Advertisement

Optimizing Large-Scale Linear Energy System Problems with Block Diagonal Structure by Using Parallel Interior-Point Methods

  • Thomas Breuer
  • Michael Bussieck
  • Karl-Kiên Cao
  • Felix Cebulla
  • Frederik Fiand
  • Hans Christian Gils
  • Ambros Gleixner
  • Dmitry Khabi
  • Thorsten Koch
  • Daniel Rehfeldt
  • Manuel WetzelEmail author
Conference paper
Part of the Operations Research Proceedings book series (ORP)

Abstract

Current linear energy system models (ESM) acquiring to provide sufficient detail and reliability frequently bring along problems of both high intricacy and increasing scale. Unfortunately, the size and complexity of these problems often prove to be intractable even for commercial state-of-the-art linear programming solvers. This article describes an interdisciplinary approach to exploit the intrinsic structure of these large-scale linear problems to be able to solve them on massively parallel high-performance computers. A key aspect are extensions to the parallel interior-point solver PIPS-IPM originally developed for stochastic optimization problems. Furthermore, a newly developed GAMS interface to the solver as well as some GAMS language extensions to model block-structured problems will be described.

Keywords

Energy system models Linear programming Interior-point methods Parallelization High performance computing 

Notes

Acknowledgements

The described research activities are funded by the Federal Ministry for Economic Affairs and Energy within the BEAM-ME project (ID: 03ET4023A-F). Ambros Gleixner was supported by the Research Campus MODAL Mathematical Optimization and Data Analysis Laboratories funded by the Federal Ministry of Education and Research (BMBF Grant 05M14ZAM).

References

  1. 1.
    Cao, K., Gleixner, A., & Miltenberger, M. (2016). Methoden zur Reduktion der Rechenzeit linearer Optimierungsmodelle in der Energiewirtschaft - Eine Performance-Analyse. In EnInnov 2016 Symposium Energieinnovation (p. 14).Google Scholar
  2. 2.
    Ferris, M. C., Dirkse, S. P., Jagla, J., & Meeraus, A. (2009). An extended mathematical programming framework. Computers & Chemical Engineering, 33, 1973–1982.  https://doi.org/10.1016/j.compchemeng.2009.06.013.
  3. 3.
    Ferris, M. C., & Horn, J. D. (1998). Partitioning mathematical programs for parallel solution. In Mathematical programming (Vol. 80, pp. 35–61).  https://doi.org/10.1007/BF01582130.
  4. 4.
    Gils, H. C., et al. (2017). Integrated modelling of variable renewable energy-based power supply in Europe. Energy, 123, 173–188 (2017).  https://doi.org/10.1016/j.energy.2017.01.115.
  5. 5.
    Luehrs, S., et al. Flexible and generic workflow management.  https://doi.org/10.3233/978-1-61499-621-7-431.
  6. 6.
    Petra, C. G., Schenk, O., & Anitescu, M. (2014). Real-time stochastic optimization of complex energy systems on high performance computers. Computing in Science & Engineering (CiSE), 16(5), 32–42.Google Scholar
  7. 7.
    Vanderbei, R. J. (2014). Linear programming: Foundations and extensions. Springer.Google Scholar
  8. 8.
    Schenk, O., & Gartner, K. (2004). On Fast Factorization Pivoting Methods for Sparse Symmetric Indefinite Systems. Technical Report, Department of Computer Science, University of Basel (2004)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Thomas Breuer
    • 1
  • Michael Bussieck
    • 2
  • Karl-Kiên Cao
    • 3
  • Felix Cebulla
    • 3
  • Frederik Fiand
    • 2
  • Hans Christian Gils
    • 3
  • Ambros Gleixner
    • 4
  • Dmitry Khabi
    • 5
  • Thorsten Koch
    • 4
  • Daniel Rehfeldt
    • 4
  • Manuel Wetzel
    • 3
    Email author
  1. 1.Jülich Supercomputing Centre (JSC)Forschungszentrum Jülich GmbHJülichGermany
  2. 2.GAMS Software GmbHFrechenGermany
  3. 3.German Aerospace Center (DLR)CologneGermany
  4. 4.Zuse Institute Berlin/Technical University BerlinBerlinGermany
  5. 5.High Performance Computing Center Stuttgart (HLRS)StuttgartGermany

Personalised recommendations