocarbon plasma. Chem. Phys. Lett. 565, 132–137 (2013). https://doi.org/10.1016/j.cplett.2013.02.025 ADSCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Molecular Physics DepartmentInstituto de Estructura de la Materia (IEM-CSIC)MadridSpain

Personalised recommendations