Advertisement

Cell Therapies: New Frontier for the Management of Diabetic Foot Ulceration

  • Olga Kashpur
  • Avi Smith
  • Ryan Imbriaco
  • Bradford Greaves
  • Behzad Gerami-Naini
  • Jonathan A. Garlick
Chapter
Part of the Contemporary Diabetes book series (CDI)

Abstract

While stem cells hold great potential to improve existing therapies for diabetic foot ulcers, their promise has not been fully exploited. There is a critical need to further develop existing sources of adult stem cells known to improve DFU healing and to test novel, replenishing sources of pluripotent stem cells (iPSCs) that may overcome impaired wound repair when delivered to DFUs. This chapter summarizes the capacity of multiple adult stem cell sources, including bone marrow-derived mesenchymal stem cells, hematopoetic stem cells, endothelial progenitor cells, bone marrow and peripheral blood mononuclear cells, and adipose stem cells, to improve DFU healing outcomes in preclinical animal models and human clinical trials. We also review novel technologies, such as iPSC-derived cell sources, CRISPR gene editing, and 3D human tissue models, to generate and modify stem cells that can give rise to multiple cell types needed for DFU healing and to streamline their preclinical testing. By further understanding how stem cells and other new technologies can best stimulate tissue regeneration, we will be able to overcome existing barriers to improve DFU therapies.

Keywords

Wound healing Diabetic foot ulcer Stem cell therapy Bone marrow-derived mesenchymal stem cells Hematopoetic stem cells Endothelial progenitor cells Bone marrow-derived mononuclear cells Peripheral blood mononuclear cells Endothelial progenitor cells Adipose stem cells Induced pluripotent stem cells 3D human skin equivalents 

Abbreviations

ASCs

Adipose-derived stem cells

BM-MNCs

Bone marrow-derived mononuclear cells

BM-MSCs

Bone marrow-derived mesenchymal stem cells

DFU

Diabetic foot ulcers

ECM

Extracellular matrix

EPCs

Endothelial progenitor cells

HSCs

Hematopoetic stem cells

HSEs

Human skin equivalents

iPSCs

Induced pluripotent stem cells

PBMCs

Peripheral blood mononuclear cells

UCB

Umbilical cord blood

References

  1. 1.
    Gurtner GC, Werner S, Barrandon Y, Longaker MT. Wound repair and regeneration. Nature. 2008;453(7193):314–21.PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Martin P. Wound healing—aiming for perfect skin regeneration. Science. 1997;276(5309):75–81.PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Blumberg SN, Berger A, Hwang L, Pastar I, Warren SM, Chen W. The role of stem cells in the treatment of diabetic foot ulcers. Diabetes Res Clin Pract. 2012;96(1):1–9.PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Game FL, Hinchliffe RJ, Apelqvist J, Armstrong DG, Bakker K, Hartemann A, et al. A systematic review of interventions to enhance the healing of chronic ulcers of the foot in diabetes. Diabetes Metab Res. 2012;28:119–41.CrossRefGoogle Scholar
  5. 5.
    Ayuk SM, Houreld NN, Abrahamse H. Collagen production in diabetic wounded fibroblasts in response to low-intensity laser irradiation at 660 nm. Diabetes Technol Ther. 2012;14(12):1110–7.PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Berlanga-Acosta J. Diabetic lower extremity wounds: the rationale for growth factors-based infiltration treatment. Int Wound J. 2011;8(6):612–20.PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Hehenberger K, Hansson A. High glucose-induced growth factor resistance in human fibroblasts can be reversed by antioxidants and protein kinase C-inhibitors. Cell Biochem Funct. 1997;15(3):197–201.PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Kolluru GK, Bir SC, Kevil CG. Endothelial dysfunction and diabetes: effects on angiogenesis, vascular remodeling, and wound healing. Int J Vasc Medi. 2012;2012:918267.Google Scholar
  9. 9.
    Mendez MV, Stanley A, Phillips T, Murphy M, Menzoian JO, Park HY. Fibroblasts cultured from distal lower extremities in patients with venous reflux display cellular characteristics of senescence. J Vasc Surg. 1998;28(6):1040–50.PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Nambu M, Ishihara M, Kishimoto S, Yanagibayashi S, Yamamoto N, Azuma R, et al. Stimulatory effect of autologous adipose tissue-derived stromal cells in an atelocollagen matrix on wound healing in diabetic db/db mice. J Tissue Eng. 2011;2011:158105.PubMedPubMedCentralGoogle Scholar
  11. 11.
    Schultz GS, Davidson JM, Kirsner RS, Bornstein P, Herman IM. Dynamic reciprocity in the wound microenvironment. Wound Repair Regen. 2011;19(2):134–48.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Usui ML, Mansbridge JN, Carter WG, Fujita M, Olerud JE. Keratinocyte migration, proliferation, and differentiation in chronic ulcers from patients with diabetes and normal wounds. J Histochem Cytochem. 2008;56(7):687–96.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Zhong QL, Liu FR, Liu DW, Peng Y, Zhang XR. Expression of beta-catenin and cyclin D1 in epidermal stem cells of diabetic rats. Mol Med Rep. 2011;4(2):377–81.PubMedGoogle Scholar
  14. 14.
    Kataoka K, Medina RJ, Kageyama T, Miyazaki M, Yoshino T, Makino T, et al. Participation of adult mouse bone marrow cells in reconstitution of skin. Am J Pathol. 2003;163(4):1227–31.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Tecilazich F, Dinh T, Pradhan-Nabzdyk L, Leal E, Tellechea A, Kafanas A, et al. Role of endothelial progenitor cells and inflammatory cytokines in healing of diabetic foot ulcers. PLoS One. 2013;8(12):e83314.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Thom SR, Hampton M, Troiano MA, Mirza Z, Malay DS, Shannon S, et al. Measurements of CD34+/CD45-dim stem cells predict healing of diabetic neuropathic wounds. Diabetes. 2016;65(2):486–97.PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Wu YJ, Wang JF, Scott PG, Tredget EE. Bone marrow-derived stem cells in wound healing: a review. Wound Repair Regen. 2007;15:S18–26.PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Badiavas EV, Falanga V. Treatment of chronic wounds with bone marrow-derived cells. Arch Dermatol. 2003;139(4):510–6.PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Chen LW, Tredget EE, Wu PYG, Wu YJ. Paracrine factors of mesenchymal stem cells recruit macrophages and endothelial lineage cells and enhance wound healing. PLoS One. 2008;3(4):e1886.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Suh W, Kim KL, Kim JM, Shin IS, Lee YS, Lee JY, et al. Transplantation of endothelial progenitor cells accelerates dermal wound healing with increased recruitment of monocytes/macrophages and neovascularization. Stem Cells. 2005;23(10):1571–8.PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Crisan M, Yap S, Casteilla L, Chen CW, Corselli M, Park TS, et al. A perivascular origin for mesenchymal stem cells in multiple human organs. Cell Stem Cell. 2008;3(3):301–13.PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Dash SN, Dash NR, Guru B, Mohapatra PC. Towards reaching the target: clinical application of mesenchymal stem cells for diabetic foot ulcers. Rejuvenation Res. 2014;17(1):40–53.PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Jackson WM, Nesti LJ, Tuan RS. Concise review: clinical translation of wound healing therapies based on mesenchymal stem cells. Stem Cells Transl Med. 2012;1(1):44–50.PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 2006;8(4):315–7.CrossRefGoogle Scholar
  25. 25.
    Sasaki M, Abe R, Fujita Y, Ando S, Inokuma D, Shimizu H. Mesenchymal stem cells are recruited into wounded skin and contribute to wound repair by transdifferentiation into multiple skin cell type. J Immunol. 2008;180(4):2581–7.PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Sener LT, Albeniz I. Challenge of mesenchymal stem cells against diabetic foot ulcer. Curr Stem Cell Res Ther. 2015;10(6):530–4.PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Hocking AM, Gibran NS. Mesenchymal stem cells: paracrine signaling and differentiation during cutaneous wound repair. Exp Cell Res. 2010;316(14):2213–9.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Kim CH, Lee JH, Won JH, Cho MK. Mesenchymal stem cells improve wound healing in vivo via early activation of matrix metalloproteinase-9 and vascular endothelial growth factor. J Korean Med Sci. 2011;26(6):726–33.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    McFarlin K, Gao X, Liu YB, Dulchavsky DS, Kwon D, Arbab AS, et al. Bone marrow-derived mesenchymal stromal cells accelerate wound healing in the rat. Wound Repair Regen. 2006;14(4):471–8.PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Stoff A, Rivera AA, Banerjee NS, Moore ST, Numnum TM, Espinosa-De-Los-Monteros A, et al. Promotion of incisional wound repair by human mesenchymal stem cell transplantation. Exp Dermatol. 2009;18(4):362–9.PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Mansilla E, Spretz R, Larsen G, Nunez L, Drago H, Sturla F, et al. Outstanding survival and regeneration process by the use of intelligent acellular dermal matrices and mesenchymal stem cells in a burn pig model. Transpl Proc. 2010;42(10):4275–8.CrossRefGoogle Scholar
  32. 32.
    Javazon EH, Keswani SG, Badillo AT, Crombleholme TM, Zoltick PW, Radu AP, et al. Enhanced epithelial gap closure and increased angiogenesis in wounds of diabetic mice treated with adult murine bone marrow stromal progenitor cells. Wound Repair Regen. 2007;15(3):350–9.PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Wu YJ, Chen L, Scott PG, Tredget EE. Mesenchymal stem cells enhance wound healing through differentiation and angiogenesis. Stem Cells. 2007;25(10):2648–59.PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Amin AH, Abd Elmageed ZY, Nair D, Partyka MI, Kadowitz PJ, Belmadani S, et al. Modified multipotent stromal cells with epidermal growth factor restore vasculogenesis and blood flow in ischemic hind-limb of type II diabetic mice. Lab Invest. 2010;90(7):985–96.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Wan J, Xia L, Liang W, Liu Y, Cai Q. Transplantation of bone marrow-derived mesenchymal stem cells promotes delayed wound healing in diabetic rats. J Diabetes Res. 2013;2013:647107.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Kuo YR, Wang CT, Cheng JT, Wang FS, Chiang YC, Wang CJ. Bone marrow-derived mesenchymal stem cells enhanced diabetic wound healing through recruitment of tissue regeneration in a rat model of Streptozotocin-induced diabetes. Plast Reconstr Surg. 2011;128(4):872–80.PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Falanga V, Iwamoto S, Chartier M, Yufit T, Butmarc J, Kouttab N, et al. Autologous bone marrow-derived cultured mesenchymal stem cells delivered in a fibrin spray accelerate healing in murine and human cutaneous wounds. Tissue Eng. 2007;13(6):1299–312.PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Yoshikawa T, Mitsuno H, Nonaka I, Sen Y, Kawanishi K, Inada Y, et al. Wound therapy by marrow mesenchymal cell transplantation. Plast Reconstr Surg. 2008;121(3):860–77.PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Dash NR, Dash SN, Routray P, Mohapatra S, Mohapatra PC. Targeting nonhealing ulcers of lower extremity in human through autologous bone marrow-derived Mesenchymal stem cells. Rejuvenation Res. 2009;12(5):359–66.PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Lu DB, Chen B, Liang ZW, Deng WQ, Jiang YZ, Li SF, et al. Comparison of bone marrow mesenchymal stem cells with bone marrow-derived mononuclear cells for treatment of diabetic critical limb ischemia and foot ulcer: a double-blind, randomized, controlled trial. Diabetes Res Clin Pract. 2011;92(1):26–36.PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Qin HL, Zhu XH, Zhang B, Zhou L, Wang WY. Clinical evaluation of human umbilical cord mesenchymal stem cell transplantation after angioplasty for diabetic foot. Exp Clin Endocrinol Diabetes. 2016;124(8):497–503.PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Awad O, Dedkov EI, Jiao CH, Bloomer S, Tomanek RJ, Schatteman GC. Differential healing activities of CD34(+) and CD14(+) endothelial cell progenitors. Arterioscler Thromb Vasc Biol. 2006;26(4):758–64.PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Tanaka R, Masuda H, Kato S, Imagawa K, Kanabuchi K, Nakashioya C, et al. Autologous G-CSF-mobilized peripheral blood CD34(+) cell therapy for diabetic patients with chronic nonhealing ulcer. Cell Transplant. 2014;23(2):167–79.PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Pedroso DCS, Tellechea A, Moura L, Fidalgo-Carvalho I, Duarte J, Carvalho E, et al. Improved survival, vascular differentiation and wound healing potential of stem cells co-cultured with endothelial cells. PLoS One. 2011;6(1):e16114.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Viswanathan C, Shetty P, Sarang S, Cooper K, Ghosh D, Bal A. Role of combination cell therapy in non-healing diabetic ulcers in patients with severe peripheral arterial disease – a preliminary report on five cases. J Diabetic Foot Complications. 2013;5(1):1–14.Google Scholar
  46. 46.
    Tam JCW, Ko CH, Lau KM, To MH, Kwok HF, Siu WS, et al. Enumeration and functional investigation of endothelial progenitor cells in neovascularization of diabetic foot ulcer rats with a Chinese 2-herb formula. J Diabetes. 2015;7(5):718–28.PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Kulwas A, Drela E, Jundzill W, Goralczyk B, Ruszkowska-Ciastek B, Rosc D. Circulating endothelial progenitor cells and angiogenic factors in diabetes complicated diabetic foot and without foot complications. J Diabetes Complications. 2015;29(5):686–90.PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Drela E, Stankowska K, Kulwas A, Rosc D. Endothelial progenitor cells in diabetic foot syndrome. Adv Clin Exp Med. 2012;21(2):249–54.PubMedPubMedCentralGoogle Scholar
  49. 49.
    Nishimura Y, Ii M, Qin G, Hamada H, Asai J, Takenaka H, et al. CXCR4 antagonist AMD3100 accelerates impaired wound healing in diabetic mice. J Invest Dermatol. 2012;132(3 Pt 1):711–20.PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Park S, Tepper OM, Galiano RD, Capla JM, Baharestani S, Kleinman ME, et al. Selective recruitment of endothelial progenitor cells to ischemic tissues with increased neovascularization. Plast Reconstr Surg. 2004;113(1):284–93.PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Marrotte EJ, Chen DD, Hakim JS, Chen AF. Manganese superoxide dismutase expression in endothelial progenitor cells accelerates wound healing in diabetic mice. J Clin Invest. 2010;120(12):4207–19.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Asai J, Takenaka H, Ii M, Asahi M, Kishimoto S, Katoh N, et al. Topical application of ex vivo expanded endothelial progenitor cells promotes vascularisation and wound healing in diabetic mice. Int Wound J. 2013;10(5):527–33.PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Silva EA, Kim ES, Kong HJ, Mooney DJ. Material-based deployment enhances efficacy of endothelial progenitor cells. Proc Natl Acad Sci USA. 2008;105(38):14347–52.PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Barcelos LS, Duplaa C, Krankel N, Graiani G, Invernici G, Katare R, et al. Human CD133(+) progenitor cells promote the healing of diabetic ischemic ulcers by paracrine stimulation of angiogenesis and activation of Wnt signaling. Circ Res. 2009;104(9):1095–U199.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Kim JY, Song SH, Kim KL, Ko JJ, Im JE, Yie SW, et al. Human cord blood-derived endothelial progenitor cells and their conditioned media exhibit therapeutic equivalence for diabetic wound healing. Cell Transplant. 2010;19(12):1635–44.PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Lee MJ, Kim J, Lee KI, Shin JM, Chae JI, Chung HM. Enhancement of wound healing by secretory factors of endothelial precursor cells derived from human embryonic stem cells. Cytotherapy. 2011;13(2):165–78.PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Badiavas EV, Ford D, Liu P, Kouttab N, Morgan J, Richards A, et al. Long-term bone marrow culture and its clinical potential in chronic wound healing. Wound Repair Regen. 2007;15(6):856–65.PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Asahara T, Murohara T, Sullivan A, Silver M, vanderZee R, Li T, et al. Isolation of putative progenitor endothelial cells for angiogenesis. Science. 1997;275(5302):964–7.PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Zhang M, Huang B. The multi-differentiation potential of peripheral blood mononuclear cells. Stem Cell Res Ther. 2012;3(6):48.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Zvaifler NJ, Marinova-Mutafchieva L, Adams G, Edwards CJ, Moss J, Burger JA, et al. Mesenchymal precursor cells in the blood of normal individuals. Arthritis Res. 2000;2(6):477–88.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Damon LE, Damon LE. Mobilization of hematopoietic stem cells into the peripheral blood. Expert Rev Hematol. 2009;2(6):717–33.PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    Yang M, Sheng LL, Zhang TR, Li QF. Stem cell therapy for lower extremity diabetic ulcers: where do we stand? Biomed Res Int. 2013;2013:462179.PubMedPubMedCentralGoogle Scholar
  63. 63.
    Ruiz-Salmeron R, de la Cuesta-Diaz A, Constantino-Bermejo M, Perez-Camacho I, Marcos-Sanchez F, Hmadcha A, et al. Angiographic demonstration of neoangiogenesis after intra-arterial infusion of autologous bone marrow mononuclear cells in diabetic patients with critical limb ischemia. Cell Transplant. 2011;20(10):1629–39.PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Ravari H, Hamidi-Almadari D, Salimifar M, Bonakdaran S, Parizadeh MR, Koliakos G. Treatment of non-healing wounds with autologous bone marrow cells, platelets, fibrin glue and collagen matrix. Cytotherapy. 2011;13(6):705–11.PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Humpert PM, Bartsch U, Konrade I, Hammes HP, Morcos M, Kasper M, et al. Locally applied mononuclear bone marrow cells restore angiogenesis and promote wound healing in a type 2 diabetic patient. Exp Clin Endocrinol Diabetes. 2005;113(9):538–40.PubMedCrossRefGoogle Scholar
  66. 66.
    Kirana S, Stratmann B, Lammers D, Negrean M, Stirban A, Minartz P, et al. Wound therapy with autologous bone marrow stem cells in diabetic patients with ischaemia-induced tissue ulcers affecting the lower limbs. Int J Clin Pract. 2007;61(4):690–2.PubMedCrossRefGoogle Scholar
  67. 67.
    Sivan-Loukianova E, Awad OA, Stepanovic B, Bickenbach J, Schatteman GC. CD34+blood cells accelerate vascularization and healing of diabetic mouse skin wounds. J Vasc Res. 2003;40(4):368–77.PubMedCrossRefGoogle Scholar
  68. 68.
    Ueno K, Takeuchi Y, Samura M, Tanaka Y, Nakamura T, Nishimoto A, et al. Treatment of refractory cutaneous ulcers with mixed sheets consisting of peripheral blood mononuclear cells and fibroblasts. Sci Rep. 2016;6:28538.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Ozturk A, Kucukardali Y, Tangi F, Erikci A, Uzun G, Bashekim C, et al. Therapeutical potential of autologous peripheral blood mononuclear cell transplantation in patients with type 2 diabetic critical limb ischemia. J Diabetes Complications. 2012;26(1):29–33.PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    Dubsky M, Jirkovska A, Bem R, Fejfarova V, Pagacova L, Sixta B, et al. Both autologous bone marrow mononuclear cell and peripheral blood progenitor cell therapies similarly improve ischaemia in patients with diabetic foot in comparison with control treatment. Diabetes Metab Res Rev. 2013;29(5):369–76.PubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    Kirana S, Stratmann B, Prante C, Prohaska W, Koerperich H, Lammers D, et al. Autologous stem cell therapy in the treatment of limb ischaemia induced chronic tissue ulcers of diabetic foot patients. Int J Clin Pract. 2012;66(4):384–93.PubMedCrossRefPubMedCentralGoogle Scholar
  72. 72.
    Schaffler A, Buchler C. Concise review: adipose tissue-derived stromal cells - basic and clinical implications for novel cell-based therapies. Stem Cells. 2007;25(4):818–27.PubMedCrossRefPubMedCentralGoogle Scholar
  73. 73.
    Fraser JK, Wulur I, Alfonso Z, Hedrick MH. Fat tissue: an underappreciated source of stem cells for biotechnology. Trends Biotechnol. 2006;24(4):150–4.PubMedCrossRefPubMedCentralGoogle Scholar
  74. 74.
    Koci Z, Turnovcova K, Dubsky M, Baranovicova L, Holan V, Chudickova M, et al. Characterization of human adipose tissue-derived stromal cells isolated from diabetic patient's distal limbs with critical ischemia. Cell Biochem Funct. 2014;32(7):597–604.PubMedCrossRefPubMedCentralGoogle Scholar
  75. 75.
    Zuk PA, Zhu M, Mizuno H, Huang J, Futrell JW, Katz AJ, et al. Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng. 2001;7(2):211–28.PubMedCrossRefPubMedCentralGoogle Scholar
  76. 76.
    Ebrahimian TG, Pouzoulet F, Squiban C, Buard V, Andre M, Cousin B, et al. Cell therapy based on adipose tissue-derived stromal cells promotes physiological and pathological wound healing. Arterioscler Thromb Vasc Biol. 2009;29(4):503–10.PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    Huang SP, Huang CH, Shyu JF, Lee HS, Chen SG, Chan JYH, et al. Promotion of wound healing using adipose-derived stem cells in radiation ulcer of a rat model. J Biomed Sci. 2013;20(1):51.PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Hanson SE, Kleinbeck KR, Cantu D, Kim J, Bentz ML, Faucher LD, et al. Local delivery of allogeneic bone marrow and adipose tissue-derived mesenchymal stromal cells for cutaneous wound healing in a porcine model. J Tissue Eng Regen Med. 2016;10(2):E90–E100.PubMedCrossRefPubMedCentralGoogle Scholar
  79. 79.
    Shi RF, Jin YP, Cao CW, Han SL, Shao XW, Meng LY, et al. Localization of human adipose-derived stem cells and their effect in repair of diabetic foot ulcers in rats. Stem Cell Res Ther. 2016;7(1):155.PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Di Rocco G, Gentile A, Antonini A, Ceradini F, Wu JC, Capogrossi MC, et al. Enhanced healing of diabetic wounds by topical administration of adipose tissue-derived stromal cells overexpressing stromal-derived factor-1: biodistribution and engraftment analysis by bioluminescent imaging. Stem Cells Int. 2010;304562:2011.Google Scholar
  81. 81.
    Maharlooei MK, Bagheri M, Solhjou Z, Jahromi BM, Akrami M, Rohani L, et al. Adipose tissue derived mesenchymal stem cell (AD-MSC) promotes skin wound healing in diabetic rats. Diabetes Res Clin Pract. 2011;93(2):228–34.PubMedCrossRefPubMedCentralGoogle Scholar
  82. 82.
    Nie CL, Yang DP, Xu J, Si ZX, Jin XM, Zhang JW. Locally administered adipose-derived stem cells accelerate wound healing through differentiation and vasculogenesis. Cell Transplant. 2011;20(2):205–16.PubMedCrossRefPubMedCentralGoogle Scholar
  83. 83.
    Zografou A, Papadopoulos O, Tsigris C, Kavantzas N, Michalopoulos E, Chatzistamatiou T, et al. Autologous transplantation of adipose-derived stem cells enhances skin graft survival and wound healing in diabetic rats. Ann Plast Surg. 2013;71(2):225–32.PubMedCrossRefPubMedCentralGoogle Scholar
  84. 84.
    Cianfarani F, Toietta G, Di Rocco G, Cesareo E, Zambruno G, Odorisio T. Diabetes impairs adipose tissue-derived stem cell function and efficiency in promoting wound healing. Wound Repair Regen. 2013;21(4):545–53.PubMedCrossRefPubMedCentralGoogle Scholar
  85. 85.
    Lin YC, Grahovac T, Oh SJ, Ieraci M, Rubin JP, Marra KG. Evaluation of a multi-layer adipose-derived stem cell sheet in a full-thickness wound healing model. Acta Biomater. 2013;9(2):5243–50.PubMedCrossRefPubMedCentralGoogle Scholar
  86. 86.
    McLaughlin MM, Marra KG. The use of adipose-derived stem cells as sheets for wound healing. Organogenesis. 2013;9(2):79–81.PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Cerqueira MT, Pirraco RP, Santos TC, Rodrigues DB, Frias AM, Martins AR, et al. Human adipose stem cells cell sheet constructs impact epidermal morphogenesis in full-thickness excisional wounds. Biomacromolecules. 2013;14(11):3997–4008.PubMedCrossRefPubMedCentralGoogle Scholar
  88. 88.
    Kato Y, Iwata T, Morikawa S, Yamato M, Okano T, Uchigata Y. Allogeneic transplantation of an adipose-derived stem cell sheet combined with artificial skin accelerates wound healing in a rat wound model of type 2 diabetes and obesity. Diabetes. 2015;64(8):2723–34.PubMedCrossRefPubMedCentralGoogle Scholar
  89. 89.
    Jiang YA, Chen B, Liu YB, Zhufu ZY, Yan X, Hou XL, et al. Effect of collagen scaffold with adipose-derived stromal vascular fraction cells on diabetic wound healing: a study in a diabetic porcine model. Tissue Eng Regen Med. 2013;10(4):192–9.CrossRefGoogle Scholar
  90. 90.
    Lee HC, An SG, Lee HW, Park JS, Cha KS, Hong TJ, et al. Safety and effect of adipose tissue-derived stem cell implantation in patients with critical limb ischemia - a pilot study. Circ J. 2012;76(7):1750–60.PubMedCrossRefPubMedCentralGoogle Scholar
  91. 91.
    Marino G, Moraci M, Armenia E, Orabona C, Sergio R, De Sena G, et al. Therapy with autologous adipose-derived regenerative cells for the care of chronic ulcer of lower limbs in patients with peripheral arterial disease. J Surg Res. 2013;185(1):36–44.PubMedCrossRefPubMedCentralGoogle Scholar
  92. 92.
    Raposio E, Bertozzi N, Bonomini S, Bernuzzi G, Formentini A, Grignaffini E, et al. Adipose-derived stem cells added to platelet-rich plasma for chronic skin ulcer therapy. Wounds. 2016;28(4):126–31.PubMedGoogle Scholar
  93. 93.
    Hanna J, Cheng AW, Saha K, Kim J, Lengner CJ, Soldner F, et al. Human embryonic stem cells with biological and epigenetic characteristics similar to those of mouse ESCs. Proc Natl Acad Sci USA. 2010;107(20):9222–7.PubMedCrossRefGoogle Scholar
  94. 94.
    Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126(4):663–76.PubMedCrossRefPubMedCentralGoogle Scholar
  95. 95.
    Aasen T, Raya A, Barrero MJ, Garreta E, Consiglio A, Gonzalez F, et al. Efficient and rapid generation of induced pluripotent stem cells from human keratinocytes. Nat Biotechnol. 2008;26(11):1276–84.PubMedCrossRefPubMedCentralGoogle Scholar
  96. 96.
    Anchan RM, Quaas P, Gerami-Naini B, Bartake H, Griffin A, Zhou YL, et al. Amniocytes can serve a dual function as a source of iPS cells and feeder layers. Hum Mol Genet. 2011;20(5):962–74.PubMedCrossRefPubMedCentralGoogle Scholar
  97. 97.
    Narsinh KH, Jia FJ, Robbins RC, Kay MA, Longaker MT, Wu JC. Generation of adult human induced pluripotent stem cells using nonviral minicircle DNA vectors. Nat Protoc. 2011;6(1):78–88.PubMedCrossRefPubMedCentralGoogle Scholar
  98. 98.
    Ono M, Hamada Y, Horiuchi Y, Matsuo-Takasaki M, Imoto Y, Satomi K, et al. Generation of induced pluripotent stem cells from human nasal epithelial cells using a Sendai virus vector. PLoS One. 2012;7(8):e42855.PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007;131(5):861–72.PubMedCrossRefGoogle Scholar
  100. 100.
    Utikal J, Maherali N, Kulalert W, Hochedlinger K. Sox2 is dispensable for the reprogramming of melanocytes and melanoma cells into induced pluripotent stem cells. J Cell Sci. 2009;122(19):3502–10.PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Zhou T, Benda C, Duzinger S, Huang YH, Li XY, Li YH, et al. Generation of induced pluripotent stem cells from urine. J Am Soc Nephrol. 2011;22(7):1221–8.PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Loh YH, Hartung O, Li H, Guo CG, Sahalie JM, Manos PD, et al. Reprogramming of T cells from human peripheral blood. Cell Stem Cell. 2010;7(1):15–9.PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Stepniewski J, Kachamakova-Trojanowska N, Ogrocki D, Szopa M, Matlok M, Beilharz M, et al. Induced pluripotent stem cells as a model for diabetes investigation. Sci Rep. 2015;5:8597.PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Teo AKK, Windmueller R, Johansson BB, Dirice E, Njolstad PR, Tjora E, et al. Derivation of human induced pluripotent stem cells from patients with maturity onset diabetes of the young. J Biol Chem. 2013;288(8):5353–6.PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Kudva YC, Ohmine S, Greder LV, Dutton JR, Armstrong A, De Lamo JG, et al. Transgene-free disease-specific induced pluripotent stem cells from patients with type 1 and type 2 diabetes. Stem Cells Transl Med. 2012;1(6):451–61.PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Maehr R, Chen SB, Snitow M, Ludwig T, Yagasaki L, Goland R, et al. Generation of pluripotent stem cells from patients with type 1 diabetes. Proc Natl Acad Sci USA. 2009;106(37):15768–73.PubMedCrossRefPubMedCentralGoogle Scholar
  107. 107.
    Thatava T, Kudva YC, Edukulla R, Squillace K, De Lamo JG, Khan YK, et al. Intrapatient variations in type 1 diabetes-specific iPS cell differentiation into insulin-producing cells. Mol Ther. 2013;21(1):228–39.PubMedCrossRefPubMedCentralGoogle Scholar
  108. 108.
    Park IH, Arora N, Huo H, Maherali N, Ahfeldt T, Shimamura A, et al. Disease-specific induced pluripotent stem cells. Cell. 2008;134(5):877–86.PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Gerami-Naini B, Smith A, Maione AG, Kashpur O, Carpinito G, Veves A, et al. Generation of induced pluripotent stem cells from diabetic foot ulcer fibroblasts using a nonintegrative Sendai virus. Cell Reprogram. 2016;18(4):214–23.PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Narazaki G, Uosaki H, Teranishi M, Okita K, Kim B, Matsuoka S, et al. Directed and systematic differentiation of cardiovascular cells from mouse induced pluripotent stem cells. Circulation. 2008;118(5):498–506.PubMedCrossRefPubMedCentralGoogle Scholar
  111. 111.
    Patsch C, Challet-Meylan L, Thoma EC, Urich E, Heckel T, O'Sullivan JF, et al. Generation of vascular endothelial and smooth muscle cells from human pluripotent stem cells. Nat Cell Biol. 2015;17(8):994–U294.PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Yamashita J, Itoh H, Hirashima M, Ogawa M, Nishikawa S, Yurugi T, et al. Flk1-positive cells derived from embryonic stem cells serve as vascular progenitors. Nature. 2000;408(6808):92–6.PubMedCrossRefPubMedCentralGoogle Scholar
  113. 113.
    Zeng LF, Xiao QZ, Margariti A, Zhang ZY, Zampetaki A, Patel S, et al. HDAC3 is crucial in shear- and VEGF-induced stem cell differentiation toward endothelial cells. J Cell Biol. 2006;174(7):1059–69.PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Xie CQ, Ritchie RP, Huang HR, Zhang JF, Chen YE. Smooth muscle cell differentiation in vitro models and underlying molecular mechanisms. Arterioscler Thromb Vasc Biol. 2011;31(7):1485–94.PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Taura D, Noguchi M, Sone M, Hosoda K, Mori E, Okada Y, et al. Adipogenic differentiation of human induced pluripotent stem cells: comparison with that of human embryonic stem cells. FEBS Lett. 2009;583(6):1029–33.PubMedCrossRefPubMedCentralGoogle Scholar
  116. 116.
    van Harmelen V, Astrom G, Stromberg A, Sjolin E, Dicker A, Hovatta O, et al. Differential lipolytic regulation in human embryonic stem cell-derived adipocytes. Obesity. 2007;15(4):846–52.PubMedCrossRefPubMedCentralGoogle Scholar
  117. 117.
    Hematti P. Human embryonic stem cell-derived mesenchymal progenitors: an overview. Embryonic Stem Cell Therapy for Osteo-Degenerative Diseases. 2011;690:163–74.CrossRefGoogle Scholar
  118. 118.
    Hewitt KJ, Shamis Y, Carlson MW, Aberdam E, Aberdam D, Garlick JA. Three-dimensional epithelial tissues generated from human embryonic stem cells. Tissue Eng Part A. 2009;15(11):3417–26.PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Itoh M, Umegaki-Arao N, Guo ZY, Liu L, Higgins CA, Christiano AM. Generation of 3D skin equivalents fully reconstituted from human induced pluripotent stem cells (iPSCs). PLoS One. 2013;8(10):e77673.PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    Aberdam D. Derivation of keratinocyte progenitor cells and skin formation from embryonic stem cells. Int J Dev Biol. 2004;48(2–3):203–6.PubMedCrossRefPubMedCentralGoogle Scholar
  121. 121.
    Green H, Easley K, Iuchi S. Marker succession during the development of keratinocytes from cultured human embryonic stem cells. Proc Natl Acad Sci USA. 2003;100(26):15625–30.PubMedCrossRefPubMedCentralGoogle Scholar
  122. 122.
    Kidwai FK, Liu H, Toh WS, Fu X, Jokhun DS, Movahednia MM, et al. Differentiation of human embryonic stem cells into clinically amenable keratinocytes in an autogenic environment. J Invest Dermatol. 2013;133(3):618–28.PubMedCrossRefPubMedCentralGoogle Scholar
  123. 123.
    Petrova A, Celli A, Jacquet L, Dafou D, Crumrine D, Hupe M, et al. 3D in vitro model of a functional epidermal permeability barrier from human embryonic stem cells and induced pluripotent stem cells. Stem Cell Rep. 2014;2(5):675–89.CrossRefGoogle Scholar
  124. 124.
    Sebastiano V, Zhen HH, Haddad B, Bashkirova E, Melo SP, Wang P, et al. Human COL7A1-corrected induced pluripotent stem cells for the treatment of recessive dystrophic epidermolysis bullosa (vol 6, 267er8, 2014). Sci Transl Med. 2014;6(267):264ra163.PubMedPubMedCentralCrossRefGoogle Scholar
  125. 125.
    Itoh M, Kiuru M, Cairo MS, Christiano AM. Generation of keratinocytes from normal and recessive dystrophic epidermolysis bullosa-induced pluripotent stem cells. Proc Natl Acad Sci USA. 2011;108(21):8797–802.PubMedCrossRefPubMedCentralGoogle Scholar
  126. 126.
    Cai S, Han L, Ao Q, Chan YS, Shum DK. Human induced pluripotent cell-derived sensory neurons for fate commitment of bone marrow-derived Schwann cells: implications for remyelination therapy. Stem Cells Transl Med. 2017;6(2):369–81.PubMedCrossRefPubMedCentralGoogle Scholar
  127. 127.
    Chambers SM, Fasano CA, Papapetrou EP, Tomishima M, Sadelain M, Studer L. Highly efficient neural conversion of human ES and iPS cells by dual inhibition of SMAD signaling. Nat Biotechnol. 2009;27(3):275–80.PubMedPubMedCentralCrossRefGoogle Scholar
  128. 128.
    Du ZW, Chen H, Liu H, Lu J, Qian K, Huang CL, et al. Generation and expansion of highly pure motor neuron progenitors from human pluripotent stem cells. Nat Commun. 2015;6:6626.PubMedPubMedCentralCrossRefGoogle Scholar
  129. 129.
    Young GT, Gutteridge A, De Fox H, Wilbrey AL, Cao LS, Cho LT, et al. Characterizing human stem cell-derived sensory neurons at the single-cell level reveals their ion channel expression and utility in pain research. Mol Ther. 2014;22(8):1530–43.PubMedPubMedCentralCrossRefGoogle Scholar
  130. 130.
    Gruenloh W, Kambal A, Sondergaard C, McGee J, Nacey C, Kalomoiris S, et al. Characterization and in vivo testing of mesenchymal stem cells derived from human embryonic stem cells. Tissue Eng Part A. 2011;17(11–12):1517–25.PubMedPubMedCentralCrossRefGoogle Scholar
  131. 131.
    Lian QZ, Zhang YL, Zhang JQ, Zhang HK, Wu XG, Zhang Y, et al. Functional mesenchymal stem cells derived from human induced pluripotent stem cells attenuate limb ischemia in mice. Circulation. 2010;121(9):1113–U91.PubMedCrossRefPubMedCentralGoogle Scholar
  132. 132.
    Barberi T, Willis LM, Socci ND, Studer L. Derivation of multipotent mesenchymal precursors from human embryonic stem cells. PLoS Med. 2005;2(6):554–60.CrossRefGoogle Scholar
  133. 133.
    Hynes K, Menicanin D, Mrozik K, Gronthos S, Bartold PM. Generation of functional mesenchymal stem cells from different induced pluripotent stem cell lines. Stem Cells Dev. 2014;23(10):1084–96.PubMedCrossRefPubMedCentralGoogle Scholar
  134. 134.
    Villa-Diaz LG, Brown SE, Liu Y, Ross AM, Lahann J, Parent JM, et al. Derivation of mesenchymal stem cells from human induced pluripotent stem cells cultured on synthetic substrates. Stem Cells. 2012;30(6):1174–81.PubMedPubMedCentralCrossRefGoogle Scholar
  135. 135.
    Yu JY, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S, et al. Induced pluripotent stem cell lines derived from human somatic cells. Science. 2007;318(5858):1917–20.PubMedCrossRefPubMedCentralGoogle Scholar
  136. 136.
    Stadtfeld M, Nagaya M, Utikal J, Weir G, Hochedlinger K. Induced pluripotent stem cells generated without viral integration. Science. 2008;322(5903):945–9.PubMedPubMedCentralCrossRefGoogle Scholar
  137. 137.
    Okita K, Matsumura Y, Sato Y, Okada A, Morizane A, Okamoto S, et al. A more efficient method to generate integration-free human iPS cells. Nat Methods. 2011;8(5):409–U52.PubMedCrossRefPubMedCentralGoogle Scholar
  138. 138.
    Yu JY, Hu KJ, Smuga-Otto K, Tian SL, Stewart R, Slukvin II, et al. Human induced pluripotent stem cells free of vector and transgene sequences. Science. 2009;324(5928):797–801.PubMedPubMedCentralCrossRefGoogle Scholar
  139. 139.
    Warren L, Manos PD, Ahfeldt T, Loh YH, Li H, Lau F, et al. Highly efficient reprogramming to pluripotency and directed differentiation of human cells with synthetic modified mRNA. Cell Stem Cell. 2010;7(5):618–30.PubMedPubMedCentralCrossRefGoogle Scholar
  140. 140.
    Gonzalez F, Boue S, Belmonte JCI. Methods for making induced pluripotent stem cells: reprogramming a la carte. Nat Rev Genet. 2011;12(4):231–42.PubMedCrossRefPubMedCentralGoogle Scholar
  141. 141.
    Lin SL, Chang DC, Lin CH, Ying SY, Leu D, Wu DTS. Regulation of somatic cell reprogramming through inducible mir-302 expression. Nucleic Acids Res. 2011;39(3):1054–65.PubMedCrossRefPubMedCentralGoogle Scholar
  142. 142.
    Huangfu DW, Maehr R, Guo WJ, Eijkelenboom A, Snitow M, Chen AE, et al. Induction of pluripotent stem cells by defined factors is greatly improved by small-molecule compounds. Nat Biotechnol. 2008;26(7):795–7.PubMedCrossRefPubMedCentralGoogle Scholar
  143. 143.
    Huangfu DW, Osafune K, Maehr R, Guo W, Eijkelenboom A, Chen S, et al. Induction of pluripotent stem cells from primary human fibroblasts with only Oct4 and Sox2. Nat Biotechnol. 2008;26(11):1269–75.PubMedCrossRefPubMedCentralGoogle Scholar
  144. 144.
    Zhu S, Li W, Zhou H, Wei W, Ambasudhan R, Lin T, et al. Reprogramming of human primary somatic cells by OCT4 and chemical compounds. Cell Stem Cell. 2010;7(6):651–5.PubMedCrossRefPubMedCentralGoogle Scholar
  145. 145.
    Schlaeger TM, Daheron L, Brickler TR, Entwisle S, Chan K, Cianci A, et al. A comparison of non-integrating reprogramming methods. Nat Biotechnol. 2015;33(1):58–U230.PubMedCrossRefPubMedCentralGoogle Scholar
  146. 146.
    Bailey AM. Balancing tissue and tumor formation in regenerative medicine. Sci Transl Med. 2012;4(147):147fs28.PubMedCrossRefPubMedCentralGoogle Scholar
  147. 147.
    Hatzistergos KE, Blum A, Ince T, Grichnik JM, Hare JM. What is the oncologic risk of stem cell treatment for heart disease? Circ Res. 2011;108(11):1300–3.PubMedPubMedCentralCrossRefGoogle Scholar
  148. 148.
    Brivanlou AH, Gage FH, Jaenisch R, Jessell T, Melton D, Rossant J. Setting standards for human embryonic stem cells. Science. 2003;300(5621):913–6.PubMedCrossRefGoogle Scholar
  149. 149.
    Thomson JA. Embryonic stem cell lines derived from human blastocysts (vol 282, pg 1147, 1998). Science. 1998;282(5395):1145–7.PubMedCrossRefPubMedCentralGoogle Scholar
  150. 150.
    Carpenter MK, Frey-Vasconcells J, Rao MS. Developing safe therapies from human pluripotent stem cells. Nat Biotechnol. 2009;27(7):606–13.PubMedCrossRefPubMedCentralGoogle Scholar
  151. 151.
    Inzunza J, Sahlen S, Holmberg K, Stromberg AM, Teerijoki H, Blennow E, et al. Comparative genomic hybridization and karyotyping of human embryonic stem cells reveals the occurrence of an isodicentric X chromosome after long-term cultivation. Mol Hum Reprod. 2004;10(6):461–6.PubMedCrossRefPubMedCentralGoogle Scholar
  152. 152.
    Lund RJ, Narva E, Lahesmaa R. Genetic and epigenetic stability of human pluripotent stem cells. Nat Rev Genet. 2012;13(10):732–44.PubMedCrossRefGoogle Scholar
  153. 153.
    Urnov FD, Rebar EJ, Holmes MC, Zhang HS, Gregory PD. Genome editing with engineered zinc finger nucleases. Nat Rev Genet. 2010;11(9):636–46.PubMedCrossRefPubMedCentralGoogle Scholar
  154. 154.
    Bogdanove AJ, Voytas DF. TAL effectors: customizable proteins for DNA targeting. Science. 2011;333(6051):1843–6.PubMedCrossRefPubMedCentralGoogle Scholar
  155. 155.
    Cong L, Ran FA, Cox D, Lin SL, Barretto R, Habib N, et al. Multiplex genome engineering using CRISPR/Cas systems. Science. 2013;339(6121):819–23.PubMedPubMedCentralCrossRefGoogle Scholar
  156. 156.
    Mali P, Yang LH, Esvelt KM, Aach J, Guell M, DiCarlo JE, et al. RNA-guided human genome engineering via Cas9. Science. 2013;339(6121):823–6.PubMedPubMedCentralCrossRefGoogle Scholar
  157. 157.
    Deveau H, Garneau JE, Moineau S. CRISPR/Cas system and its role in phage-bacteria interactions. Annu Rev Microbiol. 2010;64:475–93.PubMedCrossRefPubMedCentralGoogle Scholar
  158. 158.
    Garneau JE, Dupuis ME, Villion M, Romero DA, Barrangou R, Boyaval P, et al. The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature. 2010;468(7320):67.PubMedCrossRefPubMedCentralGoogle Scholar
  159. 159.
    Horvath P, Barrangou R. CRISPR/Cas, the immune system of bacteria and archaea. Science. 2010;327(5962):167–70.PubMedCrossRefPubMedCentralGoogle Scholar
  160. 160.
    Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science. 2012;337(6096):816–21.PubMedCrossRefPubMedCentralGoogle Scholar
  161. 161.
    Ran FA, Hsu PD, Wright J, Agarwala V, Scott DA, Zhang F. Genome engineering using the CRISPR-Cas9 system. Nat Protoc. 2013;8(11):2281–308.PubMedPubMedCentralCrossRefGoogle Scholar
  162. 162.
    Bonnefond A, Saulnier PJ, Stathopoulou MG, Grarup N, Ndiaye NC, Roussel R, et al. What is the contribution of two genetic variants regulating VEGF levels to type 2 diabetes risk and to microvascular complications? PLoS One. 2013;8(2):e55921.PubMedPubMedCentralCrossRefGoogle Scholar
  163. 163.
    Debette S, Visvikis-Siest S, Chen MH, Ndiaye NC, Song C, Destefano A, et al. Identification of cis- and trans-acting genetic variants explaining up to half the variation in circulating vascular endothelial growth factor levels. Circ Res. 2011;109(5):554–U245.PubMedPubMedCentralCrossRefGoogle Scholar
  164. 164.
    Lu F, Qian Y, Li HZ, Dong MH, Lin YD, Du JB, et al. Genetic variants on chromosome 6p21.1 and 6p22.3 are associated with type 2 diabetes risk: a case-control study in Han Chinese. J Hum Genet. 2012;57(5):320–5.PubMedCrossRefPubMedCentralGoogle Scholar
  165. 165.
    Teo AKK, Gupta MK, Doria A, Kulkarni RN. Dissecting diabetes/metabolic disease mechanisms using pluripotent stem cells and genome editing tools. Mol Metab. 2015;4(9):593–604.PubMedPubMedCentralCrossRefGoogle Scholar
  166. 166.
    Dhamodharan U, Viswanathan V, Krishnamoorthy E, Rajaram R, Aravindhan V. Genetic association of IL-6, TNF-alpha and SDF-1 polymorphisms with serum cytokine levels in diabetic foot ulcer. Gene. 2015;565(1):62–7.PubMedCrossRefPubMedCentralGoogle Scholar
  167. 167.
    Cao J, Wu L, Zhang SM, Lu M, Cheung WK, Cai W, et al. An easy and efficient inducible CRISPR/Cas9 platform with improved specificity for multiple gene targeting. Nucleic Acids Res. 2016;44(19):e149.PubMedPubMedCentralGoogle Scholar
  168. 168.
    Cheng AW, Wang H, Yang H, Shi L, Katz Y, Theunissen TW, et al. Multiplexed activation of endogenous genes by CRISPR-on, an RNA-guided transcriptional activator system. Cell Res. 2013;23(10):1163–71.PubMedPubMedCentralCrossRefGoogle Scholar
  169. 169.
    Kabadi AM, Ousterout DG, Hilton IB, Gersbach CA. Multiplex CRISPR/Cas9-based genome engineering from a single lentiviral vector. Nucleic Acids Res. 2014;42(19):e147.PubMedPubMedCentralCrossRefGoogle Scholar
  170. 170.
    Ousterout DG, Kabadi AM, Thakore PI, Majoros WH, Reddy TE, Gersbach CA. Multiplex CRISPR/Cas9-based genome editing for correction of dystrophin mutations that cause Duchenne muscular dystrophy. Nat Commun. 2015;6:6244.PubMedPubMedCentralCrossRefGoogle Scholar
  171. 171.
    Sakuma T, Nishikawa A, Kume S, Chayama K, Yamamoto T. Multiplex genome engineering in human cells using all-in-one CRISPR/Cas9 vector system. Sci Rep. 2014;4:5400.PubMedPubMedCentralCrossRefGoogle Scholar
  172. 172.
    Sakurai T, Kamiyoshi A, Kawate H, Mori C, Watanabe S, Tanaka M, et al. A non-inheritable maternal Cas9-based multiple-gene editing system in mice. Sci Rep. 2016;6:20011.PubMedPubMedCentralCrossRefGoogle Scholar
  173. 173.
    Shechner DM, Hacisuleyman E, Younger ST, Rinn JL. Multiplexable, locus-specific targeting of long RNAs with CRISPR-display. Nat Methods. 2015;12(7):664.PubMedPubMedCentralCrossRefGoogle Scholar
  174. 174.
    Wang HY, Yang H, Shivalila CS, Dawlaty MM, Cheng AW, Zhang F, et al. One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell. 2013;153(4):910–8.PubMedPubMedCentralCrossRefGoogle Scholar
  175. 175.
    Cho SW, Kim S, Kim Y, Kweon J, Kim HS, Bae S, et al. Analysis of off-target effects of CRISPR/Cas-derived RNA-guided endonucleases and nickases. Genome Res. 2014;24(1):132–41.PubMedPubMedCentralCrossRefGoogle Scholar
  176. 176.
    Frock RL, Hu JZ, Meyers RM, Ho YJ, Kii E, Alt FW. Genome-wide detection of DNA double-stranded breaks induced by engineered nucleases. Nat Biotechnol. 2015;33(2):179–86.PubMedCrossRefPubMedCentralGoogle Scholar
  177. 177.
    Fu YF, Foden JA, Khayter C, Maeder ML, Reyon D, Joung JK, et al. High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nat Biotechnol. 2013;31(9):822.PubMedPubMedCentralCrossRefGoogle Scholar
  178. 178.
    Hsu PD, Scott DA, Weinstein JA, Ran FA, Konermann S, Agarwala V, et al. DNA targeting specificity of RNA-guided Cas9 nucleases. Nat Biotechnol. 2013;31(9):827.PubMedPubMedCentralCrossRefGoogle Scholar
  179. 179.
    Lin YN, Cradick TJ, Brown MT, Deshmukh H, Bao G. CRISPR/Cas9 systems have off-target activity with insertions or deletions between target DNA and guide RNA sequences. Mol Ther. 2014;22:S94–S5.CrossRefGoogle Scholar
  180. 180.
    Pattanayak V, Lin S, Guilinger JP, Ma EB, Doudna JA, Liu DR. High-throughput profiling of off-target DNA cleavage reveals RNA-programmed Cas9 nuclease specificity. Nat Biotechnol. 2013;31(9):839–43.PubMedPubMedCentralCrossRefGoogle Scholar
  181. 181.
    Liu XS, Wu H, Ji X, Stelzer Y, Wu XB, Czauderna S, et al. Editing DNA methylation in the mammalian genome. Cell. 2016;167(1):233.PubMedPubMedCentralCrossRefGoogle Scholar
  182. 182.
    Qi LS, Larson MH, Gilbert LA, Doudna JA, Weissman JS, Arkin AP, et al. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell. 2013;152(5):1173–83.PubMedPubMedCentralCrossRefGoogle Scholar
  183. 183.
    Mandegar MA, Huebsch N, Frolov EB, Shin E, Truong A, Olvera MP, et al. CRISPR interference efficiently induces specific and reversible gene silencing in human iPSCs. Cell Stem Cell. 2016;18(4):541–53.PubMedPubMedCentralCrossRefGoogle Scholar
  184. 184.
    Hewitt KJ, Garlick JA. Cellular reprogramming to reset epigenetic signatures. Mol Aspects Med. 2013;34(4):841–8.PubMedCrossRefPubMedCentralGoogle Scholar
  185. 185.
    Apostolou E, Hochedlinger K. Chromatin dynamics during cellular reprogramming. Nature. 2013;502(7472):462–71.PubMedPubMedCentralCrossRefGoogle Scholar
  186. 186.
    Egles C, Garlick JA, Shamis Y. Three-dimensional human tissue models of wounded skin. Methods Mol Biol. 2010;585:345–59.PubMedPubMedCentralCrossRefGoogle Scholar
  187. 187.
    Wilkins LM, Watson SR, Prosky SJ, Meunier SF, Parenteau NL. Development of a bilayered living skin construct for clinical-applications. Biotechnol Bioeng. 1994;43(8):747–56.PubMedCrossRefGoogle Scholar
  188. 188.
    Carlson MW, Alt-Holland A, Egles C, Garlick JA. Three-dimensional tissue models of normal and diseased skin. Curr Protoc Cell Biol. 2008;Chapter 19:Unit 19 9.PubMedPubMedCentralGoogle Scholar
  189. 189.
    Maione AG, Brudno Y, Stojadinovic O, Park LK, Smith A, Tellechea A, et al. Three-dimensional human tissue models that incorporate diabetic foot ulcer-derived fibroblasts mimic in vivo features of chronic wounds. Tissue Eng Part C Methods. 2015;21(5):499–508.PubMedPubMedCentralCrossRefGoogle Scholar
  190. 190.
    Bhatia SN, Ingber DE. Microfluidic organs-on-chips. Nat Biotechnol. 2014;32(8):760–72.PubMedCrossRefPubMedCentralGoogle Scholar
  191. 191.
    O’Neill AT, Monteiro-Riviere NA, Walker GM. Characterization of microfluidic human epidermal keratinocyte culture. Cytotechnology. 2008;56(3):197–207.PubMedPubMedCentralCrossRefGoogle Scholar
  192. 192.
    DesRochers TM, Shamis Y, Alt-Holland A, Kudo Y, Takata T, Wang GW, et al. The 3D tissue microenvironment modulates DNA methylation and E-cadherin expression in squamous cell carcinoma. Epigenetics. 2012;7(1):34–46.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Olga Kashpur
    • 1
  • Avi Smith
    • 1
  • Ryan Imbriaco
    • 1
  • Bradford Greaves
    • 1
  • Behzad Gerami-Naini
    • 1
  • Jonathan A. Garlick
    • 1
  1. 1.Department of Diagnostic SciencesSchool of Dental Medicine, Tufts UniversityBostonUSA

Personalised recommendations