Advertisement

The Genomes of Endophytic Bacteria

  • A. Carolin Frank
Chapter
Part of the Forestry Sciences book series (FOSC, volume 86)

Abstract

Genome sequencing and comparative genomics has had major impact on our understanding of the genetic potential, ecology, and evolution of microorganisms. The genomes of over a hundred bacterial endophytes have recently contributed insights into the molecular mechanisms that enable bacterial exploration of the plant interior, including genes for motility, colonization and synergistic interactions with the host. Known host-interaction systems include type IV pili, flagella, diverse dedicated secretion systems, genes for phytohormones synthesis and inhibition, bacterial volatiles, antimicrobials, and proteins with eukaryote-like domains, which may mimic host functions. Different endophytes use different sets of known host interaction systems, suggesting that there are multiple strategies to colonize and persist within plants. The majority of host-interaction systems are shared with other bacteria, including plant- and animal pathogens. Functional exploration of the large sets of endophyte genes encoding hypothetical proteins (especially those shared with other phytobacteria) promises to further elucidate endophytic adaptation to life in plant tissue, especially in regards to plant colonization, defense evasion and plant growth promotion.

References

  1. Abdallah AM, Gey van Pittius NC, Champion PA et al (2007) Type VII secretion–mycobacteria show the way. Nat Rev Microbiol 5:883–891.  https://doi.org/10.1038/nrmicro1773CrossRefPubMedGoogle Scholar
  2. Abramovitch RB, Anderson JC, Martin GB (2006) Bacterial elicitation and evasion of plant innate immunity. Nat Rev Mol Cell Biol 7:601–611.  https://doi.org/10.1038/nrm1984CrossRefPubMedPubMedCentralGoogle Scholar
  3. Ahmad F, Ahmad I, Khan MS (2008) Screening of free-living rhizospheric bacteria for their multiple plant growth promoting activities. Microbiol Res 163:173–181.  https://doi.org/10.1016/j.micres.2006.04.001CrossRefPubMedGoogle Scholar
  4. Ali S, Duan J, Charles TC, Glick BR (2014) A bioinformatics approach to the determination of genes involved in endophytic behavior in Burkholderia spp. J Theor Biol 343:193–198.  https://doi.org/10.1016/j.jtbi.2013.10.007CrossRefPubMedGoogle Scholar
  5. Andrés-Barrao C, Lafi FF, Alam I, et al (2017) Complete genome sequence analysis of Enterobacter sp. SA187, a plant multi-stress tolerance promoting endophytic bacterium. Front Microbiol 8:2023.  https://doi.org/10.3389/fmicb.2017.02023
  6. Annapurna K, Govindasamy V, Sharma M, et al (2017) Draft genome sequence of pseudomonas stutzeri Strain KMS 55, an Endophytic Diazotroph isolated from rice roots. Genome Announc 5.  https://doi.org/10.1128/genomea.00972-17
  7. Antunes LCM, Ferreira RBR, Buckner MMC, Finlay BB (2010) Quorum sensing in bacterial virulence. Microbiology 156:2271–2282.  https://doi.org/10.1099/mic.0.038794-0CrossRefPubMedGoogle Scholar
  8. Asif H, Studholme DJ, Khan A et al (2016) Comparative genomics of an endophytic pseudomonas putida isolated from mango orchard. Genet Mol Biol 39:465–473.  https://doi.org/10.1590/1678-4685-GMB-2015-0186CrossRefPubMedPubMedCentralGoogle Scholar
  9. Balder R, Hassel J, Lipski S, Lafontaine ER (2007) Moraxella catarrhalis strain O35E expresses two filamentous hemagglutinin-like proteins that mediate adherence to human epithelial cells. Infect Immun 75:2765–2775.  https://doi.org/10.1128/IAI.00079-07CrossRefPubMedPubMedCentralGoogle Scholar
  10. Barnhart MM, Chapman MR (2006) Curli biogenesis and function. Annu Rev Microbiol 60:131–147.  https://doi.org/10.1146/annurev.micro.60.080805.142106CrossRefPubMedPubMedCentralGoogle Scholar
  11. Belimov AA, Dodd IC, Hontzeas N et al (2009) Rhizosphere bacteria containing 1-aminocyclopropane-1-carboxylate deaminase increase yield of plants grown in drying soil via both local and systemic hormone signalling. New Phytol 181:413–423.  https://doi.org/10.1111/j.1469-8137.2008.02657.xCrossRefPubMedGoogle Scholar
  12. Belimov AA, Hontzeas N, Safronova VI, Demchinskaya SV, Piluzza G, Bullitta S, Glick BR (2005) Cadmium-tolerant plant growth-promoting bacteria associated with the roots of Indian mustard (Brassica juncea L. Czern.). Soil Biol Biochem 37(2):241–250CrossRefGoogle Scholar
  13. Bertalan M, Albano R, de Padua V et al (2009) Complete genome sequence of the sugarcane nitrogen-fixing endophyte gluconacetobacter diazotrophicus Pal5. BMC Genom 10:450.  https://doi.org/10.1186/1471-2164-10-450CrossRefGoogle Scholar
  14. Bierne H, Cossart P (2012) When bacteria target the nucleus: the emerging family of nucleomodulins. Cell Microbiol 14:622–633.  https://doi.org/10.1111/j.1462-5822.2012.01758.xCrossRefPubMedGoogle Scholar
  15. Bingle LE, Bailey CM, Pallen MJ (2008) Type VI secretion: a beginner’s guide. Curr Opin Microbiol 11:3–8.  https://doi.org/10.1016/j.mib.2008.01.006CrossRefPubMedPubMedCentralGoogle Scholar
  16. Blanco Y, Blanch M, Piñón D et al (2005) Antagonism of Gluconacetobacter diazotrophicus (a sugarcane endosymbiont) against Xanthomonas albilineans (pathogen) studied in alginate-immobilized sugarcane stalk tissues. J Biosci Bioeng 99:366–371.  https://doi.org/10.1263/jbb.99.366CrossRefPubMedGoogle Scholar
  17. Blocker A, Komoriya K, Aizawa S (2003) Type III secretion systems and bacterial flagella: insights into their function from structural similarities. Proc Natl Acad Sci U A 100:3027–3030.  https://doi.org/10.1073/pnas.0535335100CrossRefGoogle Scholar
  18. Blomqvist K, Nikkola M, Lehtovaara P et al (1993) Characterization of the genes of the 2,3-butanediol operons from Klebsiella terrigena and Enterobacter aerogenes. J Bacteriol 175:1392–1404CrossRefPubMedPubMedCentralGoogle Scholar
  19. Bohm M, Hurek T, Reinhold-Hurek B (2007) Twitching motility is essential for endophytic rice colonization by the N2-fixing endophyte Azoarcus sp. strain BH72. Mol Plant Microbe Interact 20:526–533.  https://doi.org/10.1094/MPMI-20-5-0526CrossRefPubMedGoogle Scholar
  20. Bordiec S, Paquis S, Lacroix H et al (2011) Comparative analysis of defence responses induced by the endophytic plant growth-promoting rhizobacterium Burkholderia phytofirmans strain PsJN and the non-host bacterium Pseudomonas syringae pv. pisi in grapevine cell suspensions. J Exp Bot 62:595–603.  https://doi.org/10.1093/jxb/erq291CrossRefPubMedGoogle Scholar
  21. Bottini R, Fulchieri M, Pearce D, Pharis RP (1989) Identification of Gibberellins A(1), A(3), and Iso-A(3) in cultures of Azospirillum lipoferum. Plant Physiol 90:45–47CrossRefPubMedPubMedCentralGoogle Scholar
  22. Bown AW, MacGregor KB, Shelp BJ (2006) Gamma-aminobutyrate: defense against invertebrate pests? Trends Plant Sci 11(9):424–427CrossRefPubMedGoogle Scholar
  23. Brandl MT, Quinones B, Lindow SE (2001) Heterogeneous transcription of an indoleacetic acid biosynthetic gene in Erwinia herbicola on plant surfaces. Proc Nat Acad Sci 98(6):3454–3459CrossRefGoogle Scholar
  24. Camilli A (2006) Bacterial small-molecule signaling pathways. Science 311:1113–1116.  https://doi.org/10.1126/science.1121357CrossRefPubMedPubMedCentralGoogle Scholar
  25. Chapman KD (1998) Phospholipase activity during plant growth and development and in response to environmental stress. Trends Plant Sci 3:419–426CrossRefGoogle Scholar
  26. Chaudhry V, Patil PB (2016) Genomic investigation reveals evolution and lifestyle adaptation of endophytic Staphylococcus epidermidis. Sci Rep 6:19263.  https://doi.org/10.1038/srep19263CrossRefPubMedPubMedCentralGoogle Scholar
  27. Chen G, Snyder CL, Greer MS, Weselake RJ (2011) Biology and biochemistry of plant phospholipases. Crit Rev Plant Sci 30:239–258.  https://doi.org/10.1080/07352689.2011.572033CrossRefGoogle Scholar
  28. Cho SM, Kang BR, Han SH et al (2008) 2R,3R-butanediol, a bacterial volatile produced by Pseudomonas chlororaphis O6, is involved in induction of systemic tolerance to drought in Arabidopsis thaliana. Mol Plant Microbe Interact 21:1067–1075.  https://doi.org/10.1094/MPMI-21-8-1067CrossRefPubMedGoogle Scholar
  29. Dale C, Plague GR, Wang B et al (2002) Type III secretion systems and the evolution of mutualistic endosymbiosis. Proc Natl Acad Sci U A 99:12397–12402.  https://doi.org/10.1073/pnas.182213299CrossRefGoogle Scholar
  30. de Araújo Barros I, Wellington LA, Azevedo JL (2010) The effect of different growth regimes on the endophytic bacterial communities of the fern, Dicksonia sellowiana hook (Dicksoniaceae). Braz J Microbiol 41:956–965.  https://doi.org/10.1590/S1517-83822010000400014CrossRefGoogle Scholar
  31. De Maayer P, Chan WY, Rubagotti E et al (2014) Analysis of the Pantoea ananatis pan-genome reveals factors underlying its ability to colonize and interact with plant, insect and vertebrate hosts. BMC Genom 15:404.  https://doi.org/10.1186/1471-2164-15-404CrossRefGoogle Scholar
  32. De Meyer G, Capieau K, Audenaert K et al (1999) Nanogram amounts of salicylic acid produced by the rhizobacterium Pseudomonas aeruginosa 7NSK2 activate the systemic acquired resistance pathway in bean. Mol Plant Microbe Interact 12:450–458.  https://doi.org/10.1094/MPMI.1999.12.5.450CrossRefPubMedGoogle Scholar
  33. de Torres M, Mansfield JW, Grabov N et al (2006) Pseudomonas syringae effector AvrPtoB suppresses basal defence in Arabidopsis. Plant J 47:368–382.  https://doi.org/10.1111/j.1365-313X.2006.02798.xCrossRefPubMedGoogle Scholar
  34. Deakin WJ, Broughton WJ (2009) Symbiotic use of pathogenic strategies: rhizobial protein secretion systems. Nat Rev Microbiol 7:312–320.  https://doi.org/10.1038/nrmicro2091CrossRefPubMedGoogle Scholar
  35. Delepelaire P (2004) Type I secretion in gram-negative bacteria. Biochim Biophys Acta 1694:149–161.  https://doi.org/10.1016/j.bbamcr.2004.05.001CrossRefPubMedGoogle Scholar
  36. Dong Y, Iniguez AL, Ahmer BM, Triplett EW (2003) Kinetics and strain specificity of rhizosphere and endophytic colonization by enteric bacteria on seedlings of Medicago sativa and Medicago truncatula. Appl Env Microbiol 69:1783–1790CrossRefGoogle Scholar
  37. Douzi B, Filloux A, Voulhoux R (2012) On the path to uncover the bacterial type II secretion system. Philos Trans R Soc B Biol Sci 367:1059–1072.  https://doi.org/10.1098/rstb.2011.0204CrossRefGoogle Scholar
  38. Ettema TJ, Andersson SG (2009) The alpha-proteobacteria: the Darwin finches of the bacterial world. Biol Lett 5:429–432.  https://doi.org/10.1098/rsbl.2008.0793CrossRefPubMedPubMedCentralGoogle Scholar
  39. Felix G, Duran JD, Volko S, Boller T (1999) Plants have a sensitive perception system for the most conserved domain of bacterial flagellin. Plant J 18:265–276CrossRefPubMedGoogle Scholar
  40. Finnie C, Zorreguieta A, Hartley NM, Downie JA (1998) Characterization of Rhizobium leguminosarum exopolysaccharide glycanases that are secreted via a type I exporter and have a novel heptapeptide repeat motif. J Bacteriol 180:1691–1699PubMedPubMedCentralGoogle Scholar
  41. Fouts DE, Tyler HL, DeBoy RT et al (2008) Complete genome sequence of the N2-fixing broad host range endophyte Klebsiella pneumoniae 342 and virulence predictions verified in mice. PLoS Genet 4:e1000141.  https://doi.org/10.1371/journal.pgen.1000141CrossRefPubMedPubMedCentralGoogle Scholar
  42. Frank AC, Berglund E (2011) Horizontal gene transfer of host-adapted bacteria. In: Francino MP (ed) Horizontal gene transfer in microorganisms. Horizon Press, p In pressGoogle Scholar
  43. Frank A, Saldierna Guzmán J, Shay J (2017) Transmission of bacterial endophytes. Microorganisms 5:70.  https://doi.org/10.3390/microorganisms5040070CrossRefPubMedCentralGoogle Scholar
  44. Frost LS, Leplae R, Summers AO, Toussaint A (2005) Mobile genetic elements: the agents of open source evolution. Nat Rev Microbiol 3(9):722–732CrossRefPubMedGoogle Scholar
  45. Gill SS, Tuteja N (2010) Polyamines and abiotic stress tolerance in plants. Plant Signal Behav 5:26–33CrossRefPubMedPubMedCentralGoogle Scholar
  46. Glick BR (1995) The enhancement of plant-growth by free-living bacteria. Can J Microbiol 41:109–117CrossRefGoogle Scholar
  47. Glick BR (2004) Bacterial ACC deaminase and the alleviation of plant stress. Adv Appl Microbiol 56:291–312CrossRefPubMedGoogle Scholar
  48. Goldstein AH (1995) Recent progress in understanding the molecular genetics and biochemistry of calcium phosphate solubilization by gram negative bacteria. Biol Agric Hortic 12:185–193.  https://doi.org/10.1080/01448765.1995.9754736CrossRefGoogle Scholar
  49. Goldstein AH, Braverman K, Osorio N (1999) Evidence for mutualism between a plant growing in a phosphate-limited desert environment and a mineral phosphate solubilizing (MPS) rhizobacterium. FEMS Microbiol Ecol 30:295–300CrossRefPubMedGoogle Scholar
  50. Gottig N, Garavaglia BS, Garofalo CG et al (2009) A filamentous hemagglutinin-like protein of Xanthomonas axonopodis pv. citri, the phytopathogen responsible for citrus canker, is involved in bacterial virulence. PLoS ONE 4:e4358.  https://doi.org/10.1371/journal.pone.0004358CrossRefPubMedPubMedCentralGoogle Scholar
  51. Guo M, Manulis S, Barash I, Lichter A (2001) The operon for cytokinin biosynthesis of Erwinia herbicola pv. gypsophilae contains two promoters and is plant induced. Can J Microbiol 47:1126–1131CrossRefPubMedGoogle Scholar
  52. Han JI, Choi HK, Lee SW et al (2011) Complete Genome Sequence of the Metabolically Versatile Plant Growth-Promoting Endophyte Variovorax paradoxus S110. J Bacteriol 193:1183–1190.  https://doi.org/10.1128/JB.00925-10CrossRefPubMedGoogle Scholar
  53. Hardoim PR, van Overbeek LS, Elsas JD (2008) Properties of bacterial endophytes and their proposed role in plant growth. Trends Microbiol 16:463–471.  https://doi.org/10.1016/j.tim.2008.07.008CrossRefPubMedPubMedCentralGoogle Scholar
  54. Henderson IR, Navarro-Garcia F, Desvaux M, Fernandez RC, Ala’Aldeen D (2004) Type V protein secretion pathway: the autotransporter story. Microbiol Mol Biol Rev 68(4):692–744CrossRefPubMedPubMedCentralGoogle Scholar
  55. Herron SR, Benen JAE, Scavetta RD et al (2000) Structure and function of pectic enzymes: virulence factors of plant pathogens. Proc Natl Acad Sci 97:8762–8769.  https://doi.org/10.1073/pnas.97.16.8762CrossRefPubMedPubMedCentralGoogle Scholar
  56. Hinsa SM, Espinosa-Urgel M, Ramos JL, O’Toole GA (2003) Transition from reversible to irreversible attachment during biofilm formation by Pseudomonas fluorescens WCS365 requires an ABC transporter and a large secreted protein. Mol Microbiol 49:905–918CrossRefPubMedGoogle Scholar
  57. Hubber A, Roy CR (2010) Modulation of host cell function by Legionella pneumophila type IV effectors. Annu Rev Cell Dev Biol 26:261–283.  https://doi.org/10.1146/annurev-cellbio-100109-104034CrossRefPubMedPubMedCentralGoogle Scholar
  58. Hubber AM, Sullivan JT, Ronson CW (2007) Symbiosis-induced cascade regulation of the Mesorhizobium loti R7A VirB/D4 type IV secretion system. Mol Plant Microbe Interact 20:255–261.  https://doi.org/10.1094/MPMI-20-3-0255CrossRefPubMedGoogle Scholar
  59. Hurek T, Reinhold-Hurek B, Van Montagu M, Kellenberger E (1994) Root colonization and systemic spreading of Azoarcus sp. strain BH72 in grasses. J Bacteriol 176:1913–1923CrossRefPubMedPubMedCentralGoogle Scholar
  60. Iniguez AL, Dong Y, Carter HD et al (2005) Regulation of enteric endophytic bacterial colonization by plant defenses. Mol Plant Microbe Interact 18:169–178.  https://doi.org/10.1094/MPMI-18-0169CrossRefPubMedGoogle Scholar
  61. Ishoey T, Woyke T, Stepanauskas R et al (2008) Genomic sequencing of single microbial cells from environmental samples. Curr Opin Microbiol 11:198–204.  https://doi.org/10.1016/j.mib.2008.05.006CrossRefPubMedPubMedCentralGoogle Scholar
  62. Juhas M, van der Meer JR, Gaillard M et al (2009) Genomic islands: tools of bacterial horizontal gene transfer and evolution. FEMS Microbiol Rev 33:376–393.  https://doi.org/10.1111/j.1574-6976.2008.00136.xCrossRefPubMedGoogle Scholar
  63. Kaneko T, Nakamura Y, Sato S et al (2000) Complete genome structure of the nitrogen-fixing symbiotic bacterium Mesorhizobium loti. DNA Res 7:331–338CrossRefPubMedGoogle Scholar
  64. Kaneko T, Nakamura Y, Sato S et al (2002) Complete genomic sequence of nitrogen-fixing symbiotic bacterium Bradyrhizobium japonicum USDA110. DNA Res 9:189–197CrossRefPubMedGoogle Scholar
  65. Kaneko T, Minamisawa K, Isawa T et al (2010) Complete genomic structure of the cultivated rice endophyte Azospirillum sp. B510. DNA Res 17:37–50.  https://doi.org/10.1093/dnares/dsp026CrossRefPubMedPubMedCentralGoogle Scholar
  66. Kanzler BE, Pfannes KR, Vogl K, Overmann J (2005) Molecular characterization of the nonphotosynthetic partner bacterium in the consortium “Chlorochromatium aggregatum”. Appl Env Microbiol 71:7434–7441.  https://doi.org/10.1128/AEM.71.11.7434-7441.2005CrossRefGoogle Scholar
  67. Kitano H (2007) Towards a theory of biological robustness. Mol Syst Biol 3:137.  https://doi.org/10.1038/msb4100179CrossRefPubMedPubMedCentralGoogle Scholar
  68. Kobayashi DY, Reedy RM, Bick J, Oudemans PV (2002) Characterization of a chitinase gene from Stenotrophomonas maltophilia strain 34S1 and its involvement in biological control. Appl Env Microbiol 68:1047–1054CrossRefGoogle Scholar
  69. Koskimäki JJ, Pirttilä AM, Ihantola E-L, et al (2015) The Intracellular scots pine shoot symbiont Methylobacterium extorquens DSM13060 aggregates around the host nucleus and encodes Eukaryote-like proteins. mBio 6:e00039-15.  https://doi.org/10.1128/mbio.00039-15CrossRefPubMedPubMedCentralGoogle Scholar
  70. Krause A, Ramakumar A, Bartels D et al (2006) Complete genome of the mutualistic, N2-fixing grass endophyte Azoarcus sp. strain BH72. Nat Biotechnol 24:1385–1391.  https://doi.org/10.1038/nbt1243CrossRefPubMedGoogle Scholar
  71. Kruasuwan W, Hoskisson PA, Thamchaipenet A (2017) Draft genome sequence of root-associated sugarcane growth-promoting Microbispora sp. Strain GKU 823. Genome Announc 5:.  https://doi.org/10.1128/genomea.00647-17
  72. Lapierre P, Gogarten JP (2009) Estimating the size of the bacterial pan-genome. Trends Genet 25:107–110CrossRefPubMedGoogle Scholar
  73. Laugraud A, Young S, Gerard E, et al (2017) Draft genome sequence of the clover (Trifolium repens L.) Root Endophyte Paraburkholderia sp. Strain A27. Genome Announc 5:.  https://doi.org/10.1128/genomea.00466-17
  74. Lee S, Flores-Encarnacion M, Contreras-Zentella M et al (2004) Indole-3-acetic acid biosynthesis is deficient in Gluconacetobacter diazotrophicus strains with mutations in cytochrome c biogenesis genes. J Bacteriol 186:5384–5391.  https://doi.org/10.1128/JB.186.16.5384-5391.2004CrossRefPubMedPubMedCentralGoogle Scholar
  75. Leiman PG, Basler M, Ramagopal UA et al (2009) Type VI secretion apparatus and phage tail-associated protein complexes share a common evolutionary origin. Proc Natl Acad Sci U A 106:4154–4159.  https://doi.org/10.1073/pnas.0813360106CrossRefGoogle Scholar
  76. Levy A, Salas Gonzalez I, Mittelviefhaus M et al (2018) Genomic features of bacterial adaptation to plants. Nat Genet 50:138–150.  https://doi.org/10.1038/s41588-017-0012-9CrossRefPubMedGoogle Scholar
  77. Lòpez-Fernàndez S, Sonego P, Moretto M et al (2015) Whole-genome comparative analysis of virulence genes unveils similarities and differences between endophytes and other symbiotic bacteria. Front Microbiol 6:419.  https://doi.org/10.3389/fmicb.2015.00419CrossRefPubMedPubMedCentralGoogle Scholar
  78. Lukjancenko O, Wassenaar TM, Ussery DW (2010) Comparison of 61 sequenced Escherichia coli genomes. Microb Ecol 60Google Scholar
  79. Lumactud R, Fulthorpe R, Sentchilo V, van der Meer JR (2017a) Draft genome sequence of Microbacterium foliorum Strain 122 isolated from a plant growing in a chronically hydrocarbon-contaminated site. Genome Announc 5.  https://doi.org/10.1128/genomea.00434-17
  80. Lumactud R, Fulthorpe R, Sentchilo V, van der Meer JR (2017b) Draft genome sequence of plantibacterflavus strain 251 isolated from a plant growing in a chronically hydrocarbon-contaminated site. Genome Announc 5.  https://doi.org/10.1128/genomea.00276-17
  81. Madmony A, Chernin L, Pleban S et al (2005) Enterobacter cloacae, an obligatory endophyte of pollen grains of Mediterranean pines. Folia Microbiol Praha 50:209–216CrossRefPubMedGoogle Scholar
  82. Manulis S, Haviv-Chesner A, Brandl MT, Lindow SE, Barash I (1998) Differential Involvement of Indole-3-Acetic Acid Biosynthetic Pathways in Pathogenicity and Epiphytic Fitness of pv. Mol Plant-Microbe Interact 11(7):634–642Google Scholar
  83. Martínez-García PM, Ruano-Rosa D, Schilirò E, et al (2015) Complete genome sequence of Pseudomonas fluorescens strain PICF7, an indigenous root endophyte from olive (Olea europaea L.) and effective biocontrol agent against Verticillium dahliae. Stand Genomic Sci 10:10.  https://doi.org/10.1186/1944-3277-10-10CrossRefPubMedPubMedCentralGoogle Scholar
  84. Martín-Moldes Z, Zamarro MT, del Cerro C et al (2015) Whole-genome analysis of Azoarcus sp. strain CIB provides genetic insights to its different lifestyles and predicts novel metabolic features. Syst Appl Microbiol 38:462–471.  https://doi.org/10.1016/j.syapm.2015.07.002CrossRefPubMedGoogle Scholar
  85. McCann HC, Guttman DS (2008) Evolution of the type III secretion system and its effectors in plant-microbe interactions. New Phytol 177:33–47.  https://doi.org/10.1111/j.1469-8137.2007.02293.xCrossRefPubMedGoogle Scholar
  86. Mehnaz S, Lazarovits G (2006) Inoculation effects of Pseudomonas putida, Gluconacetobacter azotocaptans, and Azospirillum lipoferum on corn plant growth under greenhouse conditions. Microb Ecol 51:326–335.  https://doi.org/10.1007/s00248-006-9039-7CrossRefPubMedGoogle Scholar
  87. Meneses CHSG, Rouws LFM, Simoes-Araujo JL et al (2011) Exopolysaccharide production is required for biofilm formation and plant colonization by the nitrogen-fixing endophyte Gluconacetobacter diazotrophicus. Mol Plant-Microbe Interact MPMI 24:1448–1458.  https://doi.org/10.1094/MPMI-05-11-0127CrossRefPubMedGoogle Scholar
  88. Miceli E, Presta L, Maggini V, et al (2017) New genome sequence of an Echinaceapurpurea Endophyte, Arthrobacter sp. Strain EpSL27, able to inhibit human-opportunistic pathogens. Genome Announc 5.  https://doi.org/10.1128/genomea.00565-17
  89. Miller MB, Bassler BL (2001) Quorum sensing in bacteria. Annu Rev Microbiol 55:165–199.  https://doi.org/10.1146/annurev.micro.55.1.165CrossRefPubMedGoogle Scholar
  90. Mitter B, Petric A, Shin MW et al (2013) Comparative genome analysis of Burkholderia phytofirmans PsJN reveals a wide spectrum of endophytic lifestyles based on interaction strategies with host plants. Front Plant Sci 4:120.  https://doi.org/10.3389/fpls.2013.00120CrossRefPubMedPubMedCentralGoogle Scholar
  91. Moran NA (2003) Tracing the evolution of gene loss in obligate bacterial symbionts. Curr Opin Microbiol 6:512–518CrossRefPubMedGoogle Scholar
  92. Moran NA, Plague GR (2004) Genomic changes following host restriction in bacteria. Curr Opin Genet Dev 14:627–633.  https://doi.org/10.1016/j.gde.2004.09.003CrossRefPubMedGoogle Scholar
  93. Morgan PW, Drew MC (1997) Ethylene and plant responses to stress. Physiol Plant 100:620–630CrossRefGoogle Scholar
  94. Mosavi LK, Cammett TJ, Desrosiers DC, Peng Z-Y (2004) The ankyrin repeat as molecular architecture for protein recognition. Protein Sci Publ Protein Soc 13:1435–1448.  https://doi.org/10.1110/ps.03554604CrossRefGoogle Scholar
  95. Mota LJ, Sorg I, Cornelis GR (2005) Type III secretion: the bacteria-eukaryotic cell express. FEMS Microbiol Lett 252:1–10.  https://doi.org/10.1016/j.femsle.2005.08.036CrossRefPubMedGoogle Scholar
  96. Navarro L, Dunoyer P, Jay F et al (2006) A plant miRNA contributes to antibacterial resistance by repressing Auxin signaling. Science 312:436–439.  https://doi.org/10.1126/science.1126088CrossRefPubMedGoogle Scholar
  97. Nougayrède J-P, Taieb F, De Rycke J, Oswald E (2005) Cyclomodulins: bacterial effectors that modulate the eukaryotic cell cycle. Trends Microbiol 13:103–110.  https://doi.org/10.1016/j.tim.2005.01.002CrossRefPubMedGoogle Scholar
  98. Nystedt B, Frank AC, Thollesson M, Andersson SG (2008) Diversifying selection and concerted evolution of a type IV secretion system in Bartonella. Mol Biol Evol 25:287–300.  https://doi.org/10.1093/molbev/msm252CrossRefPubMedPubMedCentralGoogle Scholar
  99. Ochman H, Moran NA (2001) Genes lost and genes found: evolution of bacterial pathogenesis and symbiosis. Science 292:1096–1099CrossRefPubMedGoogle Scholar
  100. O’Sullivan DJ, O’Gara F (1992) Traits of fluorescent Pseudomonas spp. involved in suppression of plant root pathogens. Microbiol Rev 56:662–676PubMedPubMedCentralGoogle Scholar
  101. Pedrosa FO, Monteiro RA, Wassem R et al (2011) Genome of Herbaspirillum seropedicae strain SmR1, a specialized diazotrophic endophyte of tropical grasses. PLoS Genet 7:e1002064.  https://doi.org/10.1371/journal.pgen.1002064CrossRefPubMedPubMedCentralGoogle Scholar
  102. Perrine FM, Hocart CH, Hynes MF, Rolfe BG (2005) Plasmid-associated genes in the model micro-symbiont Sinorhizobium meliloti 1021 affect the growth and development of young rice seedlings. Env Microbiol 7:1826–1838.  https://doi.org/10.1111/j.1462-2920.2005.00927.xCrossRefGoogle Scholar
  103. Philippot L, Bru D, Saby NP et al (2009) Spatial patterns of bacterial taxa in nature reflect ecological traits of deep branches of the 16S rRNA bacterial tree. Environ Microbiol 11:3096–3104.  https://doi.org/10.1111/j.1462-2920.2009.02014.xCrossRefPubMedGoogle Scholar
  104. Philippot L, Andersson SG, Battin TJ et al (2010) The ecological coherence of high bacterial taxonomic ranks. Nat Rev Microbiol 8:523–529.  https://doi.org/10.1038/nrmicro2367CrossRefPubMedGoogle Scholar
  105. Ping L, Boland W (2004) Signals from the underground: bacterial volatiles promote growth in Arabidopsis. Trends Plant Sci 9:263–266CrossRefPubMedGoogle Scholar
  106. Preston GM, Bertrand N, Rainey PB (2001) Type III secretion in plant growth-promoting Pseudomonas fluorescens SBW25. Mol Microbiol 41:999–1014CrossRefPubMedGoogle Scholar
  107. Qin S, Feng W-W, Xing K et al (2015) Complete genome sequence of Kibdelosporangium phytohabitans KLBMP 1111(T), a plant growth promoting endophytic actinomycete isolated from oil-seed plant Jatropha curcas L. J Biotechnol 216:129–130.  https://doi.org/10.1016/j.jbiotec.2015.10.017CrossRefPubMedGoogle Scholar
  108. Ramsay JP, Sullivan JT, Stuart GS et al (2006) Excision and transfer of the Mesorhizobium loti R7A symbiosis island requires an integrase IntS, a novel recombination directionality factor RdfS, and a putative relaxase RlxS. Mol Microbiol 62:723–734.  https://doi.org/10.1111/j.1365-2958.2006.05396.xCrossRefPubMedGoogle Scholar
  109. Ran L, Larsson J, Vigil-Stenman T et al (2010) Genome erosion in a nitrogen-fixing vertically transmitted endosymbiotic multicellular cyanobacterium. PLoS ONE 5:e11486.  https://doi.org/10.1371/journal.pone.0011486CrossRefPubMedPubMedCentralGoogle Scholar
  110. Rättö M, Verhoef R, Suihko M-L et al (2006) Colanic acid is an exopolysaccharide common to many enterobacteria isolated from paper-machine slimes. J Ind Microbiol Biotechnol 33:359–367.  https://doi.org/10.1007/s10295-005-0064-1CrossRefPubMedGoogle Scholar
  111. Reinhold-Hurek B, Maes T, Gemmer S et al (2006) An endoglucanase is involved in infection of rice roots by the not-cellulose-metabolizing endophyte Azoarcus sp. strain BH72. Mol Plant Microbe Interact 19:181–188.  https://doi.org/10.1094/MPMI-19-0181CrossRefPubMedGoogle Scholar
  112. Rodrigues EP, Soares C de P, Galvão PG et al (2016) Identification of genes involved in Indole-3-acetic acid biosynthesis by Gluconacetobacter diazotrophicus PAL5 strain using Transposon Mutagenesis. Front Microbiol 7:.  https://doi.org/10.3389/fmicb.2016.01572
  113. Rodriguez-Navarro DN, Dardanelli MS, Ruiz-Sainz JE (2007) Attachment of bacteria to the roots of higher plants. FEMS Microbiol Lett 272:127–136.  https://doi.org/10.1111/j.1574-6968.2007.00761.xCrossRefPubMedGoogle Scholar
  114. Römling U, Galperin MY (2015) Bacterial cellulose biosynthesis: diversity of operons, subunits, products, and functions. Trends Microbiol 23:545–557.  https://doi.org/10.1016/j.tim.2015.05.005CrossRefPubMedPubMedCentralGoogle Scholar
  115. Rosenblueth M, Martinez-Romero E (2006) Bacterial endophytes and their interactions with hosts. Mol Plant Microbe Interact 19:827–837CrossRefPubMedGoogle Scholar
  116. Rothballer M, Eckert B, Schmid M et al (2008) Endophytic root colonization of gramineous plants by Herbaspirillum frisingense. FEMS Microbiol Ecol 66:85–95.  https://doi.org/10.1111/j.1574-6941.2008.00582.xCrossRefPubMedGoogle Scholar
  117. Ryan RP, Germaine K, Franks A et al (2008) Bacterial endophytes: recent developments and applications. FEMS Microbiol Lett 278:1–9.  https://doi.org/10.1111/j.1574-6968.2007.00918.xCrossRefPubMedGoogle Scholar
  118. Ryu CM, Farag MA, Hu CH et al (2003) Bacterial volatiles promote growth in Arabidopsis. Proc Natl Acad Sci U A 100:4927–4932.  https://doi.org/10.1073/pnas.0730845100CrossRefGoogle Scholar
  119. Samad A, Antonielli L, Sessitsch A et al (2017) Comparative genome analysis of the vineyard weed endophyte Pseudomonas viridiflava CDRTc14 showing selective herbicidal activity. Sci Rep 7.  https://doi.org/10.1038/s41598-017-16495-y
  120. Sanchez-Contreras M, Bauer WD, Gao M et al (2007) Quorum-sensing regulation in rhizobia and its role in symbiotic interactions with legumes. Philos Trans R Soc Lond B Biol Sci 362:1149–1163.  https://doi.org/10.1098/rstb.2007.2041CrossRefPubMedPubMedCentralGoogle Scholar
  121. Sandkvist M (2001) Biology of type II secretion. Mol Microbiol 40:271–283CrossRefPubMedGoogle Scholar
  122. Saravanan VS, Kalaiarasan P, Madhaiyan M, Thangaraju M (2007) Solubilization of insoluble zinc compounds by Gluconacetobacter diazotrophicus and the detrimental action of zinc ion (Zn2+) and zinc chelates on root knot nematode Meloidogyne incognita. Lett Appl Microbiol 44:235–241.  https://doi.org/10.1111/j.1472-765X.2006.02079.xCrossRefPubMedGoogle Scholar
  123. Schippers B, Bakker AW, Bakker PA (1987) Interactions of deleterious and beneficial rhizosphere microorganisms and the effect of cropping practises. Ann Rev Phytopathol 25:339–358CrossRefGoogle Scholar
  124. Schwarz S, Hood RD, Mougous JD (2010a) What is type VI secretion doing in all those bugs? Trends Microbiol 18:531–537.  https://doi.org/10.1016/j.tim.2010.09.001CrossRefPubMedPubMedCentralGoogle Scholar
  125. Schwarz S, Eoin West T, Boyer F, Chiang W-C, Carl MA, Hood RD, Rohmer L, Tolker-Nielsen T, Skerrett SJ, Mougous JD, Christie PJ (2010b) Burkholderia type VI secretion systems have distinct roles in Eukaryotic and bacterial cell interactions. PLoS Pathogens 6(8):e1001068CrossRefPubMedPubMedCentralGoogle Scholar
  126. Sessitsch A, Reiter B, Berg G (2004) Endophytic bacterial communities of field-grown potato plants and their plant-growth-promoting and antagonistic abilities. Can J Microbiol 50:239–249.  https://doi.org/10.1139/w03-118CrossRefPubMedGoogle Scholar
  127. Sessitsch A, Hardoim P, Doring J et al (2012) Functional characteristics of an endophyte community colonizing rice roots as revealed by metagenomic analysis. Mol Plant Microbe Interact 25:28–36.  https://doi.org/10.1094/MPMI-08-11-0204CrossRefPubMedGoogle Scholar
  128. Shan W, Liu H, Zhou Y, Yu X (2017) Draft genome sequence of Streptomyces sp. XY006, an Endophyte Isolated from Tea (Camellia sinensis). Genome Announc 5.  https://doi.org/10.1128/genomea.00971-17
  129. Sheibani-Tezerji R, Naveed M, Jehl M-A et al (2015) The genomes of closely related Pantoea ananatis maize seed endophytes having different effects on the host plant differ in secretion system genes and mobile genetic elements. Front Microbiol 6:440.  https://doi.org/10.3389/fmicb.2015.00440CrossRefPubMedPubMedCentralGoogle Scholar
  130. Siddikee MA, Glick BR, Chauhan PS et al (2011) Enhancement of growth and salt tolerance of red pepper seedlings (Capsicum annuum L.) by regulating stress ethylene synthesis with halotolerant bacteria containing 1-aminocyclopropane-1-carboxylic acid deaminase activity. Plant Physiol Biochem 49:427–434.  https://doi.org/10.1016/j.plaphy.2011.01.015CrossRefPubMedGoogle Scholar
  131. Simon C, Daniel R (2011) Metagenomic analyses: past and future trends. Appl Env Microbiol 77:1153–1161.  https://doi.org/10.1128/AEM.02345-10CrossRefGoogle Scholar
  132. Spaepen S, Vanderleyden J, Remans R (2007) Indole-3-acetic acid in microbial and microorganism-plant signaling. FEMS Microbiol Rev 31:425–448.  https://doi.org/10.1111/j.1574-6976.2007.00072.xCrossRefPubMedPubMedCentralGoogle Scholar
  133. Spaepen S, Vanderleyden J (2011) Auxin and plant-microbe interactions. Cold Spring Harb Perspect Biol 3:a001438–a001438.  https://doi.org/10.1101/cshperspect.a001438CrossRefPubMedPubMedCentralGoogle Scholar
  134. Stirnimann CU, Petsalaki E, Russell RB, Müller CW (2010) WD40 proteins propel cellular networks. Trends Biochem Sci 35:565–574.  https://doi.org/10.1016/j.tibs.2010.04.003CrossRefPubMedGoogle Scholar
  135. Sun Y, Cheng Z, Glick BR (2009) The presence of a 1-aminocyclopropane-1-carboxylate (ACC) deaminase deletion mutation alters the physiology of the endophytic plant growth-promoting bacterium PsJN. FEMS Microbiol Lett 296(1):131–136Google Scholar
  136. Suzuki S, He Y, Oyaizu H (2003) Indole-3-Acetic acid production in Pseudomonas fluorescens HP72 and its association with suppression of creeping bentgrass brown patch. Curr Microbiol 47:138–143CrossRefPubMedGoogle Scholar
  137. Taghavi S, Garafola C, Monchy S et al (2009) Genome survey and characterization of endophytic bacteria exhibiting a beneficial effect on growth and development of poplar trees. Appl Env Microbiol 75:748–757.  https://doi.org/10.1128/AEM.02239-08CrossRefGoogle Scholar
  138. Taghavi S, van der Lelie D, Hoffman A, Zhang Y-B, Walla MD, Vangronsveld J, Newman L, Monchy S, Burkholder WF (2010) Genome sequence of the plant growth promoting endophytic bacterium Enterobacter sp. 638. PLoS Genet 6(5):e1000943.CrossRefPubMedPubMedCentralGoogle Scholar
  139. Tejesvi MV, Picart P, Kajula M et al (2016) Identification of antibacterial peptides from endophytic microbiome. Appl Microbiol Biotechnol 100:9283–9293.  https://doi.org/10.1007/s00253-016-7765-4CrossRefPubMedGoogle Scholar
  140. Tettelin H, Riley D, Cattuto C, Medini D (2008) Comparative genomics: the bacterial pan-genome. Curr Opin Microbiol 11:472–477CrossRefPubMedGoogle Scholar
  141. Thomas P, Sekhar AC, Shaik SP (2017) High taxonomic diversity of cultivation-recalcitrant endophytic bacteria in grapevine field shoots, their in vitro introduction, and unsuspected persistence. Planta 246:879–898.  https://doi.org/10.1007/s00425-017-2733-5CrossRefPubMedGoogle Scholar
  142. Tian B-Y, Cao Y, Zhang K-Q (2015) Metagenomic insights into communities, functions of endophytes and their associates with infection by root-knot nematode, Meloidogyne incognita, in tomato roots. Sci Rep 5.  https://doi.org/10.1038/srep17087
  143. Toft C, Andersson SG (2010) Evolutionary microbial genomics: insights into bacterial host adaptation. Nat Rev Genet 11:465–475.  https://doi.org/10.1038/nrg2798CrossRefPubMedGoogle Scholar
  144. Utturkar SM, Cude WN, Robeson MS et al (2016) Enrichment of root endophytic bacteria from populus deltoides and single-cell-genomics analysis. Appl Environ Microbiol 82:5698–5708.  https://doi.org/10.1128/AEM.01285-16CrossRefPubMedPubMedCentralGoogle Scholar
  145. Van Brussel AA, Zaat SA, Cremers HC et al (1986) Role of plant root exudate and Sym plasmid-localized nodulation genes in the synthesis by Rhizobium leguminosarum of Tsr factor, which causes thick and short roots on common vetch. J Bacteriol 165:517–522CrossRefPubMedPubMedCentralGoogle Scholar
  146. van Loon LC, Bakker PAHM, van der Heijdt WHW, Wendehenne D, Pugin A (2008) Early responses of Tobacco suspension cells to Rhizobacterial elicitors of induced systemic resistance. Mol Plant-Microbe Interact 21(12):1609–1621Google Scholar
  147. van Zyl LJ, Schubert W-D, Tuffin MI, Cowan DA (2014) Structure and functional characterization of pyruvate decarboxylase from Gluconacetobacter diazotrophicus. BMC Struct Biol 14.  https://doi.org/10.1186/s12900-014-0021-1
  148. Vayssier-Taussat M, Le Rhun D, Deng HK et al (2010) The Trw type IV secretion system of Bartonella mediates host-specific adhesion to erythrocytes. PLoS Pathog 6:e1000946.  https://doi.org/10.1371/journal.ppat.1000946CrossRefPubMedPubMedCentralGoogle Scholar
  149. Vazquez-Hernandez M, Ceapa CD, Rodríguez-Luna SD et al (2017) Draft genome sequence of Streptomyces scabrisporus NF3, an endophyte isolated from Amphipterygium adstringens. Genome Announc 5.  https://doi.org/10.1128/genomea.00267-17
  150. Vial L, Cuny C, Gluchoff-Fiasson K et al (2006) N-acyl-homoserine lactone-mediated quorum-sensing in Azospirillum: an exception rather than a rule: AHL-mediated quorum-sensing in Azospirillum. FEMS Microbiol Ecol 58:155–168.  https://doi.org/10.1111/j.1574-6941.2006.00153.xCrossRefPubMedGoogle Scholar
  151. Wemheuer F, Hollensteiner J, Poehlein A, et al (2017) Draft genome sequence of Pseudomonas putida Strain GM4FR, an Endophytic Bacterium isolated from Festuca rubra L. Genome Announc 5:.  https://doi.org/10.1128/genomea.00086-17
  152. Wooley JC, Godzik A, Friedberg I (2010) A primer on metagenomics. PLoS Comput Biol 6:e1000667.  https://doi.org/10.1371/journal.pcbi.1000667CrossRefPubMedPubMedCentralGoogle Scholar
  153. Woyke T, Xie G, Copeland A et al (2009) Assembling the marine metagenome, one cell at a time. PLoS ONE 4:e5299.  https://doi.org/10.1371/journal.pone.0005299CrossRefPubMedPubMedCentralGoogle Scholar
  154. Woyke T, Tighe D, Mavromatis K et al (2010) One bacterial cell, one complete genome. PLoS ONE 5:e10314.  https://doi.org/10.1371/journal.pone.0010314CrossRefPubMedPubMedCentralGoogle Scholar
  155. Wu X, Monchy S, Taghavi S et al (2011) Comparative genomics and functional analysis of niche-specific adaptation in Pseudomonas putida. FEMS Microbiol Rev 35:299–323.  https://doi.org/10.1111/j.1574-6976.2010.00249.xCrossRefPubMedGoogle Scholar
  156. Yaish MW (2017) Draft genome sequence of the Endophytic Bacillus aryabhattai Strain SQU-R12, identified from Phoenix dactylifera L. roots. Genome Announc 5.  https://doi.org/10.1128/genomea.00718-17

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Life and Environmental SciencesUniversity of California MercedMercedUSA

Personalised recommendations