Location Planning of Charging Stations for Electric City Buses Considering Battery Ageing Effects

  • Brita RohrbeckEmail author
  • Kilian Berthold
  • Felix Hettich
Conference paper
Part of the Operations Research Proceedings book series (ORP)


Electrification of public transport is one important pillar of sustainable urban planning. However, the infrastructure is still costly and a cost-efficient solution crucial. Costs and effectiveness depend mainly on the number and location of charging stations as well as on the batteries’ capacities. Here, also the ageing, i.e. the loss in capacity must be taken into account. Thus, we introduce the Charging Stations Location Problem with Battery Ageing (CSLP-BA). We present a mixed integer model with multiple periods, enhanced by a battery ageing function to solve the problem. To evaluate the model, we give an overview of our results obtained from real world data of the bus network of Mannheim and contrast them with the present configuration used in Mannheim.


E-mobility Public transport Location Mixed-integer programming 


  1. 1.
    Müller-Hellmann, A. (2014). Überlegungen zu Ladeverfahren für Batteriebusse im ÖPNV. Der Nahverkehr, 2014(7-8), 40–43.Google Scholar
  2. 2.
    Mak, A.-H., Rong, Y., & Shen, Z.-J. (2013). Infrastructure planning for electric vehicles with battery swapping. Management Science, 59(7), 1557–1575.CrossRefGoogle Scholar
  3. 3.
    Kley, F. (2011). Ladeinfrastrukturen für Elektrofahrzeuge: Entwicklung und Bewertung einer Ausbaustrategie auf Basis des Fahrverhaltens, Fraunhofer.Google Scholar
  4. 4.
    Kunith, A., Mendelevitch, R., & Goehlich, D. (2016). Electrification of a city bus network: an optimization model for cost-effective placing of charging infrastructure and battery sizing of fast charging electric bus systems. International Journal of Sustainable Transportation.Google Scholar
  5. 5.
    Chen, D., Kockelman, K., & Khan, M. (2013). The electric vehicle charging station location problem: a parking-based assignment method for seattle. Transportation Research Board 92nd Annual Meeting, 340, 13–1254.Google Scholar
  6. 6.
    Berthold, K., Förster, P., & Rohrbeck, B. (2017). Location planning of charging stations. In K. Doerner, I. Ljubic, G. Pflug, & G. Tragler (Eds.), Operations Research Proceedings 2015.Google Scholar
  7. 7.
    Rogge, M., Wollny, S., & Sauer, D. U. (2015). Fast charging battery buses for the electrification of urban public transport a feasibility study focusing on charging infrastructure and energy storage requirements. Energies, 8(5), 4587–4606.CrossRefGoogle Scholar
  8. 8.
    Herb, F. (2010). Alterungsmechanismen in Lithium-Ionen-Batterien und PEM-Brennstoffzellen und deren Einfluss auf die Eigenschaften von daraus bestehenden Hybrid-Systemen, Doctoral dissertation, Universität Ulm.Google Scholar
  9. 9.
    Nationale Organisation Wasserstoff- und Brennstoffzellentechnologie (2012).
  10. 11.
    Pelletier, S., Jabali, O., & Laporte, G. (2017). Charge Scheduling for Electric Freight Vehicle CIRRELT, CIRRELT-2017–37.Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Brita Rohrbeck
    • 1
    Email author
  • Kilian Berthold
    • 2
  • Felix Hettich
    • 1
    • 2
  1. 1.Karlsruhe Institute of Technology, Institute of Operations ResearchKarlsruheGermany
  2. 2.Karlsruhe Institute of Technology, Institute of Vehicle System TechnologyKarlsruheGermany

Personalised recommendations