Statistical Inference of Peroxisome Dynamics

  • Cyril Galitzine
  • Pierre M. Jean Beltran
  • Ileana M. Cristea
  • Olga Vitek
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10812)

Abstract

The regulation of organelle abundance sustains critical biological processes, such as metabolism and energy production. Biochemical models mathematically express these temporal changes in terms of reactions, and their rates. The rate parameters are critical components of the models, and must be experimentally inferred. However, the existing methods for rate inference are limited, and not directly applicable to organelle dynamics.

This manuscript introduces a novel approach that integrates modeling, inference and experimentation, and incorporates biological replicates, to accurately infer the rates. The approach relies on a biochemical model in form of a stochastic differential equation, and on a parallel implementation of inference with particle filter. It also relies on a novel microscopy workflow that monitors organelles over long periods of time in cell culture. Evaluations on simulated datasets demonstrated the advantages of this approach in terms of increased accuracy and shortened computation time. An application to imaging of peroxisomes determined that fission, rather than de novo generation, is predominant in maintaining the organelle level under basal conditions. This biological insight serves as a starting point for a system view of organelle regulation in cells.

Keywords

Bayesian inference Stochastic differential equation Stochastic process Particle filter Organelles Replicate Peroxisomes 

Notes

Acknowledgements

This work was supported in part by a Burroughs Wellcome travel grant (to C.G.), a Dodds Fellowship (to P.M.J.B.), NIH grants GM114141, HL127640, Mallinckrodt Scholar Award (to I.M.C.), and Sy and Laurie Sternberg award (to O.V.).

References

  1. 1.
    Huotari, J., Helenius, A.: EMBO J. 30, 3481 (2011)Google Scholar
  2. 2.
    Jean Beltran, P.M., Mathias, R.A., Cristea, I.M.: Cell Syst. 3, 361 (2016)Google Scholar
  3. 3.
    Smith, J.J., Aitchison, J.D.: Nat. Rev. Mol. Cell Biol. 14, 803 (2013)Google Scholar
  4. 4.
    Wai, T., Langer, T.: Trends Endocrinol. Metab. 27, 105 (2016)Google Scholar
  5. 5.
    Steinberg, S.J., et al.: Peroxisome biogenesis disorders. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research 1763(12), 1733–1748 (2006)CrossRefGoogle Scholar
  6. 6.
    Denesvre, C., Malhotra, V.: Curr. Opin. Cell Biol. 8, 519 (1996)Google Scholar
  7. 7.
    Lowe, M., Barr, F.A.: Nat. Rev. Mol. Cell Biol. 8, 429 (2007)Google Scholar
  8. 8.
    Sica, V., et al.: Mol. Cell 59, 522 (2015)Google Scholar
  9. 9.
    Wilkinson, D.J.: Nat. Rev. Genet. 10, 122 (2009)Google Scholar
  10. 10.
    Mukherji, S., O’Shea, E.K.: eLife 3, e02678 (2014)Google Scholar
  11. 11.
    Waters, J.C.: J. Cell Biol. 185, 1135 (2009)Google Scholar
  12. 12.
    Amrein, M., Künsch, H.R.: Stat. Comput. 22, 513 (2011)Google Scholar
  13. 13.
    Zechner, C., et al.: Nat. Methods 11, 197 (2014)Google Scholar
  14. 14.
    Jauregui, M., Kim, P.K.: Curr. Protoc. Cell Biol. 62, 21 (2014)Google Scholar
  15. 15.
    Costello, J.L., et al.: J. Cell Biol. 216, 331 (2017)Google Scholar
  16. 16.
    Sexton, J.Z., et al.: Int. J. High Throughput Screen 2010, 127 (2010)Google Scholar
  17. 17.
    Gillespie, D.T.: Markov Processes: An Introducation for Physical Scientists. Elsevier, Amsterdam (1991)Google Scholar
  18. 18.
    Hallam, T.G., Levin, S.A. (eds.): Mathematical Ecology: An Introduction. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-69888-0CrossRefGoogle Scholar
  19. 19.
    Wilkinson, D.J.: Stochastic Modelling for Systems Biology. CRC Press, Boca Raton (2011)MATHGoogle Scholar
  20. 20.
    Doucet, A., Freitas, N.D., Gordon, N.: Sequential Monte Carlo Methods in Practice. Springer, New York (2001).  https://doi.org/10.1007/978-1-4757-3437-9CrossRefMATHGoogle Scholar
  21. 21.
    Gillespie, D.T.: J. Comput. Phys. 22, 403 (1976)Google Scholar
  22. 22.
    Bretó, C., He, D., Ionides, E.L., King, A.A.: Ann. Appl. Stat. 3, 319 (2009)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Ionides, E.L., Bretó, C., King, A.A.: Proc. Natl. Acad. Sci. 103, 18438 (2006)Google Scholar
  24. 24.
    Wang, Y., et al.: BMC Syst. Biol. 4, 1 (2010)Google Scholar
  25. 25.
    Fuchs, C.: Inference for Diffusion Processes. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-25969-2CrossRefMATHGoogle Scholar
  26. 26.
    Boys, R.J., Wilkinson, D.J., Kirkwood, T.B.L.: Stat. Comput. 18, 125 (2007)Google Scholar
  27. 27.
    Milner, P., Gillespie, C.S., Wilkinson, D.J.: Stat. Comput. 23, 287 (2012)Google Scholar
  28. 28.
    Andrieu, C., Doucet, A., Holenstein, R.: J. R. Stat. Soc. Ser. B 72, 269 (2010)Google Scholar
  29. 29.
    Golightly, A., Wilkinson, D.J.: Interface Focus 1, 807 (2011)CrossRefGoogle Scholar
  30. 30.
    Rosén, O., et al.: IEEE CCA Proceedings, p. 440. IEEE (2010)Google Scholar
  31. 31.
    Strid, I.: Technical report, Society for Computational Economics (2006)Google Scholar
  32. 32.
    Bolic, M., Djuric, P.M., Hong, S.: IEEE Trans. Signal Process. 53, 2442 (2005)MathSciNetCrossRefGoogle Scholar
  33. 33.
    Míguez, J., et al.: EURASIP J. Adv. Signal Process. 2004, 303619 (2004)Google Scholar
  34. 34.
    Koeppl, H., et al.: Int. J. Robust Nonlin. 22, 1103 (2012)Google Scholar
  35. 35.
    Zechner, C., et al.: Proc. Natl. Acad. Sci. 109, 8340 (2012)Google Scholar
  36. 36.
    Bronstein, L., Zechner, C., Koeppl, H.: Methods 85, 22 (2015)CrossRefGoogle Scholar
  37. 37.
    Øksendal, B.: Stochastic Differential Equations. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-642-14394-6CrossRefMATHGoogle Scholar
  38. 38.
    Gillespie, D.T.: J. Chem. Phys. 113, 297 (2000)Google Scholar
  39. 39.
    Kloeden, P.E., Platen, E.: Numerical Solution of Stochastic Differential Equations (SDEs). Springer, Heidelberg (1992).  https://doi.org/10.1007/978-3-662-12616-5CrossRefMATHGoogle Scholar
  40. 40.
    Míguez, J.: Signal Process. 87, 3155 (2007)Google Scholar
  41. 41.
    Zenker, S.: J. Clin. Monit. Comput. 24, 319 (2010)Google Scholar
  42. 42.
    Baker, J.E.: Proceedings of the 2nd International Conference on Genetic Algorithms, p. 14 (1987)Google Scholar
  43. 43.
    Pacheco, P.S.: Parallel Programming with MPI. Morgan Kaufmann, Burlington (1997)MATHGoogle Scholar
  44. 44.
    Rizzo, M.A., et al.: Cold Spring Harbor Protoc. 4 (2009). http://cshprotocols.cshlp.org/content/2009/12/pdb.top63.short
  45. 45.
    Vonesch, C., Unser, M.: IEEE Trans. Image Process. 17, 539 (2008)Google Scholar
  46. 46.
    Guerquin-Kern, M., et al.: IEEE Trans. Med. Imaging 30, 1649 (2011)CrossRefGoogle Scholar
  47. 47.
    Huybrechts, S.J., et al.: Traffic 10, 1722 (2009)Google Scholar
  48. 48.
    Poole, B., Higashi, T., de Duve, C.: J. Cell Biol. 45, 408 (1970)Google Scholar
  49. 49.
    Fujiki, Y., et al.: Peroxisome biogenesis in mammalian cells. Front Physiol. 5, 307 (2014)CrossRefGoogle Scholar
  50. 50.
    Kim, P.K., et al.: J. Cell Biol. 173, 521 (2006)Google Scholar
  51. 51.
    Motley, A.M., Hettema, E.H.: J. Cell Biol. 178, 399 (2007)Google Scholar
  52. 52.
    van der Zand, A., et al.: Cell 149, 397 (2012)Google Scholar
  53. 53.
    Legakis, J.E.: Mol. Biol. Cell 13(12), 4243 (2002)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Cyril Galitzine
    • 1
  • Pierre M. Jean Beltran
    • 2
  • Ileana M. Cristea
    • 2
  • Olga Vitek
    • 1
  1. 1.College of Science, College of Computer and Information ScienceNortheastern UniversityBostonUSA
  2. 2.Lewis Thomas Laboratory, Department of Molecular BiologyPrinceton UniversityPrincetonUSA

Personalised recommendations