Advertisement

WORHP Zen: Parametric Sensitivity Analysis for the Nonlinear Programming Solver WORHP

  • Renke Kuhlmann
  • Sören Geffken
  • Christof Büskens
Conference paper
Part of the Operations Research Proceedings book series (ORP)

Abstract

Nonlinear optimization problems that arise in real-world applications usually depend on parameter data. Parametric sensitivity analysis is concerned with the effects on the optimal solution caused by changes of these. The calculated sensitivities are of high interest because they improve the understanding of the optimal solution and allow the formulation of real-time capable update algorithms. We present WORHP Zen, a sensitivity analysis module for the nonlinear programming solver WORHP that is capable of the following: (i) Efficient calculation of parametric sensitivities using an existing factorization; (ii) efficient sparse storage of these derivatives, and (iii) real-time updates to calculate an approximated solution of a perturbed optimization problem. An example application of WORHP Zen in the context of parameter identification is presented.

Keywords

Nonlinear programming Constrained optimization Sensitivity analysis Primal-dual method Large-scale problems 

References

  1. 1.
    Böhme, T. J., & Frank, B. (2017). Optimal design of hybrid powertrain configurations (pp. 481–518). Cham: Springer International Publishing.Google Scholar
  2. 2.
    Böskens, C. (2002). Real-time optimization and real-time optimal control of parameter-perturbed problems. Habilitation thesis, Universität Bayreuth.Google Scholar
  3. 3.
    Büskens, C., & Wassel, D. (2013). The ESA NLP solver WORPH. In G. Fasano & J. D. Pintér (Eds.), Modeling and optimization in space engineering (Vol. 73, pp. 85–110). Springer optimization and its applications. New York: Springer.Google Scholar
  4. 4.
    Fiacco, A. V. (1983). Introduction to sensitivity and stability analysis in nonlinear programming. Mathematics in science and engineering (Vol. 165). New York: Academic Press.Google Scholar
  5. 5.
    Fiacco, A. V., & Ishizuka, Y. (1990). Sensitivity and stability analysis for nonlinear programming. Annals of Operations Research, 27(1), 215–235.CrossRefGoogle Scholar
  6. 6.
    Geffken, S.: Effizienzsteigerung numerischer Verfahren der nichtlinearen Optimierung. Ph.D. thesis, Universität Bremen, Bremen (to appear)Google Scholar
  7. 7.
    Kuhlmann, R., & Büskens, C. (2017). Primal-dual augmented Lagrangian penalty-interior-point algorithm. Technical report, Universität Bremen.Google Scholar
  8. 8.
    Nelles, O. (2001). Nonlinear system identification. Berlin: Springer.CrossRefGoogle Scholar
  9. 9.
    Pirnay, H., López-Negrete, R., & Biegler, L. T. (2012). Optimal sensitivity based on ipopt. Mathematical Programming Computation, 4(4), 307–331.CrossRefGoogle Scholar
  10. 10.
    Seelbinder, D., & Büskens, C. (2016). Real-time atmospheric entry trajectory computation using parametric sensitivities. In International Conference on Astrodynamics Tools and Techniques.Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Renke Kuhlmann
    • 1
  • Sören Geffken
    • 1
  • Christof Büskens
    • 1
  1. 1.University BremenBremenGermany

Personalised recommendations