Advertisement

Diagnostic Imaging of Chest Wall Tumors

  • Ukihide Tateishi
  • Yusuke Ogihara
  • Yoshio Kitazume
  • Mitsuhiro Kishino
  • Bae Hyeyeol
Chapter

Abstract

There are several imaging devices routinely utilized for evaluation of chest wall tumors predominantly focused in determining the extent of tumor involvement and the potential for respectability. This comprises computed radiography (CR), ultrasound (US), computed tomography (CT), magnetic resonance imaging (MRI), [F-18] FDG positron-emission tomography (PET)/CT, and [F-18] FDG PET/MRI. CR, CT, and MRI are the first line; of these MRI allows tissue characterization, accurate assessment of tumor extent, differentiation from adjacent inflammation, information of blood flow, diffusion capacity, texture features, and specification of metabolites within tumors. Imaging devices are also noninvasive methods which have revolutionized oncological imaging by combination of metabolic activities and morphologic features. They are also useful in guiding biopsy, evaluating patient prognosis, staging the disease, monitoring therapeutic response, and detecting recurrences in chest wall tumors. This leads to the appropriate management of patients with these masses. In vivo morphologic and metabolic information obtained by these several modalities plays an important role to manage patients with chest wall tumors.

Keywords

Chest wall tumor Imaging CT MRI PET/CT 

Notes

Acknowledgments

This work was supported in part by grants from Scientific Research Expenses for Health and Welfare Programs; the Grant-in-Aid for Cancer Research from the Ministry of Health, Labor and Welfare, No. 15K09885; the Scientific Research Expenses for Health and Welfare Programs, No. 29-A-3 (Takashi Terauchi and Ukihide Tateishi: squad leaders); Practical Research for Innovative Cancer Control; and Project Promoting Clinical Trials for Development of New Drugs by Japan Agency for Medical Research and Development (AMED).

References

  1. 1.
    Shah AA, D’Amico TA. Primary chest wall tumors. J Am Coll Surg. 2010;210:360–6.CrossRefPubMedGoogle Scholar
  2. 2.
    Tateishi U, Gladish GW, Kusumoto M, Hasegawa T, Yokoyama R, Tsuchiya R, Moriyama N. Chest wall tumors: radiologic findings and pathologic correlation: Part 1. Benign tumors. Radiographics. 2003;23:1477–90.CrossRefPubMedGoogle Scholar
  3. 3.
    Carter BW, Gladish GW. MR Imaging of chest wall tumors. Magn Reson Imaging Clin N Am. 2015;23:197–215.CrossRefPubMedGoogle Scholar
  4. 4.
    Tateishi U, Gladish GW, Kusumoto M, Hasegawa T, Yokoyama R, Tsuchiya R, Moriyama N. Chest wall tumors: radiologic findings and pathologic correlation: Part 2. Malignant tumors. Radiographics. 2003;23:1491–508.CrossRefPubMedGoogle Scholar
  5. 5.
    O’Sullivan P, O’Dwyer H, Flint J, Munk PL, Muller N. Soft tissue tumours and mass-like lesions of the chest wall: a pictorial review of CT and MR findings. Br J Radiol. 2007;80:574–80.CrossRefPubMedGoogle Scholar
  6. 6.
    Carter BW, Benveniste MF, Betancourt SL, de Groot PM, Lichtenberger JP 3rd, Amini B, Abbott GF. Imaging evaluation of malignant chest wall neoplasms. Radiographics. 2016;36:1285–306.CrossRefPubMedGoogle Scholar
  7. 7.
    Davnall F, Yip CS, Ljungqvist G, Selmi M, Ng F, Sanghera B, et al. Assessment of tumor heterogeneity: an emerging imaging tool for clinical practice? Insights Imaging. 2012;3:573–89.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Wang CK, Li CW, Hsieh TJ, Chien SH, Liu GC, Tsai KB. Characterization of bone and soft-tissue tumors with in vivo 1H MR spectroscopy: initial results. Radiology. 2004;232:599–605.CrossRefPubMedGoogle Scholar
  9. 9.
    Negendank WG, Crowley MG, Ryan JR, Keller NA, Evelhoch JL. Bone and soft-tissue lesions: diagnosis with combined H-1 MR imaging and P-31 MR spectroscopy. Radiology. 1989;173:181–8.CrossRefPubMedGoogle Scholar
  10. 10.
    Pauwels EK, Sturm EJ, Bombardieri E, Cleton FJ, Stokkel MP. Positron-emission tomography with [18F]fluorodeoxyglucose. Part I. Biochemical uptake mechanism and its implication for clinical studies. J Cancer Res Clin Oncol. 2000;126:549–59.CrossRefPubMedGoogle Scholar
  11. 11.
    Tateishi U, Yamaguchi U, Seki K, Terauchi T, Arai Y, Kim E. Bone and soft-tissue sarcoma: preoperative staging with fluorine 18 fluorodeoxyglucose PET/CT and conventional imaging. Radiology. 2007;245:839–47.CrossRefPubMedGoogle Scholar
  12. 12.
    Andersen KF, Fuglo HM, Rasmussen SH, Petersen MM, Loft A. Volume-based F-18 FDG PET/CT imaging markers provide supplemental prognostic information to histologic grading in patients with high-grade bone or soft tissue sarcoma. Medicine (Baltimore). 2015;94:2319.CrossRefGoogle Scholar
  13. 13.
    Eary JF, Conrad EU, O’Sullivan J, Hawkins DS, Schuetze SM, O’Sullivan F. Sarcoma mid-therapy [F-18] fluorodeoxyglucose positron emission tomography (FDG PET) and patient outcome. J Bone Joint Surg Am. 2014;96:152–8.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Al-Ibraheem A, Buck AK, Benz MR, Rudert M, Beer AJ, Mansour A, Pomykala KL, Haller B, Juenger H, Scheidhauer K, Schwaiger M, Herrmann K. 18F-fluorodeoxyglucose positron emission tomography/computed tomography for the detection of recurrent bone and soft tissue sarcoma. Cancer. 2013;119:1227–34.CrossRefPubMedGoogle Scholar
  15. 15.
    Shin DS, Shon OJ, Han DS, Choi JH, Chun KA, Cho IH. The clinical efficacy of 18F-FDG-PET/CT in benign and malignant musculoskeletal tumors. Ann Nucl Med. 2008;22:603–9.CrossRefPubMedGoogle Scholar
  16. 16.
    Tateishi U, Yamaguchi U, Miyake M, Maeda T, Chuman H, Arai Y, Jurik AG, editors. Primary bone tumours. Imaging of the sternocostoclavicular region: Springer-Verlag; 2007. p. 207–28.Google Scholar
  17. 17.
    London K, Stege C, Cross S, Onikul E, Graf N, Kaspers G, Dalla-Pozza L, Howman-Giles R. 18F-FDG PET/CT compared to conventional imaging modalities in pediatric primary bone tumors. Pediatr Radiol. 2012;42:418–30.CrossRefPubMedGoogle Scholar
  18. 18.
    Tateishi U, Hosono A, Makimoto A, Sakurada A, Terauchi T, Arai Y, Imai Y, Kim EE. Accuracy of 18F fluorodeoxyglucose positron emission tomography/computed tomography in staging of pediatric sarcomas. J Pediatr Hematol Oncol. 2007;29:608–12.CrossRefPubMedGoogle Scholar
  19. 19.
    Al-Ibraheem A, Buck AK, Benz MR, Rudert M, Beer AJ, Mansour A, Pomykala KL, Haller B, Juenger H, Scheidhauer K, Schwaiger M, Herrmann K. 18F-fluorodeoxyglucose positron emission tomography/computed tomography for the detection of recurrent bone and soft tissue sarcoma. Cancer. 2013;119:1227–34.CrossRefPubMedGoogle Scholar
  20. 20.
    Tateishi U, Hasegawa T, Terauchi T, et al. Incidence of multiple primary malignancies in a cohort of adult patients with soft tissue sarcoma. Jpn J Clin Oncol. 2005;35:444–52.CrossRefPubMedGoogle Scholar
  21. 21.
    Yang JC, Chang AE, Baker AR, et al. Randomized prospective study of the benefit of adjuvant radiation therapy in the treatment of soft tissue sarcomas of the extremity. J Clin Oncol. 1998;16:197–203.CrossRefPubMedGoogle Scholar
  22. 22.
    Wendtner CM, Abdel-Rahman S, Krych M, et al. Response to neoadjuvant chemotherapy combined with regional hyperthermia predicts long-term survival for adult patients with retroperitoneal and visceral high-risk soft tissue sarcomas. J Clin Oncol. 2002;20:3156–64.CrossRefPubMedGoogle Scholar
  23. 23.
    Sobin LH, Gospodarowicz MK. International Union Against Cancer (UICC): TNM Classification of malignant tumours. 7th ed. New York, NY: Wiley; 2009.Google Scholar
  24. 24.
    Amin MB, Edge S, Greene F, et al. AJCC cancer staging manual. 8th ed. New York, NY: Springer; 2017.CrossRefGoogle Scholar
  25. 25.
    Fletcher CDM, Bridge JA, Hogendoorn P, Mertens F. World Health Organization classification of tumours. Pathology and genetics of tumours of soft tissue and bone. 4th ed. Lyon: IARC Press; 2013.Google Scholar
  26. 26.
    Folpe AL, Lyles RH, Sprouse JT, et al. (F-18) fluorodeoxyglucose positron emission tomography as a predictor of pathologic grade and other prognostic variables in bone and soft tissue sarcoma. Clin Cancer Res. 2000;6:1279–87.PubMedGoogle Scholar
  27. 27.
    Schwarzbach MHM, Hinz U, Dimitrakopoulou-Strauss A, et al. Prognostic significance of preoperative [18-F]fluorodeoxyglucose (FDG) positron emission tomography (PET) imaging in patients with resectable soft tissue sarcomas. Ann Surg. 2005;241:286–94.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Tateishi U, Yamaguchi U, Seki K, et al. Glut-1 expression and enhanced glucose metabolism are associated with tumor grade in bone and soft tissue sarcomas: a prospective evaluation by [18F]fluorodeoxyglucose positron emission tomography. Eur J Nucl Med Mol Imaging. 2006;33:683–91.CrossRefPubMedGoogle Scholar
  29. 29.
    Ito S, Nemoto T, Satoh S, et al. Human rhabdomyosarcoma cells retain insulin-regulated glucose transport activity through glucose transporter 1. Arch Biochem Biophys. 2000;3:72–82.CrossRefGoogle Scholar
  30. 30.
    Nieweg OE, Prium J, van Ginkel RJ, et al. Fluorine-18 fluorodeoxyglucose PET imaging of soft-tissue sarcoma. J Nucl Med. 1996;37:257–61.PubMedGoogle Scholar
  31. 31.
    Nishiyama Y, Tateishi U, Kawai A, Chuman H, Nakatani F, Miyake M, Terauchi T, Inoue T, Kim EE. Prediction of treatment outcomes in patients with chest wall sarcoma: evaluation with PET/CT. Jpn J Clin Oncol. 2012;42:912–8.CrossRefPubMedGoogle Scholar
  32. 32.
    Glasser DB, Lane JM, Huvos AG, Marcove RC, Rosen G. Survival, prognosis, and therapeutic response in osteogenic sarcoma. The Memorial Hospital experience. Cancer. 1992;69:698–708.CrossRefPubMedGoogle Scholar
  33. 33.
    Costelloe CM, Macapinlac HA, Madewell JE, Fitzgerald NE, Mawlawi OR, Rohren EM, Raymond AK, Lewis VO, Anderson PM, Bassett RL Jr, Harrell RK, Marom EM. 18F-FDG PET/CT as an indicator of progression-free and overall survival in osteosarcoma. J Nucl Med. 2009;50:340–7.CrossRefPubMedGoogle Scholar
  34. 34.
    Cheon GJ, Kim MS, Lee JA, Lee SY, Cho WH, Song WS, Koh JS, Yoo JY, Oh DH, Shin DS, Jeon DG. Prediction model of chemotherapy response in osteosarcoma by 18F-FDG PET and MRI. J Nucl Med. 2009;50:1435–40.CrossRefPubMedGoogle Scholar
  35. 35.
    Ludwig JA. Ewing sarcoma: historical perspectives, current state-of-the-art, and opportunities for targeted therapy in the future. Curr Opin Oncol. 2008;20:412–8.CrossRefPubMedGoogle Scholar
  36. 36.
    Hawkins DS, Schuetze SM, Butrynski JE, Rajendran JG, Vernon CB, Conrad EU 3rd, Eary JF. [18F]Fluorodeoxyglucose positron emission tomography predicts outcome for Ewing sarcoma family of tumors. J Clin Oncol. 2005;23:8828–34.CrossRefPubMedGoogle Scholar
  37. 37.
    Sharma P, Khangembam BC, Suman KC, Singh H, Rastogi S, Khan SA, Bakhshi S, Thulkar S, Bal C, Malhotra A, Kumar R. Diagnostic accuracy of 18F-FDG PET/CT for detecting recurrence in patients with primary skeletal Ewing sarcoma. Eur J Nucl Med Mol Imaging. 2013;40:1036–43.CrossRefPubMedGoogle Scholar
  38. 38.
    Brenner W, Conrad EU, Eary JF. FDG PET imaging for grading and prediction of outcome in chondrosarcoma patients. Eur J Nucl Med Mol Imaging. 2004;31:189–95.CrossRefPubMedGoogle Scholar
  39. 39.
    Chakarun CJ, Forrester DM, Gottsegen CJ, Patel DB, White EA, Matcuk GR Jr. Giant cell tumor of bone: review, mimics, and new developments in treatment. Radiographics. 2013;33:197–211.CrossRefPubMedGoogle Scholar
  40. 40.
    Makis W, Alabed YZ, Nahal A, Novales-Diaz JA, Hickeson M. Giant cell tumor pulmonary metastases mimic primary malignant pulmonary nodules on 18F-FDG PET/CT. Nucl Med Mol Imaging. 2012;46:134–7.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Uslu L, Asa S, Sager S, Halaç M. Multiple cardiac masses and distant metastatic foci in a patient with high grade pleomorphic sarcoma of the heart revealed by follow-up FDG PET/CT. Nuklearmedizin. 2014;53(2):8–9.Google Scholar
  42. 42.
    Enomoto K, Inohara H, Hamada K, Tamura M, Tomita Y, Kubo T, Hatazawa J. FDG PET imaging of myxofibrosarcoma on the sphenoid sinus. Clin Nucl Med. 2008;33:421–2.CrossRefPubMedGoogle Scholar
  43. 43.
    Schwarzbach MH, Dimitrakopoulou-Strauss A, Mechtersheimer G, Hinz U, Willeke F, Cardona S, Attigah N, Strauss LG, Herfarth C, Lehnert T. Assessment of soft tissue lesions suspicious for liposarcoma by F18-deoxyglucose (FDG) positron emission tomography (PET). Anticancer Res. 2001;21:3609–14.PubMedGoogle Scholar
  44. 44.
    Brenner W, Eary JF, Hwang W, Vernon C, Conrad EU. Risk assessment in liposarcoma patients based on FDG PET imaging. Eur J Nucl Med Mol Imaging. 2006;33:1290–5.CrossRefPubMedGoogle Scholar
  45. 45.
    Murphey MD, Ruble CM, Tyszko SM, Zbojniewicz AM, Potter BK, Miettinen M. From the archives of the AFIP: musculoskeletal fibromatoses: radiologic-pathologic correlation. Radiographics. 2009;29:2143–73.CrossRefPubMedGoogle Scholar
  46. 46.
    Kleis M, Daldrup-Link H, Matthay K, Goldsby R, Lu Y, Schuster T, Schreck C, Chu PW, Hawkins RA, Franc BL. Diagnostic value of PET/CT for the staging and restaging of pediatric tumors. Eur J Nucl Med Mol Imaging. 2009;36:23–36.CrossRefPubMedGoogle Scholar
  47. 47.
    Kasper B, Dimitrakopoulou-Strauss A, Strauss LG, Hohenberger P. Positron emission tomography in patients with aggressive fibromatosis/desmoid tumours undergoing therapy with imatinib. Eur J Nucl Med Mol Imaging. 2010;37:1876–82.CrossRefPubMedGoogle Scholar
  48. 48.
    Tateishi U, Yamaguchi U, Maeda T, Seki K, Terauchi T, Kawai A, Arai Y, Moriyama N, Kakizoe T. Staging performance of carbon-11 choline positron emission tomography/computed tomography in patients with bone and soft tissue sarcoma: comparison with conventional imaging. Cancer Sci. 2006;97:1125–8.CrossRefPubMedGoogle Scholar
  49. 49.
    Treglia G, Giovannini E, Di Franco D, Calcagni ML, Rufini V, Picchio M, Giordano A. The role of positron emission tomography using carbon-11 and fluorine-18 choline in tumors other than prostate cancer: a systematic review. Ann Nucl Med. 2012;26:451–61.CrossRefPubMedGoogle Scholar
  50. 50.
    Buck AK, Herrmann K, Büschenfelde CM, Juweid ME, Bischoff M, Glatting G, Weirich G, Möller P, Wester HJ, Scheidhauer K, Dechow T, Peschel C, Schwaiger M, Reske SN. Imaging bone and soft tissue tumors with the proliferation marker [18F]fluorodeoxythymidine. Clin Cancer Res. 2008;14:2970–7.CrossRefPubMedGoogle Scholar
  51. 51.
    Rajendran JG, Wilson DC, Conrad EU, Peterson LM, Bruckner JD, Rasey JS, Chin LK, Hofstrand PD, Grierson JR, Eary JF, Krohn KA. [18F]FMISO and [18F]FDG PET imaging in soft tissue sarcomas: correlation of hypoxia, metabolism and VEGF expression. Eur J Nucl Med Mol Imaging. 2003;30:695–704.CrossRefPubMedGoogle Scholar
  52. 52.
    Inoue T, Kim EE, Wong FC, Yang DJ, Bassa P, Wong WH, Korkmaz M, Tansey W, Hicks K, Podoloff DA. Comparison of fluorine-18-fluorodeoxyglucose and carbon-11-methionine PET in detection of malignant tumors. J Nucl Med. 1996;37:1472–6.PubMedGoogle Scholar
  53. 53.
    Eiber M, Takei T, Souvatzoglou M, Mayerhoefer ME, Fürst S, Gaertner FC, Loeffelbein DJ, Rummeny EJ, Ziegler SI, Schwaiger M, Beer AJ. Performance of whole-body integrated 18F-FDG PET/MR in comparison to PET/CT for evaluation of malignant bone lesions. J Nucl Med. 2014;55:191–7.CrossRefPubMedGoogle Scholar
  54. 54.
    Kaneta T. A brief review of Japanese guidelines for the clinical use of (18)F-FDG-PET/MRI 2012 (Ver 1.0). Ann Nucl Med. 2013;27:309–13.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Ukihide Tateishi
    • 1
    • 2
  • Yusuke Ogihara
    • 1
  • Yoshio Kitazume
    • 1
  • Mitsuhiro Kishino
    • 1
  • Bae Hyeyeol
    • 1
  1. 1.Department of Diagnostic RadiologyTokyo Medical and Dental UniversityTokyoJapan
  2. 2.Department of Diagnostic Radiology and Nuclear MedicineTokyo Medical and Dental University Graduate School of MedicineTokyoJapan

Personalised recommendations