The Role of Morphometry to Delineate Changes in the Spikelet Shape of Wild Cereals: The Case Study of Takarkori (Holocene, Central Sahara, SW Libya)

  • Rita FornaciariEmail author
  • Laura Arru
  • Rita Terenziani
  • Anna Maria Mercuri


A morphometrical study of hundreds of spikelets recovered from archaeological deposits of Takarkori (SW Libya) provides data on the presence and size variations of wild cereals gathered by hunter-gatherers in the central Sahara during the Early and Middle Holocene (c. 10,200–c. 4600 cal yr BP). Spikelets of Panicum laetum, Echinochloa colona and Sorghum bicolor subsp. verticilliflorum, found in 18 seed/fruit concentrations, are measured using image analysis techniques. These data demonstrate that the archaeobotanical specimens have a similar typology, maturity stage and are of a uniform size, suggesting that they were selected by the human groups living in the area. Indeed, the spikelets of two samples recovered from sediments excavated elsewhere on the site compared to those from the seed concentrations, show a smaller size and greater variation in maturation status. Results are compared to metrical data obtained from modern species.


Archaeobotany Archaeology Morphometry Echinochloa Panicum Sorghum Takarkori Libya Central Sahara 



We thank the Italian-Libyan Archaeological Mission in the Acacus and Messak, directed by Savino di Lernia, which allowed the sampling and the analysis of the plant remains from Takarkori. The research was part of the PhD project of R.F. at the School Agri-food Science, Technologies and Bio-technologies (University of Modena and Reggio Emilia). Funds were provided by the project “SELCE—SELvatici CEreali: il futuro nella risposta delle piante ai cambiamenti climatici”, sect. Scientific and Technological Research (Sime n.2015.0033), funded by the FCRMO-Fondazione Cassa di Risparmio di Modena, directed by A.M.M.


  1. Allaby RG, Gutaker R, Clarke AC et al (2015a) Using archaeogenomic and computational approaches to unravel the history of local adaptation in crops. Philos T Roy Soc B 370:20130377CrossRefGoogle Scholar
  2. Allaby RG, Kistler L, Gutaker RM et al (2015b) Archaeogenomic insights into the adaptation of plants to the human environment: pushing plant-hominin co-evolution back to the Pliocene. J Hum Evol 79:150–157CrossRefPubMedGoogle Scholar
  3. Bacchetta G, Grillo O, Mattana E et al (2008) Morpho-colorimetric charachterization by image analysis to identify diaspores of wild plant species. Flora 203:669–682CrossRefGoogle Scholar
  4. Bandini Mazzanti M, Bosi G, Mercuri AM et al (2012) Analisi archeobiometriche e reperti carpologici: scopi e prospettive. In: Vezzalini G, Zannini P (eds) Atti del VII Congresso Nazionale di Archeometria (AIAr). Pàtron Editore, Bologna CD-romGoogle Scholar
  5. Beldados A, Costantini L (2011) Sorghum exploitation at the Kassala and its environs, North Eastern Sudan in the second and first millennia BC. Nyame Akuma 75:33–39Google Scholar
  6. Beldados A, Manzo A, Murphy C, Stevens CJ, Fuller DQ (2018) Evidence of sorghum cultivation and possible pearl millet in the second millennium BC at Kassala, Eastern SudanGoogle Scholar
  7. Biagetti S, di Lernia S (2013) Holocene deposits of Saharan rock shelters: the case of Takarkori and other sites from the Tadrart Acacus Mountains (SW Libya). Afr Archaeol Rev 30:305–333CrossRefGoogle Scholar
  8. Biagetti S, Merighi F, di Lernia S (2004) Decoding an Early Holocene Saharan stratified site. Ceramic dispersion and site formation processes in the Takarkori rockshelter, Acacus Mountains, Libya. J Afr Archaeol 2(1):11–36CrossRefGoogle Scholar
  9. Biagetti S, Poggi G, di Lernia S (2009) Unearthing the hearths. Preliminary results on the Takarkori rockshelter fireplaces (Acacus Mts., Libya). Defining a methodological approach to interpret structural evidence. BAR Int Ser 2045:23–29Google Scholar
  10. Bosi G, Costantini F, Berti P et al (2007) Applicazioni morfobiometriche in campo archeocarpologico: primi dati su Papaver somniferum nell’Alto Medioevo di Ferrara. Atti Soc Nat Mat Modena 137(2006):373–387Google Scholar
  11. Boulos L (2005) Flora of Egypt, vol 4. Al Hadara Publishing, CairoGoogle Scholar
  12. Chen T, Wang X, Dai J et al (2016) Plant use in the Lop Nor region of southern Xinjiang, China: Archaeobotanical studies of the Yingpan cemetery (~25–420 AD). Quatern Int 426:166–174CrossRefGoogle Scholar
  13. Cherkinsky A, di Lernia S (2013) Bayesian Approach to 14Cdates for estimation of long-term archaeological sequences in arid environments: the Holocene site of Takarkori Rockshelter, Southwest Libya. Radiocarbon 55(2–3):771–782CrossRefGoogle Scholar
  14. Clayton WD, Renvoize SA (1982) Flora of tropical East Africa. Gramineae (Part 3). AA Balkema, RotterdamGoogle Scholar
  15. Corti R (1942) Flora e vegetazione del Fezzan e della Regione di Gat, FirenzeGoogle Scholar
  16. Cremaschi M, Zerboni A, Mercuri AM et al (2014) Takarkori rock shelter (SW Lybia): an archive of Holocene climate and environmental changes in the central Sahara. Quat Sci Rev 101:36–60CrossRefGoogle Scholar
  17. Dahlberg JA, Wasylikowa K (1996) Image and statistical analyses of early sorghum remains (8000 BP) from the Nabta Playa archaeological site in the Western Desert, Southern Egypt. Veg Hist Archaeobot 5(4):293–299CrossRefGoogle Scholar
  18. de Leonardis WD, Santis CD, Fichera G et al (2011) Seed morphobiometry of wild and cultivated taxa of Phaseolus L. (Fabaceae). Indian J Plant Genet Resour 24(3):257–264Google Scholar
  19. de Wet JMJ (1978) Systematics and evolution of Sorghum sect. Sorghum (Gramineae). Am J Bot 65(4):477–484Google Scholar
  20. di Lernia S (ed). (1999). The Uan Afuda cave. Hunter-gatherer societies of central Sahara, vol. 1. All’Insegna del Giglio, FlorenceGoogle Scholar
  21. di Lernia S, N’siala IM, Mercuri AM (2012) Saharan prehistoric basketry. Archaeological and archaeobotanical analysis of the early-middle Holocene assemblage from Takarkori (Acacus Mts., SW Libya). J Archaeol Sci 39(6):1837–1853Google Scholar
  22. di Lernia S, Tafuri MA (2013) Persistent deathplaces and mobile landmarks: the Holocene mortuary and isotopic record from Wadi Takarkori (SW Libya). J Anthropol Archaeol 32(1):1–15CrossRefGoogle Scholar
  23. di Lernia S, Bruni S, Cislaghi I et al (2016) Colour in context. Pigments and other coloured residues from the early-middle Holocene site of Takarkori (SW Libya). Archaeol. Anthropol Sci 8(2):381–402Google Scholar
  24. Diamond J (2002) Evolution, consequences and future of plant and animal domestication. Nature 418:700–707CrossRefPubMedGoogle Scholar
  25. Dunne J, Mercuri AM, Evershed RP et al (2016) Earliest direct evidence of plant processing in prehistoric Saharan pottery. Nat Plants 3(16194)Google Scholar
  26. Dunne J, Eversheld RP, Salque M et al (2012) First dairying in green Saharan Africa in the fifth millennium BC. Nature 486(7403):390–394CrossRefPubMedGoogle Scholar
  27. Fahmy AG (2001) Palaeoethnobotanical studies of the Neolithic settlement in Hidden Valley, Farafra Oasis. Egypt. Veg Hist Archaeobot 10:235–246CrossRefGoogle Scholar
  28. Fornaciari R, Fornaciari S, Francia E et al (2016) Panicum spikelets from the Early Holocene Takarkori rockshelter (SW Libya): Archaeo-molecular and botanical investigations. Plant Biosyst 2016:1–13Google Scholar
  29. Fuller DQ, Harvey E, Qin L (2007) Presumed domestication? Evidence for wild rice cultivation and domestication in the fifth millennium BC of the Lower Yangtze region. Antiquity 81(312):316–331CrossRefGoogle Scholar
  30. Fuller DQ, Stevens CJ (2018) Sorghum Domestication and Diversification: A current archeobotanical perspectiveGoogle Scholar
  31. Garcea EAA (2004) An alternative way towards food production: the perspective from the Libyan Sahara. J World Prehist 18(2):107–154CrossRefGoogle Scholar
  32. Germer R (1985) Flora des pharaonischen Ägypten, vol. 14. Verlag Philipp von Zabern, DarmstadtGoogle Scholar
  33. Harlan JR (1985) The living fields: our agricultural heritage. Cambridge University Press, CambridgeGoogle Scholar
  34. Harlan JR (1989) Wild grass seeds as food sources in the Sahara and Sub-Sahara. Sahara 2:69–74Google Scholar
  35. Howard T, Archer JE, Turley RM (2011) Evolution, physiology and phytochemestry of the psycotoxic arable mimic weed darnel (Lolium temulentum L.). Prog Bot 72:73–104Google Scholar
  36. Kim M, Ahn SM, Jeong Y (2013) Rice (Oryza sativa L.): seed-size comparison and cultivation in ancient Korea. Econ Bot 67(4):378–386CrossRefGoogle Scholar
  37. Kuper R, Kröpelin S (2006) Climate-controlled Holocene occupation in the Sahara: motor of Africa’s evolution. Science 313(5788):803–807CrossRefPubMedGoogle Scholar
  38. Liengme B (2015) A guide to Microsoft Excel 2013 for scientists and engineers. Academic Press, MassachusettsGoogle Scholar
  39. Magid AA (1989) Plant domestication in the Middle Nile Basin. British Archaeological Reports, OxfordGoogle Scholar
  40. Maire R (1952) Flore de l’Afrique du Nord (Maroc, Algérie, Tunisie, Tripolitaine, Cyrénaïque et Sahara). Jouve, ParisGoogle Scholar
  41. Manandhar NP (2002) Plants and people of Nepal. Timber Press, OregonGoogle Scholar
  42. Marshall F, Hildebrand E (2002) Cattle before crops: the beginnings of food production in Africa. J World Prehist 16(2):99–143CrossRefGoogle Scholar
  43. Mercuri AM (2001) Preliminary analyses of fruits, seeds and other few plants macrofossils from the Early Holocene sequence. In: Garcea EAA (ed) Uan Tabu in the settlement history of the Libyan Sahara. Arid Zone Archaeology, 2:161–188. All’Insegna del Giglio, FirenzeGoogle Scholar
  44. Mercuri AM (2008a) Human influence, plant landscape, evolution and climate inferences from the archaeobotanical records of the Wadi Teshuinat area (Libyan Sahara). J Arid Environ 72:1950–1967CrossRefGoogle Scholar
  45. Mercuri AM (2008b) Plant exploitation and ethnopalynological evidence from the Wadi Teshuinat area (Tadrart Acacus, Libyan Sahara). J Archaeol Sci 35(6):1619–1642CrossRefGoogle Scholar
  46. Mercuri AM, Allevato E, Arobba D et al (2015) Pollen and macroremains from Holocene archaeological sites: a dataset for the understanding of the bio-cultural diversity of the Italian landscape. Rev Palaeobot Palyno 218:250–266CrossRefGoogle Scholar
  47. Mercuri AM, Fornaciari R, Gallinaro M et al (2018) Plant behaviour through human imprints and the cultivation of wild cereals in Holocene Sahara. Nat Plants 4:71–81,
  48. Mercuri AM, Garcea EAA (2007) The impact of hunter/gatherers on the vegetation in the central Sahara during the early Holocene. In: Cappers RTJ (ed) Fields of change: progress in African archaeobotany. Groningen, BarkhuisGoogle Scholar
  49. Mukhopadhyay SK, Khara AB, Ghosh BC (1972) Nature and intensity of competition of weeds with direct-seeded upland IR8 rice crop. Int Rice Community Newsl 21(2):10–14Google Scholar
  50. Oliver D and auct suc (eds) (1917) Gramineae. Fl Trop Afr 9:114Google Scholar
  51. Olmi L, Mercuri AM, Gilbert MTP et al (2012) Morphological and genetic analyses of early mid-Holocene wild cereals from the Takarkori rockshelter (central Sahara, Libya): first results and prospects. In: Fahmy AG, Kahlheber S, D’Andrea AC (eds) Windows on the African past: contemporary approaches to African archaeobotany. Reports in African archaeology 3. Africa Magna Verlag, FrankfurtGoogle Scholar
  52. Orrù M, Grillo O, Lovicu G et al (2013) Morphological charachterisation of Vitis vinifera L. seeds by image analysis and comparison with archaeological remains. Veg Hist Archaeobot 22:231–242CrossRefGoogle Scholar
  53. Ozenda P (1958) Flore du Sahara septentrional et Central. CNRS, ParisGoogle Scholar
  54. Ozenda P (2000) Les végétaux: organisation et diversité biologique. Dunod, ParisGoogle Scholar
  55. Pearsall DM (1989) Paleoethnobotany, A handbook of procedures. Academic Press, LondonGoogle Scholar
  56. Phillips SM (1995) Flora of Ethiopia and Eritrea: volume 7. Poaceae (Gramineae). The National Herbarium, Biology Department, Science Faculty, Addis Ababa University, Addis AbabaGoogle Scholar
  57. Renfrew JM (1973) Palaeoethnobotany, the prehistoric food plants of the Near East and Europe. Columbia University Press, New YorkGoogle Scholar
  58. Schulz E, Adamou A (1992) Leben in der Südlichen. Die traditionelle Nutzung der Vegetation im Nord-Niger Sahara. Geographisches Institut, WürzburgGoogle Scholar
  59. Senda T, Hiraoka Y, Tominaga T (2006) Inheritance of seed shattering in Lolium temulentum and L. persicum hybrids. Genet Resour Crop Ev 20:633–643Google Scholar
  60. Sharp D, Simon BK (2002) AusGrass: grasses of Australia. CSIRO Publishing/Australian Biological Resources Study (ABRS), MelbourneGoogle Scholar
  61. Sheriff AS, Siddiqi MA (1988) Poaceae. In: AA El-Gadi (ed) Flora of Libya 145, TripoliGoogle Scholar
  62. Smith CW, Frederiksen RA (2000) Sorghum: origin, history, technology, and production, vol. 2. Wiley, New JerseyGoogle Scholar
  63. Snowden JD (1955) The wild fodder Sorghums of the section Eu-Sorghum. J Linn Soc Lond Bot 55(358):191–260CrossRefGoogle Scholar
  64. Spahillari M, Hammer K, Gladis T et al (1999) Weeds as part of agrobiodiversity. Outlook on Agr 28:188–199CrossRefGoogle Scholar
  65. Täckholm V, Drar M (1973) Flora of Egypt, vol II. Otto Koeltz Antiquariat, KoenigsteinGoogle Scholar
  66. Tafuri MA, Bentley RA, Manzi G et al (2006) Mobility and kinship in the prehistoric Sahara: Strontium isotope analysis of Holocene human skeletons from the Acacus Mts. (southwestern Libya). J Anthropol Archaeol 25(3):390–402CrossRefGoogle Scholar
  67. Tanaka T (1976) Tanaka’s cyclopaedia of edible plants of the world. Keigaku Publishing, TokyoGoogle Scholar
  68. Tanno K, Willcox G (2006) How fast was wild wheat domesticated? Science 311:1886CrossRefPubMedGoogle Scholar
  69. Tubiana MJ, Tubiana J (1977) The Zaghawa from an ecological perspective; food gathering, the pastoral system, tradition and development of the Zaghawa of the Sudan and the Chad. AA Balkema, RotterdamGoogle Scholar
  70. Walker MJ, Berkelhammer M, Björck S et al (2012) Formal subdivision of the Holocene Series/Epoch: a Discussion Paper by a Working Group of INTIMATE (Integration of ice-core, marine and terrestrial records) and the Subcommission on Quaternary Stratigraphy (International Commission on Stratigraphy). J Quat Sci 27(7):649–659CrossRefGoogle Scholar
  71. Wasylikowa K (1997) Flora of the 8000 years old archaeological site E-75-6 at Nabta Playa, Western Desert, Southern Egypt. Acta Palaeobot 37(2):99–205Google Scholar
  72. Wasylikowa K, Dahlberg J (1999) Sorghum in the economy of the early Neolithic nomadic tribes at Nabta Playa, Southern Egypt. In: The exploitation of plant resources in ancient Africa. Springer, USCrossRefGoogle Scholar
  73. Weiss E, Kislev ME, Hartmann A (2006) Autonomous cultivation before domestication. Science 5780:1608CrossRefGoogle Scholar
  74. Willcox G (2004) Measuring grain size and identifying Near Eastern cereal domestication: evidence from the Euphrates valley. J Archaeol Sci 31:145–150CrossRefGoogle Scholar
  75. Willcox G, Stordeur D (2012) Large-scale cereal processing before domestication during the tenth millennium cal BC in northern Syria. Antiquity 86:99–114CrossRefGoogle Scholar
  76. Zohary D, Hopf M (2000) Domestication of plants in the Old World, 3rd edn. Oxford University Press, OxfordGoogle Scholar
  77. Zohary D, Hopf M, Weiss E (2012) Domestication of plants in the Old World: the origin and spread of domesticated plants in Southwest Asia, Europe, and the Mediterranean Basin. Oxford University Press on DemandCrossRefGoogle Scholar

Web Sites

  1. FAO–Food and Agriculture Organization of the United Nations (2017). Accessed 25 Jan 2017
  2. IRRI–International Rice Research Institute (2017). Accessed 25 Jan 2017
  3. ISTA–International Seed Testing Association (2017). Accessed 25 Jan 2017
  4. Kew RBG–Royal Botanic Gardens (2017). Accessed 25 Jan 2017
  5. PROTA4U–Plant Resources of Tropical Africa (2017). Accessed 25 Jan 2017

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Rita Fornaciari
    • 1
    • 2
    Email author
  • Laura Arru
    • 2
  • Rita Terenziani
    • 1
  • Anna Maria Mercuri
    • 1
  1. 1.Laboratorio di Palinologia e Paleobotanica, Dipartimento di Scienze della VitaUniversità di Modena e Reggio EmiliaModenaItaly
  2. 2.Dipartimento di Scienze della Vita, Università di Modena e Reggio EmiliaReggio EmiliaItaly

Personalised recommendations