Advertisement

Bioactive Compounds from Tree Endophytes

  • J. Fischer
  • A. Schüffler
Chapter
Part of the Forestry Sciences book series (FOSC, volume 86)

Abstract

Endophytes are organisms that live at least parts of their life cycle asymptomatically within the plant tissue. Endophytic fungi include symptomless living fungi as well as latent pathogens and dormant saprophytes. The estimated high species diversity of endophytes and their adaptation to various plant habitats represents a rich and almost untapped source of new secondary metabolites (SM), some of which might become useful leads for pharmaceutical or agricultural applications. Forests are large reservoirs for fungal diversity, covering 30.3% of Earth’s land area. This chapter focuses on bioactive natural compounds, which were isolated from tree and shrub endophytes described since 2011 (follow-up of previous edition). Furthermore, an overview is given on research efforts on pharmaceutically significant plant compounds produced by endophytic fungi, namely: taxol, camptothecin, podophyllotoxin and derivatives as well as ginkgo terpene trilactones, rohitukine, piperine and azadirachtin. In addition, recent literature on endophytes and the biological activity of their extracts and volatile organic compounds (VOCs) is cited.

References

  1. Achenbach H, Mühlenfeld A, Brillinger GU (1985) Stoffwechselprodukte von Mikroorganismen, XXX. Phthalide und Chromanole aus Aspergillus duricaulis. Liebigs Ann der Chemie 1985:1596–1628.  https://doi.org/10.1002/jlac.198519850808CrossRefGoogle Scholar
  2. Adelin E, Servy C, Martin M-T et al (2014) Bicyclic and tetracyclic diterpenes from a Trichoderma symbiont of Taxus baccata. Phytochemistry 97:55–61.  https://doi.org/10.1016/j.phytochem.2013.10.016CrossRefPubMedGoogle Scholar
  3. Alpha CJ, Campos M, Jacobs-Wagner C, Strobel SA (2015) Mycofumigation by the volatile organic compound-producing Fungus Muscodor albus induces bacterial cell death through DNA damage. Appl Environ Microbiol 81:1147–1156.  https://doi.org/10.1128/AEM.03294-14CrossRefPubMedPubMedCentralGoogle Scholar
  4. Bai Z-Q, Lin X, Wang J et al (2015) New Meroterpenoids from the endophytic fungus Aspergillus flavipes AIL8 derived from the mangrove plant Acanthus ilicifolius. Mar Drugs 13:237–248.  https://doi.org/10.3390/md13010237CrossRefPubMedPubMedCentralGoogle Scholar
  5. Baker RA (1981) Toxin production by Fusarium solani from fibrous roots of blight-diseased citrus. Phytopathology 71:951.  https://doi.org/10.1094/Phyto-71-951CrossRefGoogle Scholar
  6. Balan J, Ebringer L, Nemec P (1964) Trypacidin a new antiprotozoal antibiotic. Naturwissenschaften 51:227.  https://doi.org/10.1007/BF00637183CrossRefGoogle Scholar
  7. Bamford PC, Norris GLF, Ward G (1961) Flavipin production by Epicoccum spp. Trans Br Mycol Soc 44:354–356.  https://doi.org/10.1016/S0007-1536(61)80028-4CrossRefGoogle Scholar
  8. Banerjee D, Pandey A, Jana M, Strobel G (2014) Muscodor albus MOW12 an endophyte of Piper nigrum L. (Piperaceae) Collected from North East India produces volatile antimicrobials. Indian J Microbiol 54:27–32.  https://doi.org/10.1007/s12088-013-0400-5CrossRefPubMedGoogle Scholar
  9. Benjamin CR, Stodola FH (1960) Ramulosin, a C10H14O3 compound produced by the fungus Pestalotia ramulosa. Nature 188:662–663.  https://doi.org/10.1038/188662a0CrossRefGoogle Scholar
  10. Benjamin CR, Hendershot WF, Hesseltine CW (1963) Microbiological production of ramulosin, a germination inhibitor. 3 ppGoogle Scholar
  11. Bhalkar BN, Patil SM, Govindwar SP (2016) Camptothecine production by mixed fermentation of two endophytic fungi from Nothapodytes nimmoniana. Fungal Biol 120:873–883.  https://doi.org/10.1016/j.funbio.2016.04.003CrossRefPubMedGoogle Scholar
  12. Birks J, Grimley Evans J (2009) Ginkgo biloba for cognitive impairment and dementia. In: Birks J (ed) Cochrane database of systematic reviews. Wiley, ChichesterGoogle Scholar
  13. Brian PW (1949) Studies on the biological activity of Griseofulvin. Ann Bot 13:59–77CrossRefGoogle Scholar
  14. Campos FF raga, Sales Junior PA, Romanha AJ os et al (2015a) Bioactive endophytic fungi isolated from Caesalpinia echinata Lam. (Brazilwood) and identification of beauvericin as a trypanocidal metabolite from Fusarium sp. Mem??rias do Inst Oswaldo Cruz 110:65–74.  https://doi.org/10.1590/0074-02760140243
  15. Campos FF, Sales Junior PA, Romanha AJ et al (2015b) Bioactive endophytic fungi isolated from Caesalpinia echinata Lam. (Brazilwood) and identification of beauvericin as a trypanocidal metabolite from Fusarium sp. Mem Inst Oswaldo Cruz 110:65–74.  https://doi.org/10.1590/0074-02760140243CrossRefPubMedPubMedCentralGoogle Scholar
  16. Cao L-L, Zhang Y-Y, Liu Y-J et al (2016) Anti-phytopathogenic activity of sporothriolide, a metabolite from endophyte Nodulisporium sp. A21 in Ginkgo biloba. Pestic Biochem Physiol 129:7–13.  https://doi.org/10.1016/J.PESTBP.2015.10.002CrossRefPubMedGoogle Scholar
  17. Casella TM, Eparvier V, Mandavid H et al (2013) Antimicrobial and cytotoxic secondary metabolites from tropical leaf endophytes: Isolation of antibacterial agent pyrrocidine C from Lewia infectoria SNB-GTC2402. Phytochemistry 96:370–377.  https://doi.org/10.1016/j.phytochem.2013.10.004CrossRefPubMedGoogle Scholar
  18. Chaichanan J, Wiyakrutta S, Pongtharangkul T et al (2014) Optimization of zofimarin production by an endophytic fungus, Xylaria sp. Acra L38. Braz J Microbiol 45:287–293.  https://doi.org/10.1590/S1517-83822014000100042CrossRefPubMedPubMedCentralGoogle Scholar
  19. Chandra S (2012) Endophytic fungi: novel sources of anticancer lead molecules. Appl Microbiol Biotechnol 95:47–59.  https://doi.org/10.1007/s00253-012-4128-7CrossRefPubMedGoogle Scholar
  20. Cheng M-J, Wu M-D, Yanai H et al (2012) Secondary metabolites from the endophytic fungus Biscogniauxia formosana and their antimycobacterial activity. Phytochem Lett 5:467–472.  https://doi.org/10.1016/j.phytol.2012.04.007CrossRefGoogle Scholar
  21. Chinta G, Syed SB, Coumar MS, Periyasamy L (2015) Piperine: a comprehensive review of pre-clinical and clinical investigations. Curr Bioact Compd 11.  https://doi.org/10.5897/ajmr2014.7127
  22. Chithra S, Jasim B, Anisha C et al (2014a) LC-MS/MS based identification of piperine production by endophytic Mycosphaerella sp. PF13 from Piper nigrum. Appl Biochem Biotechnol 173:30–35.  https://doi.org/10.1007/s12010-014-0832-3CrossRefPubMedGoogle Scholar
  23. Chithra S, Jasim B, Sachidanandan P et al (2014b) Piperine production by endophytic fungus Colletotrichum gloeosporioides isolated from Piper nigrum. Phytomedicine 21:534–540.  https://doi.org/10.1016/j.phymed.2013.10.020CrossRefPubMedGoogle Scholar
  24. Chowdhary K, Kaushik N (2015) Fungal endophyte diversity and bioactivity in the Indian medicinal plant Ocimum sanctum Linn. PLoS ONE 10:e0141444.  https://doi.org/10.1371/journal.pone.0141444CrossRefPubMedPubMedCentralGoogle Scholar
  25. Cole RJ, Moore JH, Davis ND et al (1971) 4-Hydroxymellein. New metabolite of Aspergillus ochraceus. J Agric Food Chem 19:909–911.  https://doi.org/10.1021/jf60177a003CrossRefGoogle Scholar
  26. Cole RJ, Kirksey JW, Dorner JW et al (1977) Mycotoxins produced by Aspergillus fumigatus isolated from silage. Ann Nutr Aliment 31:685–691PubMedGoogle Scholar
  27. Cotinguiba F, Regasini LO, da Silva Bolzani V et al (2009) Piperamides and their derivatives as potential anti-trypanosomal agents. Med Chem Res 18:703–711.  https://doi.org/10.1007/s00044-008-9161-9CrossRefGoogle Scholar
  28. Cui Y, Yi D, Bai X et al (2012) Ginkgolide B produced endophytic fungus (Fusarium oxysporum) isolated from Ginkgo biloba. Fitoterapia 83:913–920.  https://doi.org/10.1016/J.FITOTE.2012.04.009CrossRefPubMedGoogle Scholar
  29. da Silva Araújo FD, de Lima Fávaro LC, Araújo WL et al (2012) Epicolactone—natural product isolated from the sugarcane endophytic fungus Epicoccum nigrum. Eur J Org Chem 2012:5225–5230.  https://doi.org/10.1002/ejoc.201200757CrossRefGoogle Scholar
  30. Daisy BH, Strobel GA, Castillo U et al (2002) Naphthalene, an insect repellent, is produced by Muscodor vitigenus, a novel endophytic fungus. Microbiology 148:3737–3741.  https://doi.org/10.1099/00221287-148-11-3737CrossRefPubMedGoogle Scholar
  31. Damanhouri ZA (2014) A review on therapeutic potential of Piper nigrum L. (Black Pepper): the king of spices. Med Aromat Plants 3.  https://doi.org/10.4172/2167-0412.1000161
  32. Danishefsky SJ, Masters JJ, Young WB et al (1996) Total synthesis of Baccatin III and taxol. J Am Chem Soc 118:2843–2859.  https://doi.org/10.1021/ja952692aCrossRefGoogle Scholar
  33. Das A, Rahman MI, Ferdous AS et al (2017) An endophytic Basidiomycete, Grammothele lineata, isolated from Corchorus olitorius, produces paclitaxel that shows cytotoxicity. PLoS ONE 12:e0178612.  https://doi.org/10.1371/journal.pone.0178612CrossRefPubMedPubMedCentralGoogle Scholar
  34. De Stefano S, Nicoletti R, Milone A, Zambardino S (1999) 3-o-Methylfunicone, a fungitoxic metabolite produced by the fungus Penicillium pinophilum. Phytochemistry 52:1399–1401.  https://doi.org/10.1016/S0031-9422(99)00320-9CrossRefGoogle Scholar
  35. Deshmukh SK, Verekar SA (2012) Fungal endophytes: a potential source of antifungal compounds. Front Biosci (Elite Ed) 4:2045–2070.  https://doi.org/10.2741/E524CrossRefGoogle Scholar
  36. Deshmukh SK, Verekar SA (2014) Fungal endophytes: an amazing and hidden source of cytotoxic compounds. Microbial diversity and biotechnology in food security. Springer India, New Delhi, pp 59–89Google Scholar
  37. Dickschat JS (2017) Fungal volatiles—a survey from edible mushrooms to moulds. Nat Prod Rep 34:310–328.  https://doi.org/10.1039/C7NP00003KCrossRefPubMedGoogle Scholar
  38. Drabu S, Khatri S, Babu S (2012) Neem: healer of all ailments. Res J Pharm Biol Chem Sci 3:121–126Google Scholar
  39. Elavarasi A, Rathna GS, Kalaiselvam M (2012) Taxol producing mangrove endophytic fungi Fusarium oxysporum from Rhizophora annamalayana. Asian Pac J Trop Biomed 2:S1081–S1085.  https://doi.org/10.1016/S2221-1691(12)60365-7CrossRefGoogle Scholar
  40. Enders D, Kaiser A (1996) A short asymmetric synthesis of both enantiomers of ramulosin and its analogues. Synth (Stuttg) 1996:209–214.  https://doi.org/10.1055/s-1996-4195CrossRefGoogle Scholar
  41. Fatima N, Muhammad SA, Khan I et al (2016) Chaetomium endophytes: a repository of pharmacologically active metabolites. Acta Physiol Plant 38:136.  https://doi.org/10.1007/s11738-016-2138-2CrossRefGoogle Scholar
  42. Fatima N, Sripisut T, Youn UJ et al (2017) Bioactive constituents from an endophytic fungus, Penicillium polonicum NFW9, Associated with Taxus fauna. Med Chem 13:689–697.  https://doi.org/10.2174/1573406413666170216145121CrossRefPubMedGoogle Scholar
  43. Ferreira C, Soares DC, Barreto-Junior CB et al (2011) Leishmanicidal effects of piperine, its derivatives, and analogues on Leishmania amazonensis. Phytochemistry 72:2155–2164.  https://doi.org/10.1016/j.phytochem.2011.08.006CrossRefPubMedGoogle Scholar
  44. Ferreira WS, Franklim TN, Lopes ND, De Lima MEF (2012) Piperine, its analogues and derivatives: Potencial as antiparasitic drugs [Piperina, seus análogos e derivados: Potencial como antiparasitários]. Rev Virtual Quim 4:208–224Google Scholar
  45. Findlay JA, Buthelezi S, Lavoie R et al (1995) Bioactive isocoumarins and related metabolites from Conifer endophytes. J Nat Prod 58:1759–1766.  https://doi.org/10.1021/np50125a021CrossRefPubMedGoogle Scholar
  46. Forcina GC, Castro A, Bokesch HR et al (2015) Stelliosphaerols A and B, Sesquiterpene-Polyol conjugates from an Ecuadorian fungal endophyte. J Nat Prod 78:3005–3010.  https://doi.org/10.1021/acs.jnatprod.5b00749CrossRefPubMedGoogle Scholar
  47. Frense D (2007) Taxanes: perspectives for biotechnological production. Appl Microbiol Biotechnol 73:1233–1240.  https://doi.org/10.1007/s00253-006-0711-0CrossRefPubMedGoogle Scholar
  48. Fujiwara T, Sato A, Kawamura Y et al (1994) Nivefuranone manufacture with Aspergillus niveus. Jpn. Kokai Tokkyo Koho 7 ppGoogle Scholar
  49. Galmarini OL, Mastronardi IO, Priestap HA (1974) Two novel metabolites of Aspergillus fonsecaeus. Experientia 30:586.  https://doi.org/10.1007/BF01921486CrossRefPubMedGoogle Scholar
  50. Garyali S, Kumar A, Reddy MS (2013) Taxol production by an endophytic fungus, Fusarium redolens, isolated from Himalayan yew. J Microbiol Biotechnol 23:1372–1380CrossRefPubMedGoogle Scholar
  51. Ghisalberti EL, Hockless DCR, Rowland C, White AH (1992) Harziandione, a new class of Diterpene from Trichoderma harzianum. J Nat Prod 55:1690–1694.  https://doi.org/10.1021/np50089a023CrossRefGoogle Scholar
  52. Giles D, Turner WB (1969) Chlorine-containing metabolites of Periconia macrospinosa. J Chem Soc C Org 2187.  https://doi.org/10.1039/j39690002187
  53. Gokhale M, Gupta D, Gupta U et al (2017) Patents on endophytic fungi. Recent Pat Biotechnol 11.  https://doi.org/10.2174/1872208311666170215151834
  54. Gokul Raj K, Manikandan R, Arulvasu C, Pandi M (2015) Anti-proliferative effect of fungal taxol extracted from Cladosporium oxysporum against human pathogenic bacteria and human colon cancer cell line HCT 15. Spectrochimica Acta Part A: Mol Biomol Spectros 138:667–674CrossRefGoogle Scholar
  55. Gokul Raj K, Rajapriya P, Muthumary J, Pandi M (2014) Molecular identification and characterization of the taxol-producing Colletotrichum gloeosporioides from Moringa oleifera Linn. Microbial diversity and biotechnology in food security. Springer India, New Delhi, pp 111–120Google Scholar
  56. Gond SK, Kharwar RN, White JF (2014) Will fungi be the new source of the blockbuster drug taxol? Fungal Biol Rev 28:77–84.  https://doi.org/10.1016/j.fbr.2014.10.001CrossRefGoogle Scholar
  57. Gonz A, Spanish C, Laguna L et al (2016) Endophytic fungi and their bioprospectionGoogle Scholar
  58. González MC, Anaya AL, Glenn AE et al (2009) Muscodor yucatanensis, a new endophytic ascomycete from Mexican chakah, Bursera simaruba. Mycotaxon 110:363–372.  https://doi.org/10.5248/110.363CrossRefGoogle Scholar
  59. Govindachari TR, Viswanathan N (1972) Alkaloids of Mappia foetida. Phytochemistry 11:3529–3531.  https://doi.org/10.1016/S0031-9422(00)89852-0CrossRefGoogle Scholar
  60. Grove JF (1985) Metabolic products of Phomopsis oblonga. Part 2. Phomopsolide A and B, tiglic esters of two 6-substituted 5,6-dihydro-5-hydroxypyran-2-ones. J Chem Soc Perkin Trans 1 865.  https://doi.org/10.1039/p19850000865
  61. Gu Y, Wang Y, Ma X et al (2015) Greater taxol yield of fungus Pestalotiopsis hainanensis from dermatitic scurf of the giant panda (Ailuropoda melanoleuca). Appl Biochem Biotechnol 175:155–165.  https://doi.org/10.1007/s12010-014-1254-yCrossRefPubMedGoogle Scholar
  62. Guenard D, Gueritte-Voegelein F, Potier P (1993) Taxol and taxotere: discovery, chemistry, and structure-activity relationships. Acc Chem Res 26:160–167.  https://doi.org/10.1021/ar00028a005CrossRefGoogle Scholar
  63. Guo Z, Ren F, Che Y et al (2015) New Bergamotane Sesquiterpenoids from the plant endophytic fungus Paraconiothyrium brasiliense. Molecules 20:14611–14620.  https://doi.org/10.3390/molecules200814611CrossRefPubMedGoogle Scholar
  64. Hamill RL, Higgens CE, Boaz HE, Gorman M (1969) The structure op beauvericin, a new depsipeptide antibiotic toxic to Artemia salina. Tetrahedron Lett 10:4255–4258.  https://doi.org/10.1016/S0040-4039(01)88668-8CrossRefGoogle Scholar
  65. Hao X, Pan J, Zhu X (2013) Taxol producing fungi. Natural products. Springer, Berlin Heidelberg, Berlin, Heidelberg, pp 2797–2812CrossRefGoogle Scholar
  66. Hao F, Kumar S, Yadav N, Chandra D (2014) Neem components as potential agents for cancer prevention and treatment. Biochim Biophys Acta—Rev Cancer 1846:247–257.  https://doi.org/10.1016/j.bbcan.2014.07.002CrossRefGoogle Scholar
  67. Hardoim PR, van Overbeek LS, Berg G et al (2015) The hidden world within plants: ecological and evolutionary considerations for defining functioning of microbial endophytes. Microbiol Mol Biol Rev 79:293–320.  https://doi.org/10.1128/MMBR.00050-14CrossRefPubMedPubMedCentralGoogle Scholar
  68. Harmon AD, Weiss U (1979) The structure of rohitukine, the main alkaloid of Amoora rohituka (syn. Aphanamixis polystachya) (Meliaceae) [leaves and stems]. Tetrahedron 8:721–724CrossRefGoogle Scholar
  69. Hawksworth DL (2012) Global species numbers of fungi: are tropical studies and molecular approaches contributing to a more robust estimate? Biodivers Conserv 21:2425–2433.  https://doi.org/10.1007/s10531-012-0335-xCrossRefGoogle Scholar
  70. He H, Bigelis R, Solum EH et al (2003) Acremonidins, new polyketide-derived antibiotics produced by Acremonium sp., LL-Cyan 416. J Antibiot (Tokyo) 56:923–930.  https://doi.org/10.7164/antibiotics.56.923CrossRefGoogle Scholar
  71. Heinig U, Scholz S, Jennewein S (2013) Getting to the bottom of taxol biosynthesis by fungi. Fungal Divers 60:161–170.  https://doi.org/10.1007/s13225-013-0228-7CrossRefGoogle Scholar
  72. Hemberger Y, Xu J, Wray V et al (2013) Pestalotiopens A and B: stereochemically challenging flexible sesquiterpene-cyclopaldic acid hybrids from Pestalotiopsis sp. Chemistry 19:15556–15564.  https://doi.org/10.1002/chem.201302204CrossRefPubMedGoogle Scholar
  73. Hoffman AM, Mayer SG, Strobel GA et al (2008) Purification, identification and activity of phomodione, a furandione from an endophytic Phoma species. Phytochemistry 69:1049–1056.  https://doi.org/10.1016/j.phytochem.2007.10.031CrossRefPubMedGoogle Scholar
  74. Hongsanan S, Hyde KD, Bahkali AH et al (2015) Fungal biodiversity profiles 11–20. Cryptogam Mycol 36:355–380.  https://doi.org/10.7872/crym/v36.iss3.2015.355CrossRefGoogle Scholar
  75. Huang H-B, Xiao Z-E, Feng X-J et al (2011) Cytotoxic Naphtho-γ-pyrones from the Mangrove endophytic fungus Aspergillus tubingensis (GX1-5E). Helv Chim Acta 94:1732–1740.  https://doi.org/10.1002/hlca.201100050CrossRefGoogle Scholar
  76. Huang J, Lv C, Hu M, Zhong G (2013) The mitochondria-mediate apoptosis of lepidopteran cells induced by Azadirachtin. PLoS ONE 8:e58499.  https://doi.org/10.1371/journal.pone.0058499CrossRefPubMedPubMedCentralGoogle Scholar
  77. Huang R, Xie X-S, Fang X-W et al (2015) Five New Guaiane Sesquiterpenes from the endophytic fungus Xylaria sp. YM 311647 of Azadirachta indica. Chem Biodivers 12:1281–1286.  https://doi.org/10.1002/cbdv.201400405CrossRefPubMedGoogle Scholar
  78. Hung R, Lee S, Bennett JW (2015) Fungal volatile organic compounds and their role in ecosystems. Appl Microbiol Biotechnol 99:3395–3405.  https://doi.org/10.1007/s00253-015-6494-4CrossRefPubMedGoogle Scholar
  79. Hutchings ML, Alpha-Cobb CJ, Hiller DA et al (2017) Mycofumigation through production of the volatile DNA-methylating agent N -methyl- N -nitrosoisobutyramide by fungi in the genus Muscodor. J Biol Chem 292:7358–7371.  https://doi.org/10.1074/jbc.M117.779009CrossRefPubMedPubMedCentralGoogle Scholar
  80. IndexFungorum Index Fungorum. www.indexfungorum.org. Accessed 20 Jun 2017
  81. Isaka M, Palasarn S, Auncharoen P et al (2009) Acremoxanthones A and B, novel antibiotic polyketides from the fungus Acremonium sp. BCC 31806. Tetrahedron Lett 50:284–287.  https://doi.org/10.1016/j.tetlet.2008.10.146CrossRefGoogle Scholar
  82. Jennewein S, Croteau R (2001) Taxol: biosynthesis, molecular genetics, and biotechnological applications. Appl Microbiol Biotechnol 57:13–19CrossRefPubMedGoogle Scholar
  83. Jouda J-B, Kusari S, Lamshöft M et al (2014) Penialidins A-C with strong antibacterial activities from Penicillium sp., an endophytic fungus harboring leaves of Garcinia nobilis. Fitoterapia 98:209–214.  https://doi.org/10.1016/j.fitote.2014.08.011CrossRefPubMedGoogle Scholar
  84. Kameda K, Aoki H, Namiki M, Overeem JC (1974) An alternative structure for botrallin a metabolite of. Tetrahedron Lett 15:103–106.  https://doi.org/10.1016/S0040-4039(01)82147-XCrossRefGoogle Scholar
  85. Khalil MS (2013) Abamectin and Azadirachtin as eco-friendly promising biorational tools in integrated nematodes management programs. J Plant Pathol Microbiol 4.  https://doi.org/10.4172/2157-7471.1000174
  86. Khan MIH, Sohrab MH, Rony SR et al (2016) Cytotoxic and antibacterial naphthoquinones from an endophytic fungus, Cladosporium sp. Toxicol Reports 3:861–865.  https://doi.org/10.1016/j.toxrep.2016.10.005CrossRefGoogle Scholar
  87. Kimura Y, Katagiri K, Tamura S (1971) Structure of pestalotin, a new metabolite from Pestalotia cryptomeriaecola. Tetrahedron Lett 12:3137–3140.  https://doi.org/10.1016/S0040-4039(01)97111-4CrossRefGoogle Scholar
  88. Krohn K, Ludewig K, Aust H-J et al (1994) Biologically active metabolites from fungi. 3. Sporothriolide, discosiolide, and 4-epi-ethisolide New furofurandiones from Sporothrix sp., Discosia sp., and Pezicula livida. J Antibiot (Tokyo) 47:113–118.  https://doi.org/10.7164/antibiotics.47.113CrossRefGoogle Scholar
  89. Krohn K, Michel A, Römer E et al (1995) Biologically active metabolites from fungi 6 1); Phomosines A-C three new Biaryl ethers from Phomopsis sp. Nat Prod Lett 6:309–314.  https://doi.org/10.1080/10575639508043176CrossRefGoogle Scholar
  90. Krohn K, Farooq U, Hussain H et al (2011) Phomosines H-J, novel highly substituted biaryl ethers, isolated from the endophytic fungus Phomopsis sp. from Ligustrum vulgare. Nat Prod Commun 6:1907–1912PubMedGoogle Scholar
  91. Kudalkar P, Strobel G, Riyaz-Ul-Hassan S et al (2012) Muscodor sutura, a novel endophytic fungus with volatile antibiotic activities. Mycoscience 53:319–325.  https://doi.org/10.1007/S10267-011-0165-9CrossRefGoogle Scholar
  92. Kumar VS, Navaratnam V (2013) Neem (Azadirachta indica): prehistory to contemporary medicinal uses to humankind. Asian Pac J Trop Biomed 3:505–514.  https://doi.org/10.1016/S2221-1691(13)60105-7CrossRefPubMedPubMedCentralGoogle Scholar
  93. Kumar M, Qadri M, Sharma PR et al (2013) Tubulin Inhibitors from an endophytic fungus isolated from Cedrus deodara. J Nat Prod 76:194–199.  https://doi.org/10.1021/np3006666CrossRefPubMedGoogle Scholar
  94. Kumara PM, Zuehlke S, Priti V et al (2012) Fusarium proliferatum, an endophytic fungus from Dysoxylum binectariferum Hook.f, produces rohitukine, a chromane alkaloid possessing anti-cancer activity. Antonie Van Leeuwenhoek 101:323–329.  https://doi.org/10.1007/s10482-011-9638-2CrossRefGoogle Scholar
  95. Kumara PM, Soujanya KN, Ravikanth G et al (2014) Rohitukine, a chromone alkaloid and a precursor of flavopiridol, is produced by endophytic fungi isolated from Dysoxylum binectariferum Hook.f and Amoora rohituka (Roxb). Wight Arn. Phytomed 21:541–546.  https://doi.org/10.1016/j.phymed.2013.09.019CrossRefGoogle Scholar
  96. Kumaran R, Choi Y, Lee S et al (2012) Isolation of taxol, an anticancer drug produced by the endophytic fungus, Phoma betae. Afr J Biotechnol 11:950–960Google Scholar
  97. Kumari A, Singh D, Kumar S (2017) Biotechnological interventions for harnessing podophyllotoxin from plant and fungal species: current status, challenges, and opportunities for its commercialization. Crit Rev Biotechnol 37:739–753.  https://doi.org/10.1080/07388551.2016.1228597CrossRefPubMedGoogle Scholar
  98. Kusari S, Spiteller M (2011) Are we ready for industrial production of bioactive plant secondary metabolites utilizing endophytes? Nat Prod Rep 28:1203.  https://doi.org/10.1039/c1np00030fCrossRefPubMedGoogle Scholar
  99. Kusari S, Zühlke S, Spiteller M (2009) An endophytic fungus from Camptotheca acuminata that produces camptothecin and analogues. J Nat Prod 72:2–7.  https://doi.org/10.1021/np800455bCrossRefPubMedGoogle Scholar
  100. Kusari S, Zühlke S, Spiteller M (2011) Effect of artificial reconstitution of the interaction between the plant camptotheca acuminata and the fungal endophyte Fusarium solani on camptothecin biosynthesis. J Nat Prod 74:764–775.  https://doi.org/10.1021/np1008398CrossRefPubMedGoogle Scholar
  101. Kusari S, Hertweck C, Spiteller M (2012a) Chemical ecology of endophytic fungi: origins of secondary metabolites. Chem Biol 19:792–798.  https://doi.org/10.1016/j.chembiol.2012.06.004CrossRefPubMedPubMedCentralGoogle Scholar
  102. Kusari S, Verma VC, Lamshoeft M, Spiteller M (2012b) An endophytic fungus from Azadirachta indica A. Juss. that produces azadirachtin. World J Microbiol Biotechnol 28:1287–1294.  https://doi.org/10.1007/s11274-011-0876-2CrossRefPubMedGoogle Scholar
  103. Kusari S, Singh S, Jayabaskaran C (2014a) Rethinking production of Taxol® (paclitaxel) using endophyte biotechnology. Trends Biotechnol 32:304–311.  https://doi.org/10.1016/j.tibtech.2014.03.011CrossRefPubMedGoogle Scholar
  104. Kusari S, Singh S, Jayabaskaran C (2014b) Biotechnological potential of plant-associated endophytic fungi: hope versus hype. Trends Biotechnol 32:297–303.  https://doi.org/10.1016/j.tibtech.2014.03.009CrossRefPubMedGoogle Scholar
  105. Labora M, Schapiro V, Pandolfi E (2011) Concise chemoenzymatic synthesis of gabosine A, ent-epoformin and ent-epiepoformin. Tetrahedron Asymmetry 22:1705–1707.  https://doi.org/10.1016/j.tetasy.2011.10.004CrossRefGoogle Scholar
  106. Lacey LA, Horton DR, Jones DC et al (2009) Efficacy of the biofumigant fungus Muscodor albus (Ascomycota: Xylariales) for control of codling moth (Lepidoptera: Tortricidae) in simulated storage conditions. J Econ Entomol 102:43–49CrossRefPubMedGoogle Scholar
  107. Ley SV, Denholm AA, Wood A (1993) The chemistry of azadirachtin. Nat Prod Reports 10(2):109CrossRefGoogle Scholar
  108. Li S, Zhang Z, Cain A et al (2005) Antifungal activity of camptothecin, trifolin, and hyperoside isolated from Camptotheca acuminata. J Agric Food Chem 53:32–37.  https://doi.org/10.1021/jf0484780CrossRefPubMedGoogle Scholar
  109. Li Q-Y, Zu Y-G, Shi R-Z, Yao L-P (2006) Review camptothecin: current perspectives. Curr Med Chem 13:2021–2039.  https://doi.org/10.2174/092986706777585004CrossRefPubMedGoogle Scholar
  110. Li E, Tian R, Liu S et al (2008) Pestalotheols A−D, bioactive metabolites from the plant endophytic fungus Pestalotiopsis theae. J Nat Prod 71:664–668.  https://doi.org/10.1021/np700744tCrossRefPubMedGoogle Scholar
  111. Li H-Q, Li X-J, Wang Y-L et al (2011) Antifungal metabolites from Chaetomium globosum, an endophytic fungus in Ginkgo biloba. Biochem Syst Ecol 39:876–879.  https://doi.org/10.1016/j.bse.2011.06.019CrossRefGoogle Scholar
  112. Li S, Wei M, Chen G, Lin Y (2012) Two new dihydroisocoumarins from the endophytic fungus Aspergillus sp. collected from the south china sea. Chem Nat Compd 48:371–373.  https://doi.org/10.1007/s10600-012-0254-9CrossRefGoogle Scholar
  113. Li H, Xiao J, Gao Y-Q et al (2014a) Chaetoglobosins from Chaetomium globosum, an endophytic Fungus in Ginkgo biloba, and their phytotoxic and cytotoxic activities. J Agric Food Chem 62:3734–3741.  https://doi.org/10.1021/jf500390hCrossRefPubMedGoogle Scholar
  114. Li Y, Zhang G, Pfeifer BA (2014b) Current and emerging options for taxol production. In: Schrader J, Bohlmann J (eds) Biotechnology of Isoprenoids. Advances in biochemical engineering biotechnology. Vol 148. Springer, Cham, pp 405–425CrossRefGoogle Scholar
  115. Li N, Alfiky A, Vaughan MM, Kang S (2016) Stop and smell the fungi: fungal volatile metabolites are overlooked signals involved in fungal interaction with plants. Fungal Biol Rev 30:134–144.  https://doi.org/10.1016/J.FBR.2016.06.004CrossRefGoogle Scholar
  116. Liarzi O, Bar E, Lewinsohn E, Ezra D (2016a) Use of the endophytic fungus Daldinia cf. concentrica and its volatiles as bio-control agents. PLoS ONE 11:e0168242.  https://doi.org/10.1371/journal.pone.0168242CrossRefPubMedPubMedCentralGoogle Scholar
  117. Liarzi O, Bucki P, Braun Miyara S, Ezra D (2016b) Bioactive volatiles from an endophytic Daldinia cf. concentrica isolate affect the viability of the plant parasitic nematode Meloidogyne javanica. PLoS ONE 11:e0168437.  https://doi.org/10.1371/journal.pone.0168437CrossRefPubMedPubMedCentralGoogle Scholar
  118. Lin X, Huang Y, Fang M et al (2005) Cytotoxic and antimicrobial metabolites from marine lignicolous fungi, Diaporthe sp. FEMS Microbiol Lett 251:53–58.  https://doi.org/10.1016/j.femsle.2005.07.025CrossRefPubMedGoogle Scholar
  119. Lin X, Yu M, Lin T, Zhang L (2016) Secondary metabolites of Xylaria sp., an endophytic fungus from Taxus mairei. Nat Prod Res 30:2442–2447.  https://doi.org/10.1080/14786419.2016.1198350CrossRefPubMedGoogle Scholar
  120. Liu L (2011) Bioactive metabolites from the plant endophyte Pestalotiopsis fici. Mycology 2:37–45.  https://doi.org/10.1080/21501203.2011.562248CrossRefGoogle Scholar
  121. Liu L, Tian R, Liu S et al (2008) Pestaloficiols A-E, bioactive cyclopropane derivatives from the plant endophytic fungus Pestalotiopsis fici. Bioorg Med Chem 16:6021–6026.  https://doi.org/10.1016/j.bmc.2008.04.052CrossRefPubMedGoogle Scholar
  122. Liu L, Li Y, Liu S et al (2009) Chloropestolide A, an antitumor metabolite with an unprecedented spiroketal skeleton from Pestalotiopsis fici. Org Lett 11:2836–2839.  https://doi.org/10.1021/ol901039mCrossRefPubMedGoogle Scholar
  123. Liu K, Ding X, Deng B, Chen W (2010a) 10-Hydroxycamptothecin produced by a new endophytic Xylaria sp., M20, from Camptotheca acuminata. Biotechnol Lett 32:689–693.  https://doi.org/10.1007/s10529-010-0201-4CrossRefPubMedGoogle Scholar
  124. Liu L, Gao H, Chen X et al (2010b) Brasilamides A-D: Sesquiterpenoids from the plant endophytic fungus Paraconiothyrium brasiliense. Eur J Org Chem 2010:3302–3306.  https://doi.org/10.1002/ejoc.201000284CrossRefGoogle Scholar
  125. Liu L, Bruhn T, Guo L et al (2011) Chloropupukeanolides C-E: cytotoxic pupukeanane chlorides with a spiroketal skeleton from Pestalotiopsis fici. Chem—A Eur J 17:2604–2613.  https://doi.org/10.1002/chem.201003129CrossRefGoogle Scholar
  126. Liu S, Guo L, Che Y, Liu L (2013) Pestaloficiols Q-S from the plant endophytic fungus Pestalotiopsis fici. Fitoterapia 85:114–118.  https://doi.org/10.1016/j.fitote.2013.01.010CrossRefPubMedPubMedCentralGoogle Scholar
  127. Liu L, Chen X, Li D et al (2015a) Bisabolane Sesquiterpenoids from the plant endophytic fungus Paraconiothyrium brasiliense. J Nat Prod 78:746–753.  https://doi.org/10.1021/np5009569CrossRefPubMedGoogle Scholar
  128. Liu L, Zhao C, Li L et al (2015b) Pestalotriols A and B, new spiro[2.5]octane derivatives from the endophytic fungus Pestalotiopsis fici. RSC Adv 5:78708–78711.  https://doi.org/10.1039/C5RA14009ACrossRefGoogle Scholar
  129. Liu J, Zhang D, Zhang M et al (2016a) Periconiasins I and J, two new cytochalasans from an endophytic fungus Periconia sp. Tetrahedron Lett 57:5794–5797.  https://doi.org/10.1016/j.tetlet.2016.11.038CrossRefGoogle Scholar
  130. Liu L, Han Y, Xiao J et al (2016b) Chlorotheolides A and B, Spiroketals generated via Diels-Alder reactions in the endophytic fungus Pestalotiopsis theae. J Nat Prod 79:2616–2623.  https://doi.org/10.1021/acs.jnatprod.6b00550CrossRefPubMedGoogle Scholar
  131. Liu WC, Gong T, Zhu P (2016c) Advances in exploring alternative taxol sources. RSC Adv 6:48800–48809.  https://doi.org/10.1039/C6RA06640BCrossRefGoogle Scholar
  132. Liu J-M, Zhang D-W, Zhang M et al (2017) Periconones B-E, new meroterpenoids from endophytic fungus Periconia sp. Chin Chem Lett 28:248–252.  https://doi.org/10.1016/j.cclet.2016.07.031CrossRefGoogle Scholar
  133. Luo DQ, Zhang L, Shi BZ, Song XM (2012) Two new oxysporone derivatives from the fermentation broth of the endophytic plant fungus Pestalotiopsis karstenii isolated from stems of Camellia sasanqua. Molecules 17:8554–8560.  https://doi.org/10.3390/molecules17078554CrossRefGoogle Scholar
  134. Luo J, Liu X, Li E et al (2013) Arundinols A-C and Arundinones A and B from the plant endophytic fungus Microsphaeropsis arundinis. J Nat Prod 76:107–112.  https://doi.org/10.1021/np300806aCrossRefPubMedGoogle Scholar
  135. Macías-Rodríguez L, Contreras-Cornejo HÁ, López-Bucio JS, López-Bucio J (2015) Recent advancements in the role of volatile organic compounds from fungi. Fungal biomolecules. Wiley, Chichester, pp 87–99Google Scholar
  136. Macías-Rubalcava ML, Hernández-Bautista BE, Oropeza F et al (2010) Allelochemical effects of volatile compounds and organic extracts from Muscodor yucatanensis, a tropical endophytic fungus from Bursera simaruba. J Chem Ecol 36:1122–1131.  https://doi.org/10.1007/s10886-010-9848-5CrossRefPubMedGoogle Scholar
  137. MacMillan J (1953) 351. Griseofulvin. Part VII. Dechlorogriseofulvin. J Chem Soc 1697.  https://doi.org/10.1039/jr9530001697
  138. Mannina L, Segre AL, Ritieni A et al (1997) A new fungal growth inhibitor from Trichoderma viride. Tetrahedron 53:3135–3144.  https://doi.org/10.1016/S0040-4020(97)00024-0CrossRefGoogle Scholar
  139. Mari M, Bautista-Baños S, Sivakumar D (2016) Decay control in the postharvest system: role of microbial and plant volatile organic compounds. Postharvest Biol Technol 122:70–81.  https://doi.org/10.1016/J.POSTHARVBIO.2016.04.014CrossRefGoogle Scholar
  140. McElroy C, Jennewein S (2018) Taxol® biosynthesis and production: from forests to fermenters. Biotechnology of natural products. Springer International Publishing, Cham, pp 145–185CrossRefGoogle Scholar
  141. McMullin DR, Green BD, Prince NC et al (2017) Natural products of Picea endophytes from the Acadian forest. J Nat Prod 80:1475–1483.  https://doi.org/10.1021/acs.jnatprod.6b01157CrossRefPubMedGoogle Scholar
  142. Mei W-L, Zheng B, Zhao Y-X et al (2012) Meroterpenes from endophytic fungus A1 of mangrove plant Scyphiphora hydrophyllacea. Mar Drugs 10:1993–2001.  https://doi.org/10.3390/md10091993CrossRefPubMedPubMedCentralGoogle Scholar
  143. Meléndez-González C, Murià-González MJ, Anaya AL et al (2015) Acremoxanthone E, a novel member of heterodimeric polyketides with a Bicyclo[3.2.2]nonene Ring, produced by Acremonium camptosporum W. Gams (Clavicipitaceae) endophytic fungus. Chem Biodivers 12:133–147.  https://doi.org/10.1002/cbdv.201300370CrossRefPubMedGoogle Scholar
  144. Mends M, Yu E, Strobel G et al (2012) An Endophytic Nodulisporium Sp. Producing volatile organic compounds having bioactivity and fuel potential. J Phylogenet Evol Biol 3:117.  https://doi.org/10.4172/2157-7463.1000117
  145. Meng X, Mao Z, Lou J et al (2012) Benzopyranones from the endophytic fungus Hyalodendriella sp. Ponipodef12 and their bioactivities. Molecules 17:11303–11314.  https://doi.org/10.3390/molecules171011303CrossRefPubMedGoogle Scholar
  146. Meshram V (2017) Muscodor camphora, a new endophytic species from Cinnamomum camphora. Mycosphere 8:568–582.  https://doi.org/10.5943/mycosphere/8/4/6CrossRefGoogle Scholar
  147. Meshram V, Kapoor N, Saxena S (2013) Muscodor kashayum sp. nov. – a new volatile anti-microbial producing endophytic fungus. Mycol An Int J Fungal Biol 4:196–204.  https://doi.org/10.1080/21501203.2013.877990CrossRefGoogle Scholar
  148. Meshram V, Saxena S, Kapoor N (2014a) Muscodor darjeelingensis, a new endophytic fungus of Cinnamomum camphora collected from northeastern Himalayas. Sydowia 66:55–67.  https://doi.org/10.12905/0380.sydowia66(1)2014-0055CrossRefGoogle Scholar
  149. Meshram V, Saxena S, Kapoor N (2014b) Muscodor strobelii, a new endophytic species from South India. Mycotaxon 128:93–104.  https://doi.org/10.5248/128.93CrossRefGoogle Scholar
  150. Meshram V, Gupta M, Saxena S (2015) Muscodor ghoomensis and Muscodor indica: new endophytic species based on morphological features and molecular and volatile organic analysis from Northeast India. Sydowia 67:133–146Google Scholar
  151. Miao F-P, Liang X-R, Yin X-L et al (2012) Absolute configurations of unique Harziane Diterpenes from trichoderma species. Org Lett 14:3815–3817.  https://doi.org/10.1021/ol3014717CrossRefPubMedGoogle Scholar
  152. Michalczyk A, Cieniecka-Rosłonkiewicz A, Cholewińska M (2015) Plant endophytic fungi as a source of paclitaxel. Herba Pol 60.  https://doi.org/10.1515/hepo-2015-0002
  153. Michaud JP, Pell JK, Vega FE (2017) When insect endosymbionts and plant endophytes mediate biological control outcomes. Biol Control.  https://doi.org/10.1016/j.biocontrol.2017.11.003CrossRefGoogle Scholar
  154. Mirjalili MH, Farzaneh M, Bonfill M et al (2012) Isolation and characterization of Stemphylium sedicola SBU-16 as a new endophytic taxol-producing fungus from Taxus baccata grown in Iran. FEMS Microbiol Lett 328:122–129.  https://doi.org/10.1111/j.1574-6968.2011.02488.xCrossRefPubMedGoogle Scholar
  155. Morath SU, Hung R, Bennett JW (2012) Fungal volatile organic compounds: a review with emphasis on their biotechnological potential. Fungal Biol Rev 26:73–83.  https://doi.org/10.1016/j.fbr.2012.07.001CrossRefGoogle Scholar
  156. Mordue (Luntz) AJ, Morgan ED, Nisbet AJ (2005) Azadirachtin, a natural product in insect control. In: Comprehensive molecular insect science. Elsevier, pp 117–135Google Scholar
  157. Morgan ED (2009) Azadirachtin, a scientific gold mine. Bioorg Med Chem 17:4096–4105.  https://doi.org/10.1016/j.bmc.2008.11.081CrossRefPubMedGoogle Scholar
  158. Mousa WK, Raizada MN (2013) The diversity of anti-microbial secondary metabolites produced by fungal endophytes: an interdisciplinary perspective. Front Microbiol 4.  https://doi.org/10.3389/fmicb.2013.00065
  159. Musavi SF, Dhavale A, Balakrishnan RM (2015) Optimization and kinetic modeling of cell-associated camptothecin production from an endophytic Fusarium oxysporum NFX06. Prep Biochem Biotechnol 45:158–172.  https://doi.org/10.1080/10826068.2014.907177CrossRefPubMedGoogle Scholar
  160. Naik RG, Kattige SL, Bhat SV et al (1988) An antiinflammatory cum immunomodulatory piperidinylbenzopyranone from Dysoxylum binectariferum: isolation, structure and total synthesis. Tetrahedron 44:2081–2086.  https://doi.org/10.1016/S0040-4020(01)90352-7CrossRefGoogle Scholar
  161. Newman DJ, Cragg GM (2015) Endophytic and epiphytic microbes as “sources” of bioactive agents. Front Chem 3.  https://doi.org/10.3389/fchem.2015.00034
  162. Nicolaou KC, Yang Z, Liu JJ et al (1994) Total synthesis of taxol. Nature 367:630–634.  https://doi.org/10.1038/367630a0CrossRefPubMedGoogle Scholar
  163. Nicoletti R, Fiorentino A (2015) Plant Bioactive metabolites and drugs produced by endophytic fungi of SpermatophytaCrossRefGoogle Scholar
  164. Nicoletti M, Maccioni O, Coccioletti T et al (2012) Neem tree (Azadirachta indica A. Juss) as source of bioinsectides. In: Perveen F (ed) Insecticides—advances in integrated pest management. InTech, pp 75–100Google Scholar
  165. Nicoletti R, Scognamiglio M, Fiorentino A (2015) Structural and bioactive properties of 3-O-Methylfunicone. Mini-Rev Med Chem 14:1043–1047.  https://doi.org/10.2174/1389557514666141127142838CrossRefPubMedGoogle Scholar
  166. Odds FC (2001) Sordarin antifungal agents. Expert Opin Ther Pat 11:283–294.  https://doi.org/10.1517/13543776.11.2.283CrossRefGoogle Scholar
  167. Ogbuewu IP, Odoemenam VU, Obikaonu HO et al (2011) The growing importance of neem (Azadirachta indica A. Juss) in agriculture, industry, medicine and environment: a review. Res J Med Plant 5:230–245.  https://doi.org/10.3923/rjmp.2011.230.245CrossRefGoogle Scholar
  168. Ogita T, Hayashi T, Sato A, Furuya K (1987) Antibiotic zofimarin manufacture by Zofiela marina and its antifungal activity. Jpn. Kokai Tokkyo Koho 11 ppGoogle Scholar
  169. Ojima I, Habus I, Zhao M et al (1992) New and efficient approaches to the semisynthesis of taxol and its C-13 side chain analogs by means of\textgreek{b}-lactam synthon method. Tetrahedron 48:6985–7012.  https://doi.org/10.1016/S0040-4020(01)91210-4CrossRefGoogle Scholar
  170. Okwute SK, Egharevba HO (2013) Piperine-type amides: review of the chemical and biological characteristics. Int J Chem 5:99.  https://doi.org/10.5539/ijc.v5n3p99CrossRefGoogle Scholar
  171. Oliveira RL e., Junior SD, Albuquerque PM (2014) Screening of Piper hispidum endophytic fungi that produce terpenes and antibacterial substances. Afr J Microbiol Res 8:4002–4012.  https://doi.org/10.5897/ajmr2014.7127
  172. Orlandelli RC, Alberto RN, Almeida TT et al (2012) In vitro antibacterial activity of crude extracts produced by endophytic fungi isolated from Piper hispidum sw. J Appl Pharm Sci 2:137–141.  https://doi.org/10.7324/JAPS.2012.21027CrossRefGoogle Scholar
  173. Oxford AE, Raistrick H, Simonart P (1939) Studies in the biochemistry of micro-organisms: Griseofulvin, C(17)H(17)O(6)Cl, a metabolic product of Penicillium griseo-fulvum Dierckx. Biochem J 33:240–248CrossRefPubMedPubMedCentralGoogle Scholar
  174. Pal Singh I, Choudhary A (2015) Piperine and derivatives: trends in structure-activity relationships. Curr Top Med Chem 15:1722–1734CrossRefGoogle Scholar
  175. Pan J-H, Chen Y, Huang Y-H et al (2011) Antimycobacterial activity of fusaric acid from a mangrove endophyte and its metal complexes. Arch Pharm Res 34:1177–1181.  https://doi.org/10.1007/s12272-011-0716-9CrossRefPubMedGoogle Scholar
  176. Pandi M, Kumaran R, Choi Y et al (2011) Isolation and detection of taxol, an anticancer drug produced from Lasiodiplodia theobromae, an endophytic fungus of the medicinal plant Morinda citrifolia. Afr J Biotechnol 10:1428–1435Google Scholar
  177. Paul R, Prasad M, Sah NK (2011) Anticancer biology of Azadirachta indica L (neem): a mini review. Cancer Biol Ther 12:467–476.  https://doi.org/10.4161/cbt.12.6.16850CrossRefPubMedGoogle Scholar
  178. Pena LC, Jung LF, Savi DC et al (2017) A Muscodor strain isolated from Citrus sinensis and its production of volatile organic compounds inhibiting Phyllosticta citricarpa growth. J Plant Dis Prot 124:349–360.  https://doi.org/10.1007/s41348-016-0065-5CrossRefGoogle Scholar
  179. Petrini O (1991) Fungal endophytes of tree leaves. In: Brock TD, Andrews JH, Hirano SS (eds) Microbial ecology of leaves. Springer, New York, pp 179–197CrossRefGoogle Scholar
  180. Pinheiro EAA, Carvalho JM, dos Santos DCP et al (2013a) Antibacterial activity of alkaloids produced by endophytic fungus Aspergillus sp. EJC08 isolated from medical plant Bauhinia guianensis. Nat Prod Res 27:1633–1638.  https://doi.org/10.1080/14786419.2012.750316CrossRefPubMedGoogle Scholar
  181. Pinheiro EAA, Carvalho JM, dos Santos DCP et al (2013b) Chemical constituents of Aspergillus sp EJC08 isolated as endophyte from Bauhinia guianensis and their antimicrobial activity. An Acad Bras Cienc 85:1247–1253.  https://doi.org/10.1590/0001-3765201395512CrossRefPubMedGoogle Scholar
  182. Priyadarsini RV, Murugan RS, Sripriya P et al (2010) The neem limonoids azadirachtin and nimbolide induce cell cycle arrest and mitochondria-mediated apoptosis in human cervical cancer (HeLa) cells. Free Radic Res 44:624–634.  https://doi.org/10.3109/10715761003692503CrossRefPubMedGoogle Scholar
  183. Pu X, Qu X, Chen F et al (2013) Camptothecin-producing endophytic fungus Trichoderma atroviride LY357: isolation, identification, and fermentation conditions optimization for camptothecin production. Appl Microbiol Biotechnol 97:9365–9375.  https://doi.org/10.1007/s00253-013-5163-8CrossRefPubMedGoogle Scholar
  184. Pudhom K, Teerawatananond T (2014) Rhytidenones A-F, Spirobisnaphthalenes from Rhytidhysteron sp. AS21B, an endophytic fungus. J Nat Prod 77:1962–1966.  https://doi.org/10.1021/np500068yCrossRefPubMedGoogle Scholar
  185. Puri SC, Verma V, Amna T et al (2005) An endophytic fungus from Nothapodytes f oetida that produces Camptothecin. J Nat Prod 68:1717–1719.  https://doi.org/10.1021/np0502802CrossRefPubMedGoogle Scholar
  186. Qian Y-X, Kang J-C, Luo Y-K et al (2016) A Bilobalide-producing endophytic fungus, Pestalotiopsis uvicola from medicinal plant Ginkgo biloba. Curr Microbiol 73:280–286.  https://doi.org/10.1007/s00284-016-1060-6CrossRefPubMedGoogle Scholar
  187. Qiao W, Ling F, Yu L et al (2017) Enhancing taxol production in a novel endophytic fungus, Aspergillus aculeatinus Tax-6, isolated from Taxus chinensis var. mairei. Fungal Biol 121:1037–1044.  https://doi.org/10.1016/j.funbio.2017.08.011CrossRefPubMedGoogle Scholar
  188. Qin JC, Zhang YM, Gao JM et al (2009) Bioactive metabolites produced by Chaetomium globosum, an endophytic fungus isolated from Ginkgo biloba. Bioorganic Med Chem Lett 19:1572–1574.  https://doi.org/10.1016/j.bmcl.2009.02.025CrossRefGoogle Scholar
  189. Qin S, Krohn K, Hussain H et al (2011) Pestalotheols E-H: antimicrobial metabolites from an endophytic fungus isolated from the tree Arbutus unedo. Eur J Org Chem 2011:5163–5166.  https://doi.org/10.1002/ejoc.201100568CrossRefGoogle Scholar
  190. Qu H, Lv M, Xu H (2015) Piperine: bioactivities and structural modifications. Mini Rev Med Chem 15Google Scholar
  191. Raistrick H, Rudman P (1956) Studies in the biochemistry of micro-organisms. 97. Flavipin, a crystalline metabolite of Aspergillus flavipes (Bainier & Sartory) Thom & Church and Aspergillus terreus Thom. Biochem J 63:395–406.  https://doi.org/10.1042/bj0630395CrossRefPubMedPubMedCentralGoogle Scholar
  192. Ramesha A, Srinivas C (2014) Antimicrobial activity and phytochemical analysis of crude extracts of endophytic fungi isolated from Plumeria acuminata L. and Plumeria obtusifolia L. Eur J Exp Biol 4:35–43Google Scholar
  193. Ran X, Zhang G, Li S et al (2017) Characterization and antitumor activity of camptothecin from endophytic fungus Fusarium solani isolated from Camptotheca acuminate. 17:566–574Google Scholar
  194. Reddy BN, Hindumathi A (2017) Potential of microbial volatile organic compounds for crop protection against phytopathogenic fungi. Volatiles and food security. Springer Singapore, Singapore, pp 271–284CrossRefGoogle Scholar
  195. Rehman S, Shawl AS, Verma V et al (2008) An endophytic Neurospora sp. from Nothapodytes foetida producing camptothecin. Prikl Biokhim Mikrobiol 44:225–231PubMedGoogle Scholar
  196. Ribeiro TS, Freire-de-Lima L, Previato JO et al (2004) Toxic effects of natural piperine and its derivatives on epimastigotes and amastigotes of Trypanosoma cruzi. Bioorg Med Chem Lett 14:3555–3558.  https://doi.org/10.1016/j.bmcl.2004.04.019CrossRefPubMedGoogle Scholar
  197. Rivera-Orduña FN, Suarez-Sanchez RA, Flores-Bustamante ZR et al (2011) Diversity of endophytic fungi of Taxus globosa (Mexican yew). Fungal Divers 47:65–74.  https://doi.org/10.1007/s13225-010-0045-1CrossRefGoogle Scholar
  198. Rodriguez RJ, White JF Jr, Arnold AE, Redman RS (2009) Fungal endophytes: diversity and functional roles. New Phytol 182:314–330.  https://doi.org/10.1111/j.1469-8137.2009.02773.xCrossRefPubMedPubMedCentralGoogle Scholar
  199. Roskov Y, Abucay L, Orrel l T et al (2017) 2000 & ITIS catalogue of life, 28th November 2017. In: Species 2000 Nat. Leiden, Netherlands. ISSN 2405-8858. www.catalogueoflife.org/col
  200. Samaga PV, Rai VR, Rai KML (2014) Bionectria ochroleuca NOTL33—an endophytic fungus from Nothapodytes foetida producing antimicrobial and free radical scavenging metabolites. Ann Microbiol 64:275–285.  https://doi.org/10.1007/s13213-013-0661-6CrossRefGoogle Scholar
  201. Sánchez-Fernández RE, Diaz D, Duarte G et al (2016) Antifungal volatile organic compounds from the endophyte Nodulisporium sp. Strain GS4d2II1a: a qualitative change in the intraspecific and interspecific interactions with Pythium aphanidermatum. Microb Ecol 71:347–364.  https://doi.org/10.1007/s00248-015-0679-3CrossRefPubMedGoogle Scholar
  202. Sánchez-Ortiz BL, Sánchez-Fernández RE, Duarte G et al (2016) Antifungal, anti-oomycete and phytotoxic effects of volatile organic compounds from the endophytic fungus Xylaria sp. strain PB3f3 isolated from Haematoxylon brasiletto. J Appl Microbiol 120:1313–1325.  https://doi.org/10.1111/jam.13101CrossRefPubMedGoogle Scholar
  203. Santiago C, Sun L, Munro MHG, Santhanam J (2014) Polyketide and benzopyran compounds of an endophytic fungus isolated from C innamomum mollissimum: biological activity and structure. Asian Pac J Trop Biomed 4:627–632.  https://doi.org/10.12980/APJTB.4.2014APJTB-2014-0030CrossRefPubMedPubMedCentralGoogle Scholar
  204. Sanz JF, Marco JA (1990) Sesquiterpene lactones from Artemisia caerulescens Subsp. gargantae. Phytochemistry 29:2913–2917.  https://doi.org/10.1016/0031-9422(90)87104-3CrossRefGoogle Scholar
  205. Saxena S, Meshram V, Kapoor N (2015) Muscodor tigerii sp. nov.-Volatile antibiotic producing endophytic fungus from the Northeastern Himalayas. Ann Microbiol 65(1):47–57CrossRefGoogle Scholar
  206. Schaible GA, Strobel GA, Mends MT et al (2015) Characterization of an endophytic Gloeosporium sp. and its novel bioactivity with “Synergistans”. Microb Ecol 70:41–50.  https://doi.org/10.1007/s00248-014-0542-yCrossRefPubMedGoogle Scholar
  207. Scherlach K, Boettger D, Remme N, Hertweck C (2010) The chemistry and biology of cytochalasans. Nat Prod Rep 27:869–886.  https://doi.org/10.1039/b903913aCrossRefPubMedGoogle Scholar
  208. Schmidt R, Cordovez V, de Boer W et al (2015) Volatile affairs in microbial interactions. ISME J 9:2329–2335.  https://doi.org/10.1038/ismej.2015.42CrossRefPubMedPubMedCentralGoogle Scholar
  209. Schwarz M, Köpcke B, Weber RWS et al (2004) 3-hydroxypropionic acid as a nematicidal principle in endophytic fungi. Phytochemistry 65:2239–2245CrossRefPubMedGoogle Scholar
  210. Scott IM, Jensen HR, Philogène BJR, Arnason JT (2007) A review of Piper spp. (Piperaceae) phytochemistry, insecticidal activity and mode of action. Phytochem Rev 7:65–75.  https://doi.org/10.1007/s11101-006-9058-5CrossRefGoogle Scholar
  211. Sebastianes FLS, Cabedo N, El Aouad N et al (2012) 3-hydroxypropionic acid as an antibacterial agent from endophytic fungi Diaporthe phaseolorum. Curr Microbiol 65:622–632.  https://doi.org/10.1007/s00284-012-0206-4CrossRefPubMedGoogle Scholar
  212. Sedlacek H, Czech J, Naik R et al (1996) Flavopiridol (L86 8275; NSC 649890), a new kinase inhibitor for tumor therapy. Int J Oncol 9:1143–1168PubMedGoogle Scholar
  213. Senderowicz AM (1999) Flavopiridol: the first cyclin-dependent kinase inhibitor in human clinical trials. Invest New Drugs 17:313–320CrossRefPubMedGoogle Scholar
  214. Senthilkumar LN, Murugesan S, Mohan V, Muthumary J (2013) Taxol producing fungal endophyte, Colletotrichum gleospoiroides (Penz.) from Tectona grandis. Curr Biot 7:8–12Google Scholar
  215. Shang Z, Li X-M, Li C-S, Wang B-G (2012) Diverse secondary metabolites produced by marine-derived fungus Nigrospora sp. MA75 on various culture media. Chem Biodivers 9:1338–1348.  https://doi.org/10.1002/cbdv.201100216CrossRefPubMedGoogle Scholar
  216. Shao C, Wang C, Zheng C et al (2010) A new anthraquinone derivative from the marine endophytic fungus Fusarium sp. (No. b77). Nat Prod Res 24:81–85.  https://doi.org/10.1080/14786410902836701CrossRefPubMedGoogle Scholar
  217. Shigemori H, Hosoya T, Matsumoto T (2010) Palmariols A and B, two new chlorinated Dibenzo-α-pyrones from Discomycete Lachnum palmae. Heterocycles 81:1231.  https://doi.org/10.3987/COM-10-11919CrossRefGoogle Scholar
  218. Shiono Y, Hatakeyama T, Murayama T, Koseki T (2012) Polyketide metabolites from the endophytic fungus Microdiplodia sp. KS 75-1. Nat Prod Commun 7:1065–1068PubMedGoogle Scholar
  219. Shukla ST, Habbu PV, Kulkarni VH et al (2014) Endophytic microbes: a novel source for biologically/pharmacologically active secondary metabolites. Asian J Pharmacol Toxicol 2:1–16Google Scholar
  220. Shweta S, Zuehlke S, Ramesha BT et al (2010) Endophytic fungal strains of Fusarium solani, from Apodytes dimidiata E. Mey. ex Arn (Icacinaceae) produce camptothecin, 10-hydroxycamptothecin and 9-methoxycamptothecin. Phytochemistry 71:117–122.  https://doi.org/10.1016/j.phytochem.2009.09.030CrossRefPubMedGoogle Scholar
  221. Shweta S, Gurumurthy BR, Ravikanth G et al (2013) Endophytic fungi from Miquelia dentata Bedd., produce the anti-cancer alkaloid, camptothecine. Phytomedicine 20:337–342.  https://doi.org/10.1016/j.phymed.2012.11.015CrossRefPubMedGoogle Scholar
  222. Shweta S, Shivanna MB, Gurumurthy BR et al (2014) Inhibition of fungal endophytes by camptothecine produced by their host plant, Nothapodytes nimmoniana (Grahm) Mabb. (Icacinaceae). Curr Sci 107:994–1000Google Scholar
  223. Singh B, Kaur P, Gopichand et al (2008) Biology and chemistry of Ginkgo biloba. Fitoterapia 79:401–418.  https://doi.org/10.1016/j.fitote.2008.05.007CrossRefPubMedGoogle Scholar
  224. Siridechakorn I, Yue Z, Mittraphab Y et al (2017) Identification of spirobisnaphthalene derivatives with anti-tumor activities from the endophytic fungus Rhytidhysteron rufulum AS21B. Bioorg Med Chem 25:2878–2882.  https://doi.org/10.1016/j.bmc.2017.02.054CrossRefPubMedGoogle Scholar
  225. Siri-Udom S, Suwannarach N, Lumyong S (2016) Existence of Muscodor vitigenus, M. equiseti and M. heveae sp. nov. in leaves of the rubber tree (Hevea brasiliensis Müll. Arg.), and their biocontrol potential. Ann Microbiol 66:437–448.  https://doi.org/10.1007/s13213-015-1126-xCrossRefGoogle Scholar
  226. Siri-Udom S, Suwannarach N, Lumyong S (2017) Applications of volatile compounds acquired from Muscodor heveae against white root rot disease in rubber trees (Hevea brasiliensis Müll. Arg.) and relevant allelopathy effects. Fungal Biol 121:573–581.  https://doi.org/10.1016/j.funbio.2017.03.004CrossRefPubMedGoogle Scholar
  227. Siriwardane AMDA, Kumar NS, Jayasinghe L, Fujimoto Y (2015) Chemical investigation of metabolites produced by an endophytic Aspergillus sp. isolated from Limonia acidissima. Nat Prod Res 29:1384–1387.  https://doi.org/10.1080/14786419.2015.1025230CrossRefPubMedGoogle Scholar
  228. Soca-Chafre G, Rivera-Orduña FN, Hidalgo-Lara ME et al (2011) Molecular phylogeny and paclitaxel screening of fungal endophytes from Taxus globosa. Fungal Biol 115:143–156.  https://doi.org/10.1016/j.funbio.2010.11.004CrossRefPubMedGoogle Scholar
  229. Soliman SSM, Tsao R, Raizada MN (2011) Chemical inhibitors suggest endophytic fungal paclitaxel is derived from both mevalonate and non-mevalonate-like pathways. J Nat Prod 74:2497–2504.  https://doi.org/10.1021/np200303vCrossRefPubMedGoogle Scholar
  230. Somjaipeng S, Medina A, Kwaśna H et al (2015) Isolation, identification, and ecology of growth and taxol production by an endophytic strain of Paraconiothyrium variabile from English yew trees (Taxus baccata). Fungal Biol 119:1022–1031.  https://doi.org/10.1016/j.funbio.2015.07.007CrossRefPubMedGoogle Scholar
  231. Song R-Y, Wang X-B, Yin G-P et al (2017) Isocoumarin derivatives from the endophytic fungus, Pestalotiopsis sp. Fitoterapia 122:115–118.  https://doi.org/10.1016/j.fitote.2017.08.012CrossRefPubMedGoogle Scholar
  232. Spakowicz DJ, Strobel SA (2015) Biosynthesis of hydrocarbons and volatile organic compounds by fungi: bioengineering potential. Appl Microbiol Biotechnol 99:4943–4951.  https://doi.org/10.1007/s00253-015-6641-yCrossRefPubMedPubMedCentralGoogle Scholar
  233. Srimathi S, Muthumary J, Kalaichelvan PT (2015) Isolation and characterization of taxol producing endophytic Phoma sp. from Calotropis gigantea and its anti-proliferative. Studies 3:645–649Google Scholar
  234. Srinivasan K (2007) Black Pepper and its Pungent Principle-Piperine: a review of diverse physiological effects. Crit Rev Food Sci Nutr 47:735–748.  https://doi.org/10.1080/10408390601062054CrossRefPubMedGoogle Scholar
  235. Srivastava P, Yadav N, Lella R et al (2012) Neem oil limonoids induces p53-independent apoptosis and autophagy. Carcinogenesis 33:2199–2207.  https://doi.org/10.1093/carcin/bgs269CrossRefPubMedPubMedCentralGoogle Scholar
  236. Stierle AA, Stierle DB (2015) Bioactive secondary metabolites produced by the fungal endophytes of conifers. Nat Prod Commun 10:1671–1682.  https://doi.org/10.1038/nbt.3121.ChIP-nexusCrossRefPubMedPubMedCentralGoogle Scholar
  237. Stierle A, Strobel G, Stierle D (1993) Taxol and taxane production by taxomyces andreanae, an endophytic fungus of Pacific yew. Science 260:214–216CrossRefPubMedGoogle Scholar
  238. Stierle DB, Stierle AA, Ganser B (1997) New phomopsolides from a Penicillium sp. J Nat Prod 60:1207–1209.  https://doi.org/10.1021/np970338fCrossRefPubMedGoogle Scholar
  239. Stone R (1993) Surprise! A fungus factory for taxol? Sci (New York) 260:154–155CrossRefPubMedGoogle Scholar
  240. Strobel GA, Dirkse E, Sears J, Markworth C (2001) Volatile antimicrobials from Muscodor albus, a novel endophytic fungus. Microbiology 147:2943–2950.  https://doi.org/10.1099/00221287-147-11-2943CrossRefPubMedGoogle Scholar
  241. Strømgaard K, Nakanishi K (2004) Chemistry and biology of terpene trilactones from Ginkgo biloba. Angew Chemie Int Ed 43:1640–1658.  https://doi.org/10.1002/anie.200300601CrossRefGoogle Scholar
  242. Strunz GM, Court AS, Komlossy J, Stillwell MA (1969) Cryptosporiopsin, an amended structure. Can J Chem 47:3700–3701.  https://doi.org/10.1139/v69-613CrossRefGoogle Scholar
  243. Strunz GM, Kazinoti PI, Stillwell MA (1974) A new chlorinated cyclopentenone produced by a Cryptosporiopsis species. Can J Chem 52:3623–3625.  https://doi.org/10.1139/v74-541CrossRefGoogle Scholar
  244. Subban K, Subramani R, Johnpaul M (2013) A novel antibacterial and antifungal phenolic compound from the endophytic fungus Pestalotiopsis mangiferae. Nat Prod Res 27:1445–1449.  https://doi.org/10.1080/14786419.2012.722091CrossRefPubMedGoogle Scholar
  245. Sumarah MW, Puniani E, Blackwell BA, Miller JD (2008) Characterization of polyketide metabolites from foliar endophytes of Picea glauca. J Nat Prod 71:1393–1398.  https://doi.org/10.1021/np800192fCrossRefPubMedPubMedCentralGoogle Scholar
  246. Surup F, Kuhnert E, Lehmann E et al (2014) Sporothriolide derivatives as chemotaxonomic markers for Hypoxylon monticulosum. Mycology 5:110–119.  https://doi.org/10.1080/21501203.2014.929600CrossRefPubMedPubMedCentralGoogle Scholar
  247. Suwannarach N, Bussaban B, Hyde KD, Lumyong S (2011) Muscodor cinnamomi, a new endophytic species from Cinnamomum bejolghota. Mycotaxon 114:15–23.  https://doi.org/10.5248/114.15CrossRefGoogle Scholar
  248. Suwannarach N, Kumla J, Bussaban B, Lumyong S (2012) Biocontrol of Rhizoctonia solani AG-2, the causal agent of damping-off by Muscodor cinnamomi CMU-Cib 461. World J Microbiol Biotechnol 28:3171–3177.  https://doi.org/10.1007/s11274-012-1127-xCrossRefPubMedGoogle Scholar
  249. Suwannarach N, Kumla J, Bussaban B et al (2013a) Molecular and morphological evidence support four new species in the genus Muscodor from northern Thailand. Ann Microbiol 63:1341–1351.  https://doi.org/10.1007/s13213-012-0593-6CrossRefGoogle Scholar
  250. Suwannarach N, Kumla J, Bussaban B et al (2013b) Biofumigation with the endophytic fungus Nodulisporium spp. CMU-UPE34 to control postharvest decay of citrus fruit. Crop Prot 45:63–70.  https://doi.org/10.1016/J.CROPRO.2012.11.015CrossRefGoogle Scholar
  251. Suwannarach N, Kumla J, Matsui K, Lumyong S (2015) Characterization and efficacy of Muscodor cinnamomi in promoting plant growth and controlling Rhizoctonia root rot in tomatoes. Biol Control 90:25–33.  https://doi.org/10.1016/j.biocontrol.2015.05.008CrossRefGoogle Scholar
  252. Suwannarach N, Bussaban B, Nuangmek W et al (2016) Evaluation of Muscodor suthepensis strain CMU-Cib462 as a postharvest biofumigant for tangerine fruit rot caused by Penicillium digitatum. J Sci Food Agric 96:339–345.  https://doi.org/10.1002/jsfa.7099CrossRefPubMedGoogle Scholar
  253. Suwannarach N, Kaewyana C, Yodmeeklin A et al (2017) Evaluation of Muscodor cinnamomi as an egg biofumigant for the reduction of microorganisms on eggshell surfaces and its effect on egg quality. Int J Food Microbiol 244:52–61.  https://doi.org/10.1016/j.ijfoodmicro.2016.12.021CrossRefPubMedGoogle Scholar
  254. Tabata H (2004) Paclitaxel production by plant-cell-culture technology. In: Scheper T, Zhong J-J (eds) Biomanufacturing. Springer, Berlin Heidelberg, pp 1–23Google Scholar
  255. Talontsi FM, Dittrich B, Schüffler A et al (2013) Epicoccolides: antimicrobial and antifungal polyketides from an endophytic fungus Epicoccum sp. Associated with Theobroma cacao. Eur J Org Chem 2013:3174–3180.  https://doi.org/10.1002/ejoc.201300146CrossRefGoogle Scholar
  256. Tanney JB, McMullin DR, Green BD et al (2016) Production of antifungal and antiinsectan metabolites by the Picea endophyte Diaporthe maritima sp. nov. Fungal Biol 120:1448–1457.  https://doi.org/10.1016/j.funbio.2016.05.007CrossRefPubMedPubMedCentralGoogle Scholar
  257. Tatum JH, Baker RA (1983) Naphthoquinones produced by Fusarium solani isolated from citrus. Phytochemistry 22:543–547.  https://doi.org/10.1016/0031-9422(83)83042-8CrossRefGoogle Scholar
  258. Tomsheck AR, Strobel GA, Booth E et al (2010) Hypoxylon sp., an endophyte of Persea indica, producing 1,8-cineole and other bioactive volatiles with fuel potential. Microb Ecol 60:903–914.  https://doi.org/10.1007/s00248-010-9759-6CrossRefPubMedGoogle Scholar
  259. Ude C, Schubert-Zsilavecz M, Wurglics M (2013) Ginkgo biloba extracts: a review of the pharmacokinetics of the active ingredients. Clin Pharmacokinet 52:727–749.  https://doi.org/10.1007/s40262-013-0074-5CrossRefPubMedGoogle Scholar
  260. Ulloa-Benítez Á, Medina-Romero YM, Sánchez-Fernández RE et al (2016) Phytotoxic and antimicrobial activity of volatile and semi-volatile organic compounds from the endophyte Hypoxylon anthochroum strain Blaci isolated from Bursera lancifolia (Burseraceae). J Appl Microbiol 121:380–400.  https://doi.org/10.1111/jam.13174CrossRefPubMedGoogle Scholar
  261. Uzor PF, Ebrahim W, Osadebe PO et al (2015) Metabolites from Combretum dolichopetalum and its associated endophytic fungus Nigrospora oryzae—Evidence for a metabolic partnership. Fitoterapia 105:147–150.  https://doi.org/10.1016/j.fitote.2015.06.018CrossRefPubMedGoogle Scholar
  262. Vasanthakumari MM, Jadhav SS, Sachin N et al (2015) Restoration of camptothecine production in attenuated endophytic fungus on re-inoculation into host plant and treatment with DNA methyltransferase inhibitor. World J Microbiol Biotechnol 31:1629–1639.  https://doi.org/10.1007/s11274-015-1916-0CrossRefPubMedGoogle Scholar
  263. Veitch GE, Boyer A, Ley SV (2008) The Azadirachtin story. Angew Chemie Int Ed 47:9402–9429.  https://doi.org/10.1002/anie.200802675CrossRefGoogle Scholar
  264. Venkatasubbaiah P, Van Dyke CG (1991) Phytotoxins produced by Pestalotiopsis oenotherae, a pathogen of evening primrose. Phytochemistry 30:1471–1474.  https://doi.org/10.1016/0031-9422(91)84189-YCrossRefGoogle Scholar
  265. Venugopalan A, Srivastava S (2015a) Endophytes as in vitro production platforms of high value plant secondary metabolites. Biotechnol Adv 33:873–887.  https://doi.org/10.1016/j.biotechadv.2015.07.004CrossRefPubMedGoogle Scholar
  266. Venugopalan A, Srivastava S (2015b) Enhanced camptothecin production by ethanol addition in the suspension culture of the endophyte, Fusarium solani. Bioresour Technol 188:251–257.  https://doi.org/10.1016/J.BIORTECH.2014.12.106CrossRefPubMedGoogle Scholar
  267. Venugopalan A, Potunuru UR, Dixit M, Srivastava S (2016) Effect of fermentation parameters, elicitors and precursors on camptothecin production from the endophyte Fusarium solani. Bioresour Technol 206:104–111.  https://doi.org/10.1016/j.biortech.2016.01.079CrossRefPubMedGoogle Scholar
  268. Verma VC, Lobkovsky E, Gange AC et al (2011) Piperine production by endophytic fungus Periconia sp. Isolated from Piper longum L. J Antibiot (Tokyo) 64:427–431.  https://doi.org/10.1038/ja.2011.27CrossRefGoogle Scholar
  269. Vicente F, Basilio A, Platas G et al (2009) Distribution of the antifungal agents sordarins across filamentous fungi. Mycol Res 113:754–770.  https://doi.org/10.1016/j.mycres.2009.02.011CrossRefPubMedGoogle Scholar
  270. Vinale F, Nicoletti R, Lacatena F et al (2017) Secondary metabolites from the endophytic fungus Talaromyces pinophilus. Nat Prod Res 31:1778–1785.  https://doi.org/10.1080/14786419.2017.1290624CrossRefPubMedGoogle Scholar
  271. Wall ME, Wani MC, Cook CE et al (1966) Plant antitumor agents. I. The isolation and structure of camptothecin, a novel alkaloidal leukemia and tumor inhibitor from Camptotheca acuminata 1,2. J Am Chem Soc 88:3888–3890.  https://doi.org/10.1021/ja00968a057CrossRefGoogle Scholar
  272. Wang Y, Tang K (2011) A new endophytic taxol- and baccatin III-producing fungus isolated from Taxus chinensis var. mairei. Afr J Biotechnol 10:16379–16386Google Scholar
  273. Wang Y, Ma Z, Hu F et al (2014) Isolation and screening of endophytic fungi produing taxol from Taxus chinensis of Huangshan. Nat Prod Res Dev 1624–1627Google Scholar
  274. Wang B, Zhang Z, Guo L, Liu L (2016) New cytotoxic meroterpenoids from the plant endophytic fungus Pestalotiopsis fici. Helv Chim Acta 99:151–156.  https://doi.org/10.1002/hlca.201500197CrossRefGoogle Scholar
  275. Wani MC, Taylor HL, Wall ME et al (1971) Plant antitumor agents. VI. The isolation and structure of taxol, a novel antileukemic and antitumor agent from Taxus brevifolia. J Am Chem Soc 93:2325–2327CrossRefPubMedGoogle Scholar
  276. Werner S, Polle A, Brinkmann N (2016) Belowground communication: impacts of volatile organic compounds (VOCs) from soil fungi on other soil-inhabiting organisms. Appl Microbiol Biotechnol 100:8651–8665.  https://doi.org/10.1007/s00253-016-7792-1CrossRefPubMedGoogle Scholar
  277. Wijeratne EMK, He H, Franzblau SG et al (2013) Phomapyrrolidones A-C, antitubercular alkaloids from the endophytic fungus Phoma sp. NRRL 46751. J Nat Prod 76:1860–1865.  https://doi.org/10.1021/np400391pCrossRefPubMedPubMedCentralGoogle Scholar
  278. Wilson D (1995) Endophyte: the evolution of a term, and clarification of its use and definition. Oikos 73:274.  https://doi.org/10.2307/3545919CrossRefGoogle Scholar
  279. Wu L-S, Hu C-L, Han T et al (2013) Cytotoxic metabolites from Perenniporia tephropora, an endophytic fungus from Taxus chinensis var. mairei. Appl Microbiol Biotechnol 97:305–315.  https://doi.org/10.1007/s00253-012-4189-7CrossRefPubMedGoogle Scholar
  280. Wu S-H, He J, Li X-N et al (2014) Guaiane sesquiterpenes and isopimarane diterpenes from an endophytic fungus Xylaria sp. Phytochemistry 105:197–204.  https://doi.org/10.1016/j.phytochem.2014.04.016CrossRefPubMedGoogle Scholar
  281. Wu G, Zhou H, Zhang P et al (2016) Polyketide production of Pestaloficiols and Macrodiolide Ficiolides revealed by manipulations of epigenetic regulators in an endophytic fungus. Org Lett 18:1832–1835.  https://doi.org/10.1021/acs.orglett.6b00562CrossRefPubMedGoogle Scholar
  282. Xiao Y, Li HX, Li C et al (2013) Antifungal screening of endophytic fungi from Ginkgo biloba for discovery of potent anti-phytopathogenic fungicides. FEMS Microbiol Lett 339:130–136.  https://doi.org/10.1111/1574-6968.12065CrossRefPubMedGoogle Scholar
  283. Xiong Z-Q, Yang Y-Y, Zhao N, Wang Y (2013) Diversity of endophytic fungi and screening of fungal paclitaxel producer from Anglojap yew. Taxus x media. BMC Microbiol 13:71.  https://doi.org/10.1186/1471-2180-13-71CrossRefPubMedPubMedCentralGoogle Scholar
  284. Xu J, Kjer J, Sendker J et al (2009a) Chromones from the endophytic fungus Pestalotiopsis sp. isolated from the chinese mangrove plant Rhizophora mucronata. J Nat Prod 72:662–665.  https://doi.org/10.1021/np800748uCrossRefPubMedGoogle Scholar
  285. Xu J, Kjer J, Sendker J et al (2009b) Cytosporones, coumarins, and an alkaloid from the endophytic fungus Pestalotiopsis sp. isolated from the Chinese mangrove plant Rhizophoramucronata. Bioorg Med Chem 17:7362–7367.  https://doi.org/10.1016/j.bmc.2009.08.031CrossRefPubMedGoogle Scholar
  286. Xu J, Aly AH, Wray V, Proksch P (2011) Polyketide derivatives of endophytic fungus Pestalotiopsis sp. isolated from the Chinese mangrove plant Rhizophora mucronata. Tetrahedron Lett 52:21–25.  https://doi.org/10.1016/j.tetlet.2010.10.131CrossRefGoogle Scholar
  287. Xu J, Yang X, Lin Q (2014) Chemistry and biology of Pestalotiopsis-derived natural products. Fungal Divers 66:37–68.  https://doi.org/10.1007/s13225-014-0288-3CrossRefGoogle Scholar
  288. Xue M, Zhang Q, Gao J-M et al (2012) Chaetoglobosin Vb from endophytic Chaetomium globosum: absolute configuration of chaetoglobosins. Chirality 24:668–674.  https://doi.org/10.1002/chir.22068CrossRefPubMedGoogle Scholar
  289. Yadav N, Kumar S, Kumar R et al (2016) Mechanism of neem limonoids-induced cell death in cancer: role of oxidative phosphorylation. Free Radic Biol Med 90:261–271.  https://doi.org/10.1016/j.freeradbiomed.2015.11.028CrossRefPubMedGoogle Scholar
  290. Yamamoto I, Mizuta E, Henmi T et al (1973) Epoformin, a new antibiotic produced by Penicillium claviforme. Tak Kenkyushoho 32:532–538Google Scholar
  291. Yamazaki M, Sasago K, Miyaki K (1974) The structure of fumitremorgin B (FTB), a tremorgenic toxin from Aspergillus fumigatus Fres. J Chem Soc Chem Commun 408.  https://doi.org/10.1039/c39740000408
  292. Yang Y, Zhao H, Barrero RA et al (2014) Genome sequencing and analysis of the paclitaxel-producing endophytic fungus Penicillium aurantiogriseum NRRL 62431. BMC Genom 15:69.  https://doi.org/10.1186/1471-2164-15-69CrossRefGoogle Scholar
  293. Yee WL, Lacey LA, Bishop BJB (2009) Pupal mortality and adult emergence of western cherry fruit fly (Diptera: Tephritidae) exposed to the fungus Muscodor albus (Xylariales: Xylariaceae). J Econ Entomol 102:2041–2047CrossRefPubMedGoogle Scholar
  294. Yu W, Pan Z, Zhu Y et al (2017) Fumigaclavine C exhibits anti-inflammatory effects by suppressing high mobility group box protein 1 relocation and release. Eur J Pharmacol 812:234–242.  https://doi.org/10.1016/j.ejphar.2017.06.008CrossRefPubMedGoogle Scholar
  295. Yuan WH, Liu M, Jiang N et al (2010) Guignardones A-C: three meroterpenes from Guignardia mangiferae. Eur J Org Chem 2010:6348–6353.  https://doi.org/10.1002/ejoc.201000916CrossRefGoogle Scholar
  296. Yuan Y, Tian J-M, Xiao J et al (2014) Bioactive metabolites isolated from Penicillium sp. YY-20, the endophytic fungus from Ginkgo biloba. Nat Prod Res 28:278–281.  https://doi.org/10.1080/14786419.2013.850686CrossRefPubMedGoogle Scholar
  297. Zaiyou J, Li M, Guifang X, Xiuren Z (2013) Isolation of an endophytic fungus producing baccatin III from Taxus wallichiana var. mairei. J Ind Microbiol Biotechnol 40:1297–1302.  https://doi.org/10.1007/s10295-013-1320-4CrossRefPubMedGoogle Scholar
  298. Zaiyou J, Hongsheng W, Ning W et al (2015) Isolation and identification of an endophytic fungus producing paclitaxel from Taxus wallichiana var mairei. Nutr Hosp 32:2932–2937.  https://doi.org/10.3305/nh.2015.32.6.9781CrossRefPubMedGoogle Scholar
  299. Zaiyou J, Li M, Xiqiao H (2017) An endophytic fungus efficiently producing paclitaxel isolated from Taxus wallichiana var. mairei. Med (Baltimore) 96:e7406.  https://doi.org/10.1097/MD.0000000000007406CrossRefGoogle Scholar
  300. Zhang C-L, Wang G-P, Mao L-J et al (2010) Muscodor fengyangensis sp. nov. from southeast China: morphology, physiology and production of volatile compounds. Fungal Biol 114:797–808.  https://doi.org/10.1016/j.funbio.2010.07.006CrossRefPubMedGoogle Scholar
  301. Zhang HC, Ma YM, Liu R (2012) Antimicrobial additives from endophytic fungus Fusarium solani of Ficus carica. Appl Mech Mater 178–181:783–786.  https://doi.org/10.4028/www.scientific.net/AMM.178-181.783CrossRefGoogle Scholar
  302. Zhang D, Ge H, Xie D et al (2013a) Periconiasins A-C, new cytotoxic Cytochalasans with an unprecedented 9/6/5 tricyclic ring system from endophytic fungus Periconia sp. Org Lett 15:1674–1677.  https://doi.org/10.1021/ol400458nCrossRefPubMedGoogle Scholar
  303. Zhang G, Zhang Y, Qin J et al (2013b) Antifungal metabolites produced by Chaetomium globosum No.04, an endophytic fungus isolated from Ginkgo biloba. Indian J Microbiol 53:175–180.  https://doi.org/10.1007/s12088-013-0362-7CrossRefPubMedPubMedCentralGoogle Scholar
  304. Zhang D, Ge H, Zou J et al (2014a) Periconianone A, a new 6/6/6 Carbocyclic Sesquiterpenoid from endophytic fungus Periconia sp. with neural anti-inflammatory activity. Org Lett 16:1410–1413.  https://doi.org/10.1021/ol500197xCrossRefPubMedGoogle Scholar
  305. Zhang W, Xu L, Yang L et al (2014b) Phomopsidone A, a novel depsidone metabolite from the mangrove endophytic fungus Phomopsis sp. A123. Fitoterapia 96:146–151.  https://doi.org/10.1016/j.fitote.2014.05.001CrossRefPubMedGoogle Scholar
  306. Zhang D, Tao X, Chen R et al (2015) Pericoannosin A, a Polyketide synthase-nonribosomal peptide synthetase hybrid metabolite with new carbon skeleton from the endophytic fungus Periconia sp. Org Lett 17:4304–4307.  https://doi.org/10.1021/acs.orglett.5b02123CrossRefPubMedGoogle Scholar
  307. Zhang D-W, Tao X-Y, Liu J-M et al (2016a) A new polyketide synthase−nonribosomal peptide synthetase hybrid metabolite from plant endophytic fungus Periconia sp. Chin Chem Lett 27:640–642.  https://doi.org/10.1016/j.cclet.2016.02.005CrossRefGoogle Scholar
  308. Zhang D, Tao X, Liu J et al (2016b) Periconiasin G, a new cytochalasan with unprecedented 7/6/5 tricyclic ring system from the endophytic fungus Periconia sp. Tetrahedron Lett 57:796–799.  https://doi.org/10.1016/j.tetlet.2016.01.030CrossRefGoogle Scholar
  309. Zhang L, Niaz S, Khan D et al (2017) Induction of diverse bioactive secondary metabolites from the Mangrove endophytic fungus Trichoderma sp. (Strain 307) by Co-Cultivation with Acinetobacter johnsonii (Strain B2). Mar Drugs 15:35.  https://doi.org/10.3390/md15020035CrossRefPubMedCentralGoogle Scholar
  310. Zheng C-J, Sun P-X, Jin G-L, Qin L-P (2011) Sesquiterpenoids from Trichoderma atroviride, an endophytic fungus in Cephalotaxus fortunei. Fitoterapia 82:1035–1038.  https://doi.org/10.1016/j.fitote.2011.06.010CrossRefPubMedGoogle Scholar
  311. Zhi-Lin Y, Yi-Cun C, Bai-Ge X, Chu-Long Z (2012) Current perspectives on the volatile-producing fungal endophytes. Crit Rev Biotechnol 32:363–373.  https://doi.org/10.3109/07388551.2011.651429CrossRefPubMedGoogle Scholar
  312. Zhong J-J (2002) Plant cell culture for production of paclitaxel and other taxanes. J Biosci Bioeng 94:591–599CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institut für Biotechnologie und Wirkstoff-Forschung gGmbH (Institute of Biotechnology and Drug Research)KaiserslauternGermany

Personalised recommendations