Advertisement

Chimerism pp 65-79 | Cite as

Prenatal Genetic Testing and Screening

  • Ignatia B. Van den Veyver
Chapter

Abstract

Although the maternal and placental/fetal blood circulations are physically separate, there is bidirectional exchange of small numbers of cells between the mother and fetus. Cell-free fetal DNA also circulates in maternal plasma during pregnancy. Certain cell types can reside in maternal organs for decades (long-term fetal microchimerism), but the majority of circulating fetal cells disappear after delivery (short-term fetal microchimerism). Noninvasive prenatal genetic diagnosis by isolating rare circulating fetal cells and analyzing their DNA content is a promising area of intense investigation but is not yet optimized for clinical use because of the challenges with cell purification. Cell-free fetal DNA in maternal plasma, thought to derive from apoptotic trophoblasts, is already clinically used for noninvasive screening for fetal chromosomal abnormalities and single gene disorders. Other sources of maternal chimerism, such as iatrogenic chimerism from organ and stem-cell transplants, can affect the efficacy and interpretation of cell-free fetal DNA-based screening and testing. Chimerism found in very rare dizygotic monochorionic twins with placental vascular anastomoses can complicate interpretation of prenatal genetic testing results, especially from cord blood samples. These possibilities should be considered when prenatal genetic screening and testing yield unexpected and difficult to interpret results.

Keywords

Chimerism Fetal circulating cells Twins Prenatal genetic diagnosis Cell-free fetal DNA 

References

  1. 1.
    Gammill HS, Nelson JL. Naturally acquired microchimerism. Int J Dev Biol. 2010;54(2-3):531–43.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Starzl TE, Demetris AJ, Murase N, Trucco M, Thomson AW, Rao AS, et al. Chimerism after organ transplantation. Curr Opin Nephrol Hypertens. 1997;6(3):292–8.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Lo YM. Transplantation monitoring by plasma DNA sequencing. Clin Chem. 2011;57(7):941–2.CrossRefPubMedGoogle Scholar
  4. 4.
    Snyder TM, Khush KK, Valantine HA, Quake SR. Universal noninvasive detection of solid organ transplant rejection. Proc Natl Acad Sci U S A. 2011;108(15):6229–34.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Lo YM, Tein MS, Pang CC, Yeung CK, Tong KL, Hjelm NM. Presence of donor-specific DNA in plasma of kidney and liver-transplant recipients. Lancet. 1998;351(9112):1329–30.CrossRefPubMedGoogle Scholar
  6. 6.
    De Vlaminck I, Valantine HA, Snyder TM, Strehl C, Cohen G, Luikart H, et al. Circulating cell-free DNA enables noninvasive diagnosis of heart transplant rejection. Sci Transl Med. 2014;6(241):241ra77.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Utter GH, Owings JT, Lee TH, Paglieroni TG, Reed WF, Gosselin RC, et al. Blood transfusion is associated with donor leukocyte microchimerism in trauma patients. J Trauma. 2004;57(4):702–7. discussion 7–8CrossRefPubMedGoogle Scholar
  8. 8.
    Reed W, Lee TH, Norris PJ, Utter GH, Busch MP. Transfusion-associated microchimerism: a new complication of blood transfusions in severely injured patients. Semin Hematol. 2007;44(1):24–31.CrossRefPubMedGoogle Scholar
  9. 9.
    Bloch EM, Jackman RP, Lee TH, Busch MP. Transfusion-associated microchimerism: the hybrid within. Transfus Med Rev. 2013;27(1):10–20.CrossRefPubMedGoogle Scholar
  10. 10.
    Mayeur Le Bras A, Petit F, Benachi A, Bedel B, Oucherif S, Martinovic J, et al. Confined blood chimerism in a monochorionic dizygotic sex discordant twin pregnancy conceived after induced ovulation. Birth Defects Res A Clin Mol Teratol. 2016;106(4):298–303.CrossRefPubMedGoogle Scholar
  11. 11.
    Walker SP, Meagher S, White SM. Confined blood chimerism in monochorionic dizygous (MCDZ) twins. Prenat Diagn. 2007;27(4):369–72.CrossRefPubMedGoogle Scholar
  12. 12.
    Rodriguez-Buritica D, Rojnueangnit K, Messiaen LM, Mikhail FM, Robin NH. Sex-discordant monochorionic twins with blood and tissue chimerism. Am J Med Genet A. 2015;167A(4):872–7.CrossRefPubMedGoogle Scholar
  13. 13.
    Taglauer ES, Wilkins-Haug L, Bianchi DW. Review: cell-free fetal DNA in the maternal circulation as an indication of placental health and disease. Placenta. 2014;35(Suppl):S64–8.CrossRefPubMedGoogle Scholar
  14. 14.
    Kinder JM, Stelzer IA, Arck PC, Way SS. Immunological implications of pregnancy-induced microchimerism. Nat Rev Immunol. 2017;17(8):483–94.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Nelson JL. The otherness of self: microchimerism in health and disease. Trends Immunol. 2012;33(8):421–7.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Lo YM, Lau TK, Chan LY, Leung TN, Chang AM. Quantitative analysis of the bidirectional fetomaternal transfer of nucleated cells and plasma DNA. Clin Chem. 2000;46(9):1301–9.PubMedGoogle Scholar
  17. 17.
    Stevens AM. Maternal microchimerism in health and disease. Best Pract Res Clin Obstet Gynaecol. 2016;31:121–30.CrossRefPubMedGoogle Scholar
  18. 18.
    Muller SM, Ege M, Pottharst A, Schulz AS, Schwarz K, Friedrich W. Transplacentally acquired maternal T lymphocytes in severe combined immunodeficiency: a study of 121 patients. Blood. 2001;98(6):1847–51.CrossRefPubMedGoogle Scholar
  19. 19.
    Maloney S, Smith A, Furst DE, Myerson D, Rupert K, Evans PC, et al. Microchimerism of maternal origin persists into adult life. J Clin Invest. 1999;104(1):41–7.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Lapaire O, Holzgreve W, Oosterwijk JC, Brinkhaus R, Bianchi DW. Georg Schmorl on trophoblasts in the maternal circulation. Placenta. 2007;28(1):1–5.CrossRefPubMedGoogle Scholar
  21. 21.
    Douglas GW, Thomas L, Carr M, Cullen NM, Morris R. Trophoblast in the circulating blood during pregnancy. Am J Obstet Gynecol. 1959;78:960–73.CrossRefPubMedGoogle Scholar
  22. 22.
    Walknowska J, Conte FA, Grumbach MM. Practical and theoretical implications of fetal-maternal lymphocyte transfer. Lancet. 1969;1(7606):1119–22.CrossRefPubMedGoogle Scholar
  23. 23.
    Schroder J. Transplacental passage of blood cells. J Med Genet. 1975;12(3):230–42.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Herzenberg LA, Bianchi DW, Schroder J, Cann HM, Iverson GM. Fetal cells in the blood of pregnant women: detection and enrichment by fluorescence-activated cell sorting. Proc Natl Acad Sci U S A. 1979;76(3):1453–5.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Iverson GM, Bianchi DW, Cann HM, Herzenberg LA. Detection and isolation of fetal cells from maternal blood using the flourescence-activated cell sorter (FACS). Prenat Diagn. 1981;1(1):61–73.CrossRefPubMedGoogle Scholar
  26. 26.
    Steele CD, Wapner RJ, Smith JB, Haynes MK, Jackson LG. Prenatal diagnosis using fetal cells isolated from maternal peripheral blood: a review. Clin Obstet Gynecol. 1996;39(4):801–13.CrossRefPubMedGoogle Scholar
  27. 27.
    Bianchi DW, Zickwolf GK, Weil GJ, Sylvester S, DeMaria MA. Male fetal progenitor cells persist in maternal blood for as long as 27 years postpartum. Proc Natl Acad Sci U S A. 1996;93(2):705–8.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Evans PC, Lambert N, Maloney S, Furst DE, Moore JM, Nelson JL. Long-term fetal microchimerism in peripheral blood mononuclear cell subsets in healthy women and women with scleroderma. Blood. 1999;93(6):2033–7.PubMedGoogle Scholar
  29. 29.
    O'Donoghue K, Chan J, de la Fuente J, Kennea N, Sandison A, Anderson JR, et al. Microchimerism in female bone marrow and bone decades after fetal mesenchymal stem-cell trafficking in pregnancy. Lancet. 2004;364(9429):179–82.CrossRefPubMedGoogle Scholar
  30. 30.
    Khosrotehrani K, Johnson KL, Cha DH, Salomon RN, Bianchi DW. Transfer of fetal cells with multilineage potential to maternal tissue. JAMA. 2004;292(1):75–80.CrossRefPubMedGoogle Scholar
  31. 31.
    Stevens AM, McDonnell WM, Mullarkey ME, Pang JM, Leisenring W, Nelson JL. Liver biopsies from human females contain male hepatocytes in the absence of transplantation. Lab Investig. 2004;84(12):1603–9.CrossRefPubMedGoogle Scholar
  32. 32.
    Bayes-Genis A, Bellosillo B, de la Calle O, Salido M, Roura S, Ristol FS, et al. Identification of male cardiomyocytes of extracardiac origin in the hearts of women with male progeny: male fetal cell microchimerism of the heart. J Heart Lung Transplant. 2005;24(12):2179–83.CrossRefPubMedGoogle Scholar
  33. 33.
    Lo YM, Corbetta N, Chamberlain PF, Rai V, Sargent IL, Redman CW, et al. Presence of fetal DNA in maternal plasma and serum. Lancet. 1997;350(9076):485–7.CrossRefPubMedGoogle Scholar
  34. 34.
    Wang E, Batey A, Struble C, Musci T, Song K, Oliphant A. Gestational age and maternal weight effects on fetal cell-free DNA in maternal plasma. Prenat Diagn. 2013;33(7):662–6.CrossRefPubMedGoogle Scholar
  35. 35.
    Alberry M, Maddocks D, Jones M, Abdel Hadi M, Abdel-Fattah S, Avent N, et al. Free fetal DNA in maternal plasma in anembryonic pregnancies: confirmation that the origin is the trophoblast. Prenat Diagn. 2007;27(5):415–8.CrossRefPubMedGoogle Scholar
  36. 36.
    Faas BH, de Ligt J, Janssen I, Eggink AJ, Wijnberger LD, van Vugt JM, et al. Non-invasive prenatal diagnosis of fetal aneuploidies using massively parallel sequencing-by-ligation and evidence that cell-free fetal DNA in the maternal plasma originates from cytotrophoblastic cells. Expert Opin Biol Ther. 2012;12(Suppl 1):S19–26.CrossRefPubMedGoogle Scholar
  37. 37.
    Benirschke K, Willes L. Deportation of trophoblastic emboli to maternal lung: a source of cell-free DNA in maternal blood? Chimerism. 2010;1(1):15–8.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Lo YM, Zhang J, Leung TN, Lau TK, Chang AM, Hjelm NM. Rapid clearance of fetal DNA from maternal plasma. Am J Hum Genet. 1999;64(1):218–24.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Grati FR, Malvestiti F, Branca L, Agrati C, Maggi F, Simoni G. Chromosomal mosaicism in the fetoplacental unit. Best Pract Res Clin Obstet Gynaecol. 2017;42:39–52.CrossRefPubMedGoogle Scholar
  40. 40.
    Beaudet AL. Using fetal cells for prenatal diagnosis: History and recent progress. Am J Med Genet C Semin Med Genet. 2016;172(2):123–7.CrossRefPubMedGoogle Scholar
  41. 41.
    Coata G, Picchiassi E, Centra M, Fanetti A, Maula V, Benedetto C, et al. Persistence of male hematopoietic CD34+ cells in the circulation of women does not affect prenatal diagnostic techniques. Am J Obstet Gynecol. 2009;200(5):528.e1–7.CrossRefGoogle Scholar
  42. 42.
    Bianchi DW, Simpson JL, Jackson LG, Elias S, Holzgreve W, Evans MI, et al. Fetal gender and aneuploidy detection using fetal cells in maternal blood: analysis of NIFTY I data. National Institute of Child Health and Development Fetal Cell Isolation Study. Prenat Diagn. 2002;22(7):609–15.CrossRefPubMedGoogle Scholar
  43. 43.
    Binder V, Bartenhagen C, Okpanyi V, Gombert M, Moehlendick B, Behrens B, et al. A new workflow for whole-genome sequencing of single human cells. Hum Mutat. 2014;35(10):1260–70.CrossRefPubMedGoogle Scholar
  44. 44.
    Huang L, Ma F, Chapman A, Lu S, Xie XS. Single-cell whole-genome amplification and sequencing: methodology and applications. Annu Rev Genomics Hum Genet. 2015;16:79–102.CrossRefPubMedGoogle Scholar
  45. 45.
    Choolani M, O'Donoghue K, Talbert D, Kumar S, Roberts I, Letsky E, et al. Characterization of first trimester fetal erythroblasts for non-invasive prenatal diagnosis. Mol Hum Reprod. 2003;9(4):227–35.CrossRefPubMedGoogle Scholar
  46. 46.
    Emad A, Bouchard EF, Lamoureux J, Ouellet A, Dutta A, Klingbeil U, et al. Validation of automatic scanning of microscope slides in recovering rare cellular events: application for detection of fetal cells in maternal blood. Prenat Diagn. 2014;34(6):538–46.CrossRefPubMedGoogle Scholar
  47. 47.
    Krabchi K, Gros-Louis F, Yan J, Bronsard M, Masse J, Forest JC, et al. Quantification of all fetal nucleated cells in maternal blood between the 18th and 22nd weeks of pregnancy using molecular cytogenetic techniques. Clin Genet. 2001;60(2):145–50.CrossRefPubMedGoogle Scholar
  48. 48.
    Koumantaki Y, Sifakis S, Dragatis G, Matalliotakis I, Froudarakis G, Papadopoulou E, et al. Microsatellite analysis provides efficient confirmation of fetal trophoblast isolation from maternal circulation. Prenat Diagn. 2001;21(7):566–70.CrossRefPubMedGoogle Scholar
  49. 49.
    Mouawia H, Saker A, Jais JP, Benachi A, Bussieres L, Lacour B, et al. Circulating trophoblastic cells provide genetic diagnosis in 63 fetuses at risk for cystic fibrosis or spinal muscular atrophy. Reprod Biomed Online. 2012;25(5):508–20.CrossRefPubMedGoogle Scholar
  50. 50.
    Nagy GR, Ban Z, Sipos F, Beke A, Papp C, Papp Z. Isolation of epsilon-haemoglobin-chain positive fetal cells with micromanipulation for prenatal diagnosis. Prenat Diagn. 2005;25(5):398–402.CrossRefPubMedGoogle Scholar
  51. 51.
    van Wijk IJ, Griffioen S, Tjoa ML, Mulders MA, van Vugt JM, Loke YW, et al. HLA-G expression in trophoblast cells circulating in maternal peripheral blood during early pregnancy. Am J Obstet Gynecol. 2001;184(5):991–7.CrossRefPubMedGoogle Scholar
  52. 52.
    Oudejans CB, Tjoa ML, Westerman BA, Mulders MA, Van Wijk IJ, Van Vugt JM. Circulating trophoblast in maternal blood. Prenat Diagn. 2003;23(2):111–6.CrossRefPubMedGoogle Scholar
  53. 53.
    Hatt L, Brinch M, Singh R, Moller K, Lauridsen RH, Uldbjerg N, et al. Characterization of fetal cells from the maternal circulation by microarray gene expression analysis--could the extravillous trophoblasts be a target for future cell-based non-invasive prenatal diagnosis? Fetal Diagn Ther. 2014;35(3):218–27.CrossRefPubMedGoogle Scholar
  54. 54.
    Guetta E, Gutstein-Abo L, Barkai G. Trophoblasts isolated from the maternal circulation: in vitro expansion and potential application in non-invasive prenatal diagnosis. J Histochem Cytochem. 2005;53(3):337–9.CrossRefPubMedGoogle Scholar
  55. 55.
    Vestergaard EM, Singh R, Schelde P, Hatt L, Ravn K, Christensen R, et al. On the road to replacing invasive testing with cell-based NIPT: five clinical cases with aneuploidies, microduplication, unbalanced structural rearrangement or mosaicism. Prenat Diagn. 2017;37(11):1120–4.CrossRefPubMedGoogle Scholar
  56. 56.
    Kolvraa S, Singh R, Normand EA, Qdaisat S, van den Veyver IB, Jackson L, et al. Genome-wide copy number analysis on DNA from fetal cells isolated from the blood of pregnant women. Prenat Diagn. 2016;36(12):1127–34.CrossRefPubMedGoogle Scholar
  57. 57.
    Breman AM, Chow JC, U'Ren L, Normand EA, Qdaisat S, Zhao L, et al. Evidence for feasibility of fetal trophoblastic cell-based noninvasive prenatal testing. Prenat Diagn. 2016;36(11):1009–19.CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Bi W, Breman A, Shaw CA, Stankiewicz P, Gambin T, Lu X, et al. Detection of >/=1Mb microdeletions and microduplications in a single cell using custom oligonucleotide arrays. Prenat Diagn. 2012;32(1):10–20.CrossRefPubMedGoogle Scholar
  59. 59.
    Wright CF, Burton H. The use of cell-free fetal nucleic acids in maternal blood for non-invasive prenatal diagnosis. Hum Reprod Update. 2009;15(1):139–51.CrossRefPubMedGoogle Scholar
  60. 60.
    Lo YM, Hjelm NM, Fidler C, Sargent IL, Murphy MF, Chamberlain PF, et al. Prenatal diagnosis of fetal RhD status by molecular analysis of maternal plasma [see comments]. N Engl J Med. 1998;339(24):1734–8.CrossRefPubMedGoogle Scholar
  61. 61.
    Geifman-Holtzman O, Grotegut CA, Gaughan JP. Diagnostic accuracy of noninvasive fetal Rh genotyping from maternal blood--a meta-analysis. Am J Obstet Gynecol. 2006;195(4):1163–73.CrossRefPubMedGoogle Scholar
  62. 62.
    Finning K, Martin P, Summers J, Daniels G. Fetal genotyping for the K (Kell) and Rh C, c, and E blood groups on cell-free fetal DNA in maternal plasma. Transfusion. 2007;47(11):2126–33.CrossRefPubMedGoogle Scholar
  63. 63.
    Lam KW, Jiang P, Liao GJ, Chan KC, Leung TY, Chiu RW, et al. Noninvasive prenatal diagnosis of monogenic diseases by targeted massively parallel sequencing of maternal plasma: application to beta-thalassemia. Clin Chem. 2012;58(10):1467–75.CrossRefPubMedGoogle Scholar
  64. 64.
    Barrett AN, McDonnell TC, Chan KC, Chitty LS. Digital PCR analysis of maternal plasma for noninvasive detection of sickle cell anemia. Clin Chem. 2012;58(6):1026–32.CrossRefPubMedGoogle Scholar
  65. 65.
    Chitty LS, Khalil A, Barrett AN, Pajkrt E, Griffin DR, Cole TJ. Safe, accurate, prenatal diagnosis of thanatophoric dysplasia using ultrasound and free fetal DNA. Prenat Diagn. 2013;33(5):416–23.CrossRefPubMedGoogle Scholar
  66. 66.
    New MI, Tong YK, Yuen T, Jiang P, Pina C, Chan KC, et al. Noninvasive prenatal diagnosis of congenital adrenal hyperplasia using cell-free fetal DNA in maternal plasma. J Clin Endocrinol Metab. 2014;99(6):E1022–30.CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Xiong L, Barrett AN, Hua R, Tan TZ, Ho SS, Chan JK, et al. Non-invasive prenatal diagnostic testing for beta-thalassaemia using cell-free fetal DNA and next generation sequencing. Prenat Diagn. 2015;35(3):258–65.CrossRefPubMedGoogle Scholar
  68. 68.
    Vermeulen C, Geeven G, de Wit E, Verstegen M, Jansen RPM, van Kranenburg M, et al. Sensitive monogenic noninvasive prenatal diagnosis by targeted haplotyping. Am J Hum Genet. 2017;101(3):326–39.CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Skrzypek H, Hui L. Noninvasive prenatal testing for fetal aneuploidy and single gene disorders. Best Pract Res Clin Obstet Gynaecol. 2017;42:26–38.CrossRefPubMedGoogle Scholar
  70. 70.
    Hill M, Karunaratna M, Lewis C, Forya F, Chitty L. Views and preferences for the implementation of non-invasive prenatal diagnosis for single gene disorders from health professionals in the United Kingdom. Am J Med Genet A. 2013;161A(7):1612–8.CrossRefPubMedGoogle Scholar
  71. 71.
    Lo YM, Chan KC, Sun H, Chen EZ, Jiang P, Lun FM, et al. Maternal plasma DNA sequencing reveals the genome-wide genetic and mutational profile of the fetus. Sci Transl Med. 2010;2(61):61ra91.CrossRefPubMedGoogle Scholar
  72. 72.
    Fan HC, Gu W, Wang J, Blumenfeld YJ, El-Sayed YY, Quake SR. Non-invasive prenatal measurement of the fetal genome. Nature. 2012;487(7407):320–4.CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Kitzman JO, Snyder MW, Ventura M, Lewis AP, Qiu R, Simmons LE, et al. Noninvasive whole-genome sequencing of a human fetus. Sci Transl Med. 2012;4(137):137ra76.CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Chiu RW, Chan KC, Gao Y, Lau VY, Zheng W, Leung TY, et al. Noninvasive prenatal diagnosis of fetal chromosomal aneuploidy by massively parallel genomic sequencing of DNA in maternal plasma. Proc Natl Acad Sci U S A. 2008;105(51):20458–63.CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Fan HC, Blumenfeld YJ, Chitkara U, Hudgins L, Quake SR. Noninvasive diagnosis of fetal aneuploidy by shotgun sequencing DNA from maternal blood. Proc Natl Acad Sci U S A. 2008;105(42):16266–71.CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Sparks AB, Wang ET, Struble CA, Barrett W, Stokowski R, McBride C, et al. Selective analysis of cell-free DNA in maternal blood for evaluation of fetal trisomy. Prenat Diagn. 2012;32(1):3–9.CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Zimmermann B, Hill M, Gemelos G, Demko Z, Banjevic M, Baner J, et al. Noninvasive prenatal aneuploidy testing of chromosomes 13, 18, 21, X, and Y, using targeted sequencing of polymorphic loci. Prenat Diagn. 2012;32(13):1233–41.CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Srinivasan A, Bianchi DW, Huang H, Sehnert AJ, Rava RP. Noninvasive detection of fetal subchromosome abnormalities via deep sequencing of maternal plasma. Am J Hum Genet. 2013;92(2):167–76.CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Wapner RJ, Babiarz JE, Levy B, Stosic M, Zimmermann B, Sigurjonsson S, et al. Expanding the scope of noninvasive prenatal testing: detection of fetal microdeletion syndromes. Am J Obstet Gynecol. 2015;212(3):332.e1–9.CrossRefGoogle Scholar
  80. 80.
    Yin AH, Peng CF, Zhao X, Caughey BA, Yang JX, Liu J, et al. Noninvasive detection of fetal subchromosomal abnormalities by semiconductor sequencing of maternal plasma DNA. Proc Natl Acad Sci U S A. 2015;112(47):14670–5.CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Martin K, Iyengar S, Kalyan A, Lan C, Simon AL, Stosic M, et al. Clinical experience with a single-nucleotide polymorphism-based noninvasive prenatal test for five clinically significant microdeletions. Clin Genet. 2017;93(2):293–300.CrossRefPubMedGoogle Scholar
  82. 82.
    Petersen AK, Cheung SW, Smith JL, Bi W, Ward PA, Peacock S, et al. Positive predictive value estimates for cell-free noninvasive prenatal screening from data of a large referral genetic diagnostic laboratory. Am J Obstet Gynecol. 2017;217(6):691.e1–6.CrossRefGoogle Scholar
  83. 83.
    Lefkowitz RB, Tynan JA, Liu T, Wu Y, Mazloom AR, Almasri E, et al. Clinical validation of a non-invasive prenatal test for genome-wide detection of fetal copy number variants. Am J Obstet Gynecol. 2016;215(2):227.e1–227.e16.CrossRefGoogle Scholar
  84. 84.
    Taylor-Phillips S, Freeman K, Geppert J, Agbebiyi A, Uthman OA, Madan J, et al. Accuracy of non-invasive prenatal testing using cell-free DNA for detection of Down, Edwards and Patau syndromes: a systematic review and meta-analysis. BMJ Open. 2016;6(1):e010002.CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Van den Veyver IB. Recent advances in prenatal genetic screening and testing. F1000Res. 2016;5:2591.CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    Bianchi DW. Cherchez la femme: maternal incidental findings can explain discordant prenatal cell-free DNA sequencing results. Genet Med. 2017.  https://doi.org/10.1038/gim.2017.219.
  87. 87.
    Ramsey KW, Slavin TP, Graham G, Hirata GI, Balaraman V, Seaver LH. Monozygotic twins discordant for trisomy 13. J Perinatol. 2012;32(4):306–8.CrossRefPubMedGoogle Scholar
  88. 88.
    Dziegiel MH, Hansen MH, Haedersdal S, Barrett AN, Rieneck K, Main KM, et al. Blood chimerism in dizygotic monochorionic twins during 5 years observation. Am J Transplant. 2017;17(10):2728–32.CrossRefPubMedGoogle Scholar
  89. 89.
    Holzgreve W, Ghezzi F, Di Naro E, Ganshirt D, Maymon E, Hahn S. Disturbed feto-maternal cell traffic in preeclampsia. Obstet Gynecol. 1998;91(5 Pt 1):669–72.PubMedGoogle Scholar
  90. 90.
    Zhong XY, Holzgreve W, Hahn S. Circulatory fetal and maternal DNA in pregnancies at risk and those affected by preeclampsia. Ann N Y Acad Sci. 2001;945:138–40.CrossRefPubMedGoogle Scholar
  91. 91.
    Zhang L, Wang Y, Liao AH. Quantitative abnormalities of fetal trophoblast cells in maternal circulation in preeclampsia. Prenat Diagn. 2008;28(12):1160–6.CrossRefPubMedGoogle Scholar
  92. 92.
    Leung TN, Zhang J, Lau TK, Hjelm NM, Lo YM. Maternal plasma fetal DNA as a marker for preterm labour. Lancet. 1998;352(9144):1904–5.CrossRefPubMedGoogle Scholar
  93. 93.
    Al-Mufti R, Lees C, Albaiges G, Hambley H, Nicolaides KH. Fetal cells in maternal blood of pregnancies with severe fetal growth restriction. Hum Reprod. 2000;15(1):218–21.CrossRefPubMedGoogle Scholar
  94. 94.
    Adinolfi M, Sherlock J. First trimester prenatal diagnosis using transcervical cells: an evaluation. Hum Reprod Update. 1997;3(4):383–92.CrossRefPubMedGoogle Scholar
  95. 95.
    Adinolfi M, Sherlock J. Fetal cells in transcervical samples at an early stage of gestation. J Hum Genet. 2001;46(3):99–104.CrossRefPubMedGoogle Scholar
  96. 96.
    Holzgreve W, Hahn S. Fetal cells in cervical mucus and maternal blood. Baillieres Best Pract Res Clin Obstet Gynaecol. 2000;14(4):709–22.CrossRefPubMedGoogle Scholar
  97. 97.
    Cioni R, Bussani C, Scarselli B, Bucciantini S, Barciulli F, Scarselli G. Fetal cells in cervical mucus in the first trimester of pregnancy. Prenat Diagn. 2003;23(2):168–71.CrossRefPubMedGoogle Scholar
  98. 98.
    Katz-Jaffe MG, Mantzaris D, Cram DS. DNA identification of fetal cells isolated from cervical mucus: potential for early non-invasive prenatal diagnosis. BJOG. 2005;112(5):595–600.CrossRefPubMedGoogle Scholar
  99. 99.
    Bolnick AD, Fritz R, Jain C, Kadam L, Bolnick JM, Kilburn BA, et al. Trophoblast retrieval and isolation from the cervix for noninvasive, first trimester, fetal gender determination in a carrier of congenital adrenal hyperplasia. Reprod Sci. 2016;23(6):717–22.CrossRefPubMedPubMedCentralGoogle Scholar
  100. 100.
    Imudia AN, Suzuki Y, Kilburn BA, Yelian FD, Diamond MP, Romero R, et al. Retrieval of trophoblast cells from the cervical canal for prediction of abnormal pregnancy: a pilot study. Hum Reprod. 2009;24(9):2086–92.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Obstetrics and GynecologyBaylor College of MedicineHoustonUSA
  2. 2.Department of Molecular and Human GeneticsBaylor College of MedicineHoustonUSA
  3. 3.Pavilion for WomenTexas Children’s HospitalHoustonUSA
  4. 4.Duncan Neurological Research InstituteTexas Children’s HospitalHoustonUSA

Personalised recommendations