Advertisement

MRI

  • Angelo Iannarelli
  • Stefano Badia
  • Marco Rengo
Chapter

Abstract

Among the modalities for chest imaging such as X-ray and computed tomography (CT), magnetic resonance imaging (MRI) has been the latest to be introduced into clinical practice.

It is emerging as a valuable alternative when radiation exposure or iodinated contrast material is contraindicated such as in the case of pediatric patients affected by cystic fibrosis or acute pulmonary embolism in pregnant women because it gives additional functional information on respiratory mechanics and regional lung perfusion.

Unlike CT and PET-TC, MRI has superior soft-tissue contrast with high spatial resolution but it is more susceptible to cardiac and respiratory motion artifacts; however recent advances in MRI techniques like diffusion-weighted, perfusion sequences and use of new contrast media have improved the diagnostic capabilities of MRI in detecting and staging lung cancer providing not only morphologic but also functional information.

Another peculiarity of this technique is considered to be the gold standard also for the evaluation of the pleural interface, characterization of complex pleural effusion, and identification of exudate and hemorrhage, as well as in the analysis of superior sulcus tumors, as it enables more accurate staging.

Unfortunately, MRI of the chest is still rarely used, except in a few centers, due to lack of consistent protocols customized to clinical needs.

Keywords

Magnetic resonance imaging Chest Pulmonary lesions Diffusion-weighted imaging Apparent diffusion coefficient Cystic fibrosis Central lung carcinoma Pleural disease Pulmonary embolism Airway disease Functional imaging 

References

  1. 1.
    Wild JM, Marshall H, Bock M, Schad LR, Jakob PM, Puderbach M, Molinari F, Van Beek EJ, Biederer J. MRI of the lung (1/3): methods. Insight Imaging. 2012;3(4):345–53.CrossRefGoogle Scholar
  2. 2.
    Biederer J, Beer M, Hirsch W, Wild J, Fabel M, Puderbach M, Van Beek EJ. MRI of the lung (2/3). Why … when … how? Insight Imaging. 2012;3(4):355–71.CrossRefGoogle Scholar
  3. 3.
    Puderbach M, Hintze C, Ley S, Eichinger M, Kauczor HU, Biederer J. MR imaging of the chest: a practical approach at 1.5T. Eur J Radiol. 2007;64(3):345–55.CrossRefPubMedGoogle Scholar
  4. 4.
    Ackman JB, Wu CC. MRI of the thymus. AJR Am J Roentgenol. 2011;197(1):W15–20.CrossRefPubMedGoogle Scholar
  5. 5.
    McInnis MC, Flores EJ, Shepard JA, Ackman JB. Pitfalls in the imaging and interpretation of benign thymic lesions: how thymic MRI can help. AJR Am J Roentgenol. 2016;206(1):W1–8.CrossRefPubMedGoogle Scholar
  6. 6.
    Gumustas S, Inan N, Sarisoy HT, Anik Y, Arslan A, Ciftci E, Akansel G, Demirci A. Malignant versus benign mediastinal lesions: quantitative assessment with diffusion weighted MR imaging. Eur Radiol. 2011;21(11):2255–60.CrossRefPubMedGoogle Scholar
  7. 7.
    Weber MA, Bock M, Plathow C, Wasser K, Fink C, Zuna I, Schmahl A, Berger I, Kauczor HU, Schoenberg SO. Asbestos-related pleural disease: value of dedicated magnetic resonance imaging techniques. Investig Radiol. 2004;39(9):554–64.CrossRefGoogle Scholar
  8. 8.
    Armstrong P. Preoperative computed tomographic scanning for staging lung cancer. Thorax. 1994;49(10):941–3.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Falaschi F, Battolla L, Mascalchi M, Cioni R, Zampa V, Lencioni R, Antonelli A, Bartolozzi C. Usefulness of MR signal intensity in distinguishing benign from malignant pleural disease. AJR Am J Roentgenol. 1996;166(4):963–8.CrossRefPubMedGoogle Scholar
  10. 10.
    Eisenhauer EA, Therasse P, Bogaerts J, Schwartz LH, Sargent D, Ford R, Dancey J, Arbuck S, Gwyther S, Mooney M, et al. New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur J Cancer. 2009;45(2):228–47.CrossRefPubMedGoogle Scholar
  11. 11.
    Ohno Y, Koyama H, Nogami M, Takenaka D, Yoshikawa T, Yoshimura M, Ohbayashi C, Sugimura K. STIR turbo SE MR imaging vs. coregistered FDG-PET/CT: quantitative and qualitative assessment of N-stage in non-small-cell lung cancer patients. J Magn Reson Imaging. 2007;26(4):1071–80.CrossRefPubMedGoogle Scholar
  12. 12.
    Huellner MW, Appenzeller P, Kuhn FP, Husmann L, Pietsch CM, Burger IA, Porto M, Delso G, von Schulthess GK, Veit-Haibach P. Whole-body nonenhanced PET/MR versus PET/CT in the staging and restaging of cancers: preliminary observations. Radiology. 2014;273(3):859–69.CrossRefPubMedGoogle Scholar
  13. 13.
    Manenti G, Raguso M, D'Onofrio S, Altobelli S, Scarano AL, Vasili E, Simonetti G. Pancoast tumor: the role of magnetic resonance imaging. Case Rep Radiol. 2013;479120(10):31.Google Scholar
  14. 14.
    McCloskey P, Balduyck B, Van Schil PE, Faivre-Finn C, O'Brien M. Radical treatment of non-small cell lung cancer during the last 5 years. Eur J Cancer. 2013;49(7):1555–64.CrossRefPubMedGoogle Scholar
  15. 15.
    Palma D, Lagerwaard F, Rodrigues G, Haasbeek C, Senan S. Curative treatment of stage I non-small-cell lung cancer in patients with severe COPD: stereotactic radiotherapy outcomes and systematic review. Int J Radiat Oncol Biol Phys. 2012;82(3):1149–56.CrossRefPubMedGoogle Scholar
  16. 16.
    Fleckenstein J, Jelden M, Kremp S, Jagoda P, Stroeder J, Khreish F, Ezziddin S, Buecker A, Rube C, Schneider GK. The impact of diffusion-weighted MRI on the definition of gross tumor volume in radiotherapy of non-small-cell lung cancer. PLoS One. 2016;11(9):e0162816.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Chang Q, Wu N, Ouyang H, Huang Y. Diffusion-weighted magnetic resonance imaging of lung cancer at 3.0 T: a preliminary study on monitoring diffusion changes during chemoradiation therapy. Clin Imaging. 2012;36(2):98–103.CrossRefPubMedGoogle Scholar
  18. 18.
    Tao X, Wang L, Hui Z, Liu L, Ye F, Song Y, Tang Y, Men Y, Lambrou T, Su Z, et al. DCE-MRI perfusion and permeability parameters as predictors of tumor response to CCRT in patients with locally advanced NSCLC. Sci Rep. 2016;6:35569.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Shellock FG, Crues JV. MR procedures: biologic effects, safety, and patient care. Radiology. 2004;232(3):635–52.CrossRefPubMedGoogle Scholar
  20. 20.
    Juanpere S, Canete N, Ortuno P, Martinez S, Sanchez G, Bernado L. A diagnostic approach to the mediastinal masses. Insight Imaging. 2013;4(1):29–52.CrossRefGoogle Scholar
  21. 21.
    Montella S, Mollica C, Finocchi A, Pession A, Pietrogrande MC, Trizzino A, Ranucci G, Maglione M, Giardino G, Salvatore M, et al. Non invasive assessment of lung disease in ataxia telangiectasia by high-field magnetic resonance imaging. J Clin Immunol. 2013;33(7):1185–91.CrossRefPubMedGoogle Scholar
  22. 22.
    Biederer J, Mirsadraee S, Beer M, Molinari F, Hintze C, Bauman G, Both M, Van Beek EJ, Wild J, Puderbach M. MRI of the lung (3/3)-current applications and future perspectives. Insight Imaging. 2012;3(4):373–86.CrossRefGoogle Scholar
  23. 23.
    Sly PD, Brennan S, Gangell C, de Klerk N, Murray C, Mott L, Stick SM, Robinson PJ, Robertson CF, Ranganathan SC. Lung disease at diagnosis in infants with cystic fibrosis detected by newborn screening. Am J Respir Crit Care Med. 2009;180(2):146–52.CrossRefPubMedGoogle Scholar
  24. 24.
    Sly PD, Gangell CL, Chen L, Ware RS, Ranganathan S, Mott LS, Murray CP, Stick SM. Risk factors for bronchiectasis in children with cystic fibrosis. N Engl J Med. 2013;368(21):1963–70.CrossRefPubMedGoogle Scholar
  25. 25.
    Eichinger M, Heussel CP, Kauczor HU, Tiddens H, Puderbach M. Computed tomography and magnetic resonance imaging in cystic fibrosis lung disease. J Magn Reson Imaging. 2010;32(6):1370–8.CrossRefPubMedGoogle Scholar
  26. 26.
    Puderbach M, Eichinger M, Gahr J, Ley S, Tuengerthal S, Schmahl A, Fink C, Plathow C, Wiebel M, Muller FM, et al. Proton MRI appearance of cystic fibrosis: comparison to CT. Eur Radiol. 2007;17(3):716–24.CrossRefPubMedGoogle Scholar
  27. 27.
    Ciet P, Serra G, Andrinopoulou ER, Bertolo S, Ros M, Catalano C, Colagrande S, Tiddens HA, Morana G. Diffusion weighted imaging in cystic fibrosis disease: beyond morphological imaging. Eur Radiol. 2016;26(11):3830–9.CrossRefPubMedGoogle Scholar
  28. 28.
    Koyama H, Ohno Y, Kono A, Takenaka D, Maniwa Y, Nishimura Y, Ohbayashi C, Sugimura K. Quantitative and qualitative assessment of non-contrast-enhanced pulmonary MR imaging for management of pulmonary nodules in 161 subjects. Eur Radiol. 2008;18(10):2120–31.CrossRefPubMedGoogle Scholar
  29. 29.
    Mori T, Nomori H, Ikeda K, Kawanaka K, Shiraishi S, Katahira K, Yamashita Y. Diffusion-weighted magnetic resonance imaging for diagnosing malignant pulmonary nodules/masses: comparison with positron emission tomography. J Thorac Oncol. 2008;3(4):358–64.CrossRefPubMedGoogle Scholar
  30. 30.
    Schroeder T, Ruehm SG, Debatin JF, Ladd ME, Barkhausen J, Goehde SC. Detection of pulmonary nodules using a 2D HASTE MR sequence: comparison with MDCT. AJR Am J Roentgenol. 2005;185(4):979–84.CrossRefPubMedGoogle Scholar
  31. 31.
    Guimaraes MD, Marchiori E, Odisio BC, Hochhegger B, Bitencourt AG, Zurstrassen CE, Tyng CC, Gross JL, Chojniak R, Godoy MC. Functional imaging with diffusion-weighted MRI for lung biopsy planning: initial experience. World J Surg Oncol. 2014;12:203.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Cronin P, Dwamena BA, Kelly AM, Carlos RC. Solitary pulmonary nodules: meta-analytic comparison of cross-sectional imaging modalities for diagnosis of malignancy. Radiology. 2008;246(3):772–82.CrossRefPubMedGoogle Scholar
  33. 33.
    Satoh S, Kitazume Y, Ohdama S, Kimula Y, Taura S, Endo Y. Can malignant and benign pulmonary nodules be differentiated with diffusion-weighted MRI? AJR Am J Roentgenol. 2008;191(2):464–70.CrossRefPubMedGoogle Scholar
  34. 34.
    Baysal T, Mutlu DY, Yologlu S. Diffusion-weighted magnetic resonance imaging in differentiation of postobstructive consolidation from central lung carcinoma. Magn Reson Imaging. 2009;27(10):1447–54.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Radiological, Oncological and Pathological SciencesUniversity of Rome “Sapienza”—RomeRomeItaly
  2. 2.Department of Radiological, Oncological and Pathological SciencesUniversity of Rome “Sapienza”—Polo PontinoLatinaItaly

Personalised recommendations