Advertisement

Stress Granules and ALS: A Case of Causation or Correlation?

  • Nikita Fernandes
  • Nichole Eshleman
  • J. Ross Buchan
Chapter
Part of the Advances in Neurobiology book series (NEUROBIOL, volume 20)

Abstract

Amyotrophic Lateral Sclerosis (ALS) is a fatal neurodegenerative disease characterized by cytoplasmic protein aggregates within motor neurons. These aggregates are linked to ALS pathogenesis. Recent evidence has suggested that stress granules may aid the formation of ALS protein aggregates. Here, we summarize current understanding of stress granules, focusing on assembly and clearance. We also assess the evidence linking alterations in stress granule formation and dynamics to ALS protein aggregates and disease pathology.

Keywords

Stress granules ALS TDP-43 FUS SOD1 mRNA Autophagy C9ORF72 Chaperones Cytoskeleton 

References

  1. 1.
    Ling S-C, Polymenidou M, Cleveland DW. Converging mechanisms in ALS and FTD: disrupted RNA and protein homeostasis. Neuron. 2013;79:416–38.PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Mackenzie IRA, Rademakers R, Neumann M. TDP-43 and FUS in amyotrophic lateral sclerosis and frontotemporal dementia. Lancet Neurol. 2010;9:995–1007.PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Liu-Yesucevitz L, Bilgutay A, Zhang Y-J, Vanderweyde T, Vanderwyde T, Citro A, et al. Tar DNA binding protein-43 (TDP-43) associates with stress granules: analysis of cultured cells and pathological brain tissue. PLoS One. 2010;e13250:5.Google Scholar
  4. 4.
    Dewey CM, Cenik B, Sephton CF, Dries DR, Mayer P, Good SK, et al. TDP-43 is directed to stress granules by sorbitol, a novel physiological osmotic and oxidative stressor. Mol Cell Biol. 2011;31:1098–108.PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    McDonald KK, Aulas A, Destroismaisons L, Pickles S, Beleac E, Camu W, et al. TAR DNA-binding protein 43 (TDP-43) regulates stress granule dynamics via differential regulation of G3BP and TIA-1. Hum Mol Genet. 2011;20:1400–10.PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Ryu H-H, Jun M-H, Min K-J, Jang D-J, Lee Y-S, Kim HK, et al. Autophagy regulates amyotrophic lateral sclerosis-linked fused in sarcoma-positive stress granules in neurons. Neurobiol Aging. 2014;35:2822–31.PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Baron DM, Kaushansky LJ, Ward CL, Sama RRK, Chian R-J, Boggio KJ, et al. Amyotrophic lateral sclerosis-linked FUS/TLS alters stress granule assembly and dynamics. Mol Neurodegener. 2013;8:30.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Mackenzie IR, Nicholson AM, Sarkar M, Messing J, Purice MD, Pottier C, et al. TIA1 mutations in amyotrophic lateral sclerosis and frontotemporal dementia promote phase separation and alter stress granule dynamics. Neuron. 2017;95:808–816.e9.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Kapeli K, Martinez FJ, Yeo GW. Genetic mutations in RNA-binding proteins and their roles in ALS. Hum Genet. 2017;136:1193–214.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Kim HJ, Kim NC, Wang Y-D, Scarborough EA, Moore J, Diaz Z, et al. Mutations in prion-like domains in hnRNPA2B1 and hnRNPA1 cause multisystem proteinopathy and ALS. Nature. 2013;495:467–73.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Hadano S, Hand CK, Osuga H, Yanagisawa Y, Otomo A, Devon RS, et al. A gene encoding a putative GTPase regulator is mutated in familial amyotrophic lateral sclerosis 2. Nat Genet. 2001;29:166–73.PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Becker LA, Huang B, Bieri G, Ma R, Knowles DA, Jafar-Nejad P, et al. Therapeutic reduction of ataxin-2 extends lifespan and reduces pathology in TDP-43 mice. Nature. 2017;544:367–71.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Padhi AK, Jayaram B, Gomes J. Prediction of functional loss of human angiogenin mutants associated with ALS by molecular dynamics simulations. Sci Rep. 2013;3:1225.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Lyons SM, Achorn C, Kedersha NL, Anderson PJ, Ivanov P. YB-1 regulates tiRNA-induced Stress Granule formation but not translational repression. Nucleic Acids Res. 2016;44:6949–60.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Thiyagarajan N, Ferguson R, Subramanian V, Acharya KR. Structural and molecular insights into the mechanism of action of human angiogenin-ALS variants in neurons. Nat Commun. 2012;3:1114–21.CrossRefGoogle Scholar
  16. 16.
    Glatt S, Zabel R, Kolaj-Robin O, Onuma OF, Baudin F, Graziadei A, et al. Structural basis for tRNA modification by Elp3 from Dehalococcoides mccartyi. Nat Struct Mol Biol. 2016;23:794–802.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Bennett C, La Spada A. Unwinding the role of senataxin in neurodegeneration. Discov Med. 2015;19(103):127–36.PubMedGoogle Scholar
  18. 18.
    Boehringer A, Garcia-Mansfield K, Singh G, Bakkar N, Pirrotte P, Bowser R. ALS associated mutations in matrin 3 alter protein-protein interactions and impede mRNA nuclear export. Sci Rep. 2017;7:1–14.CrossRefGoogle Scholar
  19. 19.
    Gallego-Iradi MC, Clare AM, Brown HH, Janus C, Lewis J, Borchelt DR. Subcellular localization of Matrin 3 containing mutations associated with ALS and distal myopathy. PLoS One. 2015;10:1–15.CrossRefGoogle Scholar
  20. 20.
    Blauw HM, Barnes CP, Van Vught PWJ, Van Rheenen W, Verheul M, Cuppen E, et al. SMN1 gene duplications are associated with sporadic ALS. Neurology. 2012;78:776–80.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Corcia P, Camu W, Halimi J-M, Vourc'h P, Antar C, Vedrine S, et al. SMN1 gene, but not SMN2, is a risk factor for sporadic ALS. Neurology. 2006;67:1147 LP–1150.CrossRefGoogle Scholar
  22. 22.
    Hua Y, Zhou J. Survival motor neuron protein facilitates assembly of stress granules. FEBS Lett. 2004;572:69–74.CrossRefPubMedGoogle Scholar
  23. 23.
    Kukharsky MS, Quintiero A, Matsumoto T, Matsukawa K, An H, Hashimoto T, et al. Calcium-responsive transactivator (CREST) protein shares a set of structural and functional traits with other proteins associated with amyotrophic lateral sclerosis. Mol Neurodegener. 2015;10:1–18.CrossRefGoogle Scholar
  24. 24.
    Kaneb HM, Folkmann AW, Belzil VV, Jao LE, Leblond CS, Girard SL, et al. Deleterious mutations in the essential mRNA metabolism factor, hGle1, in amyotrophic lateral sclerosis. Hum Mol Genet. 2015;24:1363–73.CrossRefPubMedGoogle Scholar
  25. 25.
    Aditi, Folkmann AW, Wente SR. Cytoplasmic hGle1A regulates stress granules by modulation of translation. Mol Biol Cell. 2015;26:1476–90.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Aditi, Glass L, Dawson TR, Wente SR. An amyotrophic lateral sclerosis-linked mutation in GLE1 alters the cellular pool of human Gle1 functional isoforms. Adv Biol Regul. 2016;62:25–36.PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    DeJesus-Hernandez M, Mackenzie IR, Boeve BF, Boxer AL, Baker M, Rutherford NJ, et al. Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS. Neuron. 2011;72:245–56.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Maharjan N, Künzli C, Buthey K, Saxena S. C9ORF72 regulates stress granule formation and its deficiency impairs stress granule assembly, hypersensitizing cells to stress. Mol Neurobiol. 2017;54:3062–77.PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Lee K-H, Zhang P, Kim HJ, Mitrea DM, Sarkar M, Freibaum BD, et al. C9orf72 dipeptide repeats impair the assembly, dynamics, and function of membrane-less organelles. Cell. 2016;167:774–788.e17.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Boeynaems S, Bogaert E, Kovacs D, Konijnenberg A, Timmerman E, Volkov A, et al. Phase separation of C9orf72 dipeptide repeats perturbs stress granule dynamics. Mol Cell. 2017;65:1044–1055.e5.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Ayaki T, Ito H, Fukushima H, Inoue T, Kondo T, Ikemoto A, et al. Immunoreactivity of valosin-containing protein in sporadic amyotrophic lateral sclerosis and in a case of its novel mutant. Acta Neuropathol Commun. 2014;2:1–14.CrossRefGoogle Scholar
  32. 32.
    Buchan JR, Kolaitis R-M, Taylor JP, Parker R. Eukaryotic stress granules are cleared by autophagy and Cdc48/VCP function. Cell. 2013;153:1461–74.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Deng H-X, Chen W, Hong S-T, Boycott KM, Gorrie GH, Siddique N, et al. Mutations in UBQLN2 cause dominant X-linked juvenile and adult-onset ALS and ALS/dementia. Nature. 2011;477:211–5.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Fecto F, Yan J, Vemula SP, Liu E, Yang Y, Chen W, et al. SQSTM1 mutations in familial and sporadic amyotrophic lateral sclerosis. Arch Neurol. 2011;68:1440–6.PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Guo H, Chitiprolu M, Gagnon D, Meng L, Perez-Iratxeta C, Lagace D, et al. Autophagy supports genomic stability by degrading retrotransposon RNA. Nat Commun. 2014;5:5276.PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Brady OA, Meng P, Zheng Y, Mao Y, Hu F. Regulation of TDP-43 aggregation by phosphorylation andp62/SQSTM1. J Neurochem. 2011;116:248–59.PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Swarup G, Vaibhava V, Nagabhushana A. Functional defects caused by glaucoma–associated mutations in optineurin. Glaucoma Basic Clin Asp. 2017.  https://doi.org/10.5772/52692.
  38. 38.
    Yang Y, Hentati A, Deng HX, Dabbagh O, Sasaki T, Hirano M, et al. The gene encoding alsin, a protein with three guanine-nucleotide exchange factor domains, is mutated in a form of recessive amyotrophic lateral sclerosis. Nat Genet. 2001;29:160–5.PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Cox LE, Ferraiuolo L, Goodall EF, Heath PR, Higginbottom A, Mortiboys H, et al. Mutations in CHMP2B in lower motor neuron predominant amyotrophic lateral sclerosis (ALS). PLoS One. 2010;5:e9872.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Chow CY, Landers JE, Bergren SK, Sapp PC, Grant AE, Jones JM, et al. Deleterious variants of FIG4, a phosphoinositide phosphatase, in patients with ALS. Am J Hum Genet. 2009;84:85–8.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Nishimura AL, Mitne-Neto M, Silva HCA, Richieri-Costa A, Middleton S, Cascio D, et al. A mutation in the vesicle-trafficking protein VAPB causes late-onset spinal muscular atrophy and amyotrophic lateral sclerosis. Am J Hum Genet. 2004;75:822–31.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Freischmidt A, Wieland T, Richter B, Ruf W, Schaeffer V, Müller K, et al. Haploinsufficiency of TBK1 causes familial ALS and fronto-temporal dementia. Nat Neurosci. 2015;18:631–6.PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Williams KL, Topp S, Yang S, Smith B, Fifita JA, Warraich ST, et al. CCNF mutations in amyotrophic lateral sclerosis and frontotemporal dementia. Nat Commun. 2016;7:11253.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Watanabe S, Ilieva H, Tamada H, Nomura H, Komine O, Endo F, et al. Mitochondria‐associated membrane collapse is a common pathomechanism in SIGMAR1–and SOD1 ‐linked ALS. EMBO Mol Med. 2016;8:1421–37.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Dreser A, Vollrath JT, Sechi A, Johann S, Roos A, Yamoah A, et al. The ALS-linked E102Q mutation in Sigma receptor-1 leads to ER stress-mediated defects in protein homeostasis and dysregulation of RNA-binding proteins. Cell Death Differ. 2017;24:1655–71.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Wu C-H, Fallini C, Ticozzi N, Keagle PJ, Sapp PC, Piotrowska K, et al. Mutations in the profilin 1 gene cause familial amyotrophic lateral sclerosis. Nature. 2012;488:499–503.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Figley MD, Bieri G, Kolaitis R-M, Taylor JP, Gitler AD. Profilin 1 associates with stress granules and ALS-linked mutations alter stress granule dynamics. J Neurosci. 2014;34:8083–97.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Münch C, Sedlmeier R, Meyer T, Homberg V, Sperfeld AD, Kurt A, et al. Point mutations of the p150 subunit of dynactin (DCTN1) gene in ALS. Neurology. 2004;63:724–6.PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Vilariño-Güell C, Wider C, Soto-Ortolaza AI, Cobb SA, Kachergus JM, Keeling BH, et al. Characterization of DCTN1 genetic variability in neurodegeneration. Neurology. 2009;72:2024–8.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Al-Chalabi A, Andersen PM, Nilsson P, Chioza B, Andersson JL, Russ C, et al. Deletions of the heavy neurofilament subunit tail in amyotrophic lateral sclerosis. Hum Mol Genet. 1999;8:157–64.PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Skvortsova V, Shadrina M, Slominsky P, Levitsky G, Kondratieva E, Zherebtsova A, et al. Analysis of heavy neurofilament subunit gene polymorphism in Russian patients with sporadic motor neuron disease (MND). Eur J Hum Genet. 2004;12:241–4.PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Couthouis J, Raphael AR, Daneshjou R, Gitler AD. Targeted exon capture and sequencing in sporadic amyotrophic lateral sclerosis. PLoS Genet. 2014;10(10):e1004704.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Münch C, Rosenbohm A, Sperfeld AD, Uttner I, Reske S, Krause BJ, et al. Heterozygous R1101K mutation of the DCTN1 gene in a family with ALS and FTD. Ann Neurol. 2005;58:777–80.PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Smith BN, Ticozzi N, Fallini C, Gkazi AS, Topp S, Kenna KP, et al. Exome-wide rare variant analysis identifies TUBA4A mutations associated with familial ALS. Neuron. 2014;84:324–31.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Perrone F, Nguyen HP, Van Mossevelde S, Moisse M, Sieben A, Santens P, et al. Investigating the role of ALS genes CHCHD10 and TUBA4A in Belgian FTD-ALS spectrum patients. Neurobiol Aging. 2017;51:177.e9–177.e16.CrossRefGoogle Scholar
  56. 56.
    Corrado L, Mazzini L, Oggioni GD, Luciano B, Godi M, Brusco A, et al. ATXN-2 CAG repeat expansions are interrupted in ALS patients. Hum Genet. 2011;130:575–80.PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Gros-Louis F, Larivière R, Gowing G, Laurent S, Camu W, Bouchard JP, et al. A frameshift deletion in peripherin gene associated with amyotrophic lateral sclerosis. J Biol Chem. 2004;279:45951–6.PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Hermosura MC, Nayakanti H, Dorovkov MV, Calderon FR, Ryazanov AG, Haymer DS, et al. A TRPM7 variant shows altered sensitivity to magnesium that may contribute to the pathogenesis of two Guamanian neurodegenerative disorders. Proc Natl Acad Sci USA. 2005;102:11510–5.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Brenner D, Müller K, Wieland T, Weydt P, Böhm S, Lule D, et al. NEK1 mutations in familial amyotrophic lateral sclerosis. Brain. 2016;139:e28.PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Cleveland DW, Rothstein JD. From charcot to lou gehrig. Nat Rev Neurosci. 2001;2:806–19.PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    Mateju D, Franzmann TM, Patel A, Kopach A, Boczek EE, Maharana S, et al. An aberrant phase transition of stress granules triggered by misfolded protein and prevented by chaperone function. EMBO J. 2017;36:1669–87.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Gal J, Kuang L, Barnett KR, Zhu BZ, Shissler SC, Korotkov KV, et al. ALS mutant SOD1 interacts with G3BP1 and affects stress granule dynamics. Acta Neuropathol. 2016;132:563–76.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Takahashi Y, Fukuda Y, Yoshimura J, Toyoda A, Kurppa K, Moritoyo H, et al. Erbb4 mutations that disrupt the neuregulin-erbb4 pathway cause amyotrophic lateral sclerosis type 19. Am J Hum Genet. 2013;93:900–5.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Cozzolino M, Rossi S, Mirra A, Carrì MT. Mitochondrial dynamism and the pathogenesis of Amyotrophic Lateral Sclerosis. Front Cell Neurosci. 2015;9:1–5.CrossRefGoogle Scholar
  65. 65.
    Woo JAA, Liu T, Trotter C, Fang CC, De Narvaez E, Lepochat P, et al. Loss of function CHCHD10 mutations in cytoplasmic TDP-43 accumulation and synaptic integrity. Nat Commun. 2017;8:1–15.CrossRefGoogle Scholar
  66. 66.
    Mackenzie IRA, Neumann M. Molecular neuropathology of frontotemporal dementia: insights into disease mechanisms from postmortem studies. J Neurochem. 2016;138:54–70.PubMedCrossRefPubMedCentralGoogle Scholar
  67. 67.
    Neumann M, Sampathu DM, Kwong LK, Truax AC, Micsenyi MC, Chou TT, et al. Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science. 2006;314(5796):130–3.CrossRefPubMedGoogle Scholar
  68. 68.
    Arai T, Hasegawa M, Akiyama H, Ikeda K, Nonaka T, Mori H, et al. TDP-43 is a component of ubiquitin-positive tau-negative inclusions in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Biochem Biophys Res Commun. 2006;351:602–11.CrossRefPubMedGoogle Scholar
  69. 69.
    Nonaka T, Suzuki G, Tanaka Y, Kametani F, Hirai S, Okado H, et al. Phosphorylation of TAR DNA-binding protein of 43 kDa (TDP-43) by truncated casein kinase 1δ triggers mislocalization and accumulation of TDP-43. J Biol Chem. 2016;291:5473–83.PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Zhang Y-J, Xu Y-F, Cook C, Gendron TF, Roettges P, Link CD, et al. Aberrant cleavage of TDP-43 enhances aggregation and cellular toxicity. Proc Natl Acad Sci U S A. 2009;106:7607–12.PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Lagier-Tourenne C, Polymenidou M, Cleveland DW. TDP-43 and FUS/TLS: emerging roles in RNA processing and neurodegeneration. Hum Mol Genet. 2010;19:R46–64.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Vance C, Rogelj B, Hortobagyi T, De Vos KJ, Nishimura AL, Sreedharan J, et al. Mutations in FUS, an RNA processing protein, cause familial amyotrophic lateral sclerosis type 6. Science. 2009;323:1208–11.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Mackenzie IRA, Bigio EH, Ince PG, Geser F, Neumann M, Cairns NJ, et al. Pathological TDP-43 distinguishes sporadic amyotrophic lateral sclerosis from amyotrophic lateral sclerosis withSOD1 mutations. Ann Neurol. 2007;61:427–34.PubMedCrossRefPubMedCentralGoogle Scholar
  74. 74.
    Tan C-F, Eguchi H, Tagawa A, Onodera O, Iwasaki T, Tsujino A, et al. TDP-43 immunoreactivity in neuronal inclusions in familial amyotrophic lateral sclerosis with or without SOD1 gene mutation. Acta Neuropathol. 2007;113:535–42.PubMedCrossRefPubMedCentralGoogle Scholar
  75. 75.
    Turner BJ, Bäumer D, Parkinson NJ, Scaber J, Ansorge O, Talbot K. TDP-43 expression in mouse models of amyotrophic lateral sclerosis and spinal muscular atrophy. BMC Neurosci. 2008;9:104.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Lee EB, Lee VM-Y, Trojanowski JQ. Gains or losses: molecular mechanisms of TDP43-mediated neurodegeneration. Nat Rev Neurosci. 2012;13:38–50.CrossRefGoogle Scholar
  77. 77.
    Vanden Broeck L, Callaerts P, Dermaut B. TDP-43-mediated neurodegeneration: towards a loss-of-function hypothesis? Trends Mol Med. 2014;20:66–71.CrossRefGoogle Scholar
  78. 78.
    Li YR, King OD, Shorter J, Gitler AD. Stress granules as crucibles of ALS pathogenesis. J Cell Biol. 2013;201:361–72.PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Weishaupt JH, Hyman T, Dikic I. Common molecular pathways in amyotrophic lateral sclerosis and frontotemporal dementia. Trends Mol Med. 2016;22:769–83.PubMedCrossRefPubMedCentralGoogle Scholar
  80. 80.
    Coyne AN, Zaepfel BL, Zarnescu DC. Failure to deliver and translate—new insights into RNA dysregulation in ALS. Front Cell Neurosci. 2017;11:243.PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Ramaswami M, Taylor JP, Parker R. Altered ribostasis: RNA-protein granules in degenerative disorders. Cell. 2013;154:727–36.CrossRefPubMedGoogle Scholar
  82. 82.
    Aulas A, Vande Velde C. Alterations in stress granule dynamics driven by TDP-43 and FUS: a link to pathological inclusions in ALS? Front Cell Neurosci. 2015;9:423.PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Dewey CM, Cenik B, Sephton CF, Johnson BA, Herz J, Yu G. TDP-43 aggregation in neurodegeneration: are stress granules the key? Brain Res. 2012;1462:16–25.PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Wolozin B. Regulated protein aggregation: stress granules and neurodegeneration. Mol Neurodegener. 2012;7:56.PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Takanashi K, Yamaguchi A. Aggregation of ALS-linked FUS mutant sequesters RNA binding proteins and impairs RNA granules formation. Biochem Biophys Res Commun. 2014;452:600–7.PubMedCrossRefPubMedCentralGoogle Scholar
  86. 86.
    Che M-X, Jiang L-L, Li H-Y, Jiang Y-J, Hu H-Y. TDP-35 sequesters TDP-43 into cytoplasmic inclusions through binding with RNA. FEBS Lett. 2015;589:1920–8.PubMedCrossRefPubMedCentralGoogle Scholar
  87. 87.
    Elden AC, Kim H-J, Hart MP, Chen-Plotkin AS, Johnson BS, Fang X, et al. Ataxin-2 intermediate-length polyglutamine expansions are associated with increased risk for ALS. Nature. 2010;466:1069–75.PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Voigt A, Herholz D, Fiesel FC, Kaur K, Müller D, Karsten P, et al. TDP-43-mediated neuron loss in vivo requires RNA-binding activity. PLoS One. 2010;5:e12247.PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Daigle JG, Lanson NA, Smith RB, Casci I, Maltare A, Monaghan J, et al. RNA-binding ability of FUS regulates neurodegeneration, cytoplasmic mislocalization and incorporation into stress granules associated with FUS carrying ALS-linked mutations. Hum Mol Genet. 2013;22:1193–205.PubMedCrossRefPubMedCentralGoogle Scholar
  90. 90.
    Sun Z, Diaz Z, Fang X, Hart MP, Chesi A, Shorter J, et al. Molecular determinants and genetic modifiers of aggregation and toxicity for the ALS disease protein FUS/TLS. PLoS Biol. 2011;9:e1000614.PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Buchan JR. mRNP granules: assembly, function, and connections with disease. RNA Biol. 2014;11:1019–30.PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Kedersha NL, Gupta M, Li W, Miller I, Anderson P. RNA-binding proteins TIA-1 and TIAR link the phosphorylation of eIF-2 alpha to the assembly of mammalian stress granules. J Cell Biol. 1999;147:1431–42.PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Anderson P, Kedersha N. Stress granules: the Tao of RNA triage. Trends Biochem Sci. 2008;33:141–50.PubMedCrossRefPubMedCentralGoogle Scholar
  94. 94.
    Buchan JR, Parker R. Eukaryotic stress granules: the ins and outs of translation. Mol Cell. 2009;36:932–41.PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Protter DSW, Parker R. Principles and properties of stress granules. Trends Cell Biol. 2016;26:668–79.PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Kedersha N, Stoecklin G, Ayodele M, Yacono P, Lykke-Andersen J, Fritzler MJ, et al. Stress granules and processing bodies are dynamically linked sites of mRNP remodeling. J Cell Biol. 2005;169:871–84.PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Buchan JR, Muhlrad D, Parker R. P bodies promote stress granule assembly in Saccharomyces cerevisiae. J Cell Biol. 2008;183:441–55.PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Kedersha N, Anderson P. Stress granules: sites of mRNA triage that regulate mRNA stability and translatability. Biochem Soc Trans. 2002;30:963–9.PubMedCrossRefPubMedCentralGoogle Scholar
  99. 99.
    Lloyd RE. Regulation of stress granules and P-bodies during RNA virus infection. Wiley Interdiscip Rev RNA. 2013;4:317–31.PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Buchan JR, Yoon J-H, Parker R. Stress-specific composition, assembly and kinetics of stress granules in Saccharomyces cerevisiae. J Cell Sci. 2011;124:228–39.PubMedCrossRefGoogle Scholar
  101. 101.
    Wheeler JR, Matheny T, Jain S, Abrisch R, Parker R. Distinct stages in stress granule assembly and disassembly. elife. 2016;5.  https://doi.org/10.7554/eLife.18413.
  102. 102.
    Yang X, Shen Y, Garre E, Hao X, Krumlinde D, Cvijović M, et al. Stress granule-defective mutants deregulate stress responsive transcripts. PLoS Genet. 2014;10:e1004763.PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Kedersha N, Cho MR, Li W, Yacono PW, Chen S, Gilks N, et al. Dynamic shuttling of TIA-1 accompanies the recruitment of mRNA to mammalian stress granules. J Cell Biol. 2000;151:1257–68.PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Kedersha N, Chen S, Gilks N, Li W, Miller IJ, Stahl J, et al. Evidence that ternary complex (eIF2-GTP-tRNAiMet)-deficient preinitiation complexes are core constituents of mammalian stress granules. Mol Biol Cell. 2002;13:195–210.PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Mollet S, Cougot N, Wilczynska A, Dautry F, Kress M, Bertrand E, et al. Translationally repressed mRNA transiently cycles through stress granules during stress. Mol Biol Cell. 2008;19:4469–79.PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Bounedjah O, Desforges B, Wu T-D, Pioche-Durieu C, Marco S, Hamon L, et al. Free mRNA in excess upon polysome dissociation is a scaffold for protein multimerization to form stress granules. Nucleic Acids Res. 2014;42:8678–91.PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Kimball SR, Horetsky RL, Ron D, Jefferson LS, Harding HP. Mammalian stress granules represent sites of accumulation of stalled translation initiation complexes. Am J Physiol Cell Physiol. 2003;284:C273–84.PubMedCrossRefPubMedCentralGoogle Scholar
  108. 108.
    Souquere S, Mollet S, Kress M, Dautry F, Pierron G, Weil D. Unravelling the ultrastructure of stress granules and associated P-bodies in human cells. J Cell Sci. 2009;122:3619–26.PubMedCrossRefPubMedCentralGoogle Scholar
  109. 109.
    Emara MM, Ivanov P, Hickman T, Dawra N, Tisdale S, Kedersha N, et al. Angiogenin-induced tRNA-derived stress-induced RNAs promote stress-induced stress granule assembly. J Biol Chem. 2010;285:10959–68.PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Leung AKL, Calabrese JM, Sharp PA. Quantitative analysis of Argonaute protein reveals microRNA-dependent localization to stress granules. Proc Natl Acad Sci U S A. 2006;103:18125–30.PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Royo H, Basyuk E, Marty V, Marques M, Bertrand E, Cavaillé J. Bsr, a nuclear-retained RNA with monoallelic expression. Mol Biol Cell. 2007;18:2817–27.PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Hubstenberger A, Courel M, Bénard M, Souquere S, Ernoult-Lange M, Chouaib R, et al. P-body purification reveals the condensation of repressed mRNA regulons. Mol Cell. 2017;68:144–157.e5.PubMedCrossRefPubMedCentralGoogle Scholar
  113. 113.
    Clemson CM, Hutchinson JN, Sara SA, Ensminger AW, Fox AH, Chess A, et al. An architectural role for a nuclear noncoding RNA: NEAT1 RNA is essential for the structure of paraspeckles. Mol Cell. 2009;33:717–26.PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Tourrière H, Chebli K, Zekri L, Courselaud B, Blanchard JM, Bertrand E, et al. The RasGAP-associated endoribonuclease G3BP assembles stress granules. J Cell Biol. 2003;160:823–31.PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Gilks N, Kedersha N, Ayodele M, Shen L, Stoecklin G, Dember LM, et al. Stress granule assembly is mediated by prion-like aggregation of TIA-1. Mol Biol Cell. 2004;15:5383–98.PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Bentmann E, Neumann M, Tahirovic S, Rodde R, Dormann D, Haass C. Requirements for stress granule recruitment of fused in sarcoma (FUS) and TAR DNA-binding protein of 43 kDa (TDP-43). J Biol Chem. 2012;287:23079–94.PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Kato M, Han TW, Xie S, Shi K, Du X, Wu LC, et al. Cell-free formation of RNA granules: low complexity sequence domains form dynamic fibers within hydrogels. Cell. 2012;149:753–67.CrossRefGoogle Scholar
  118. 118.
    Molliex A, Temirov J, Lee J, Coughlin M, Kanagaraj AP, Kim HJ, et al. Phase separation by low complexity domains promotes stress granule assembly and drives pathological fibrillization. Cell. 2015;163:123–33.PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Lin Y, Protter DSW, Rosen MK, Parker R. Formation and maturation of phase-separated liquid droplets by RNA-binding proteins. Mol Cell. 2015;60:208–19.PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    Jain S, Wheeler JR, Walters RW, Agrawal A, Barsic A, Parker R. ATPase-modulated stress granules contain a diverse proteome and substructure. Cell. 2016;164:487–98.PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Chalupníková K, Lattmann S, Selak N, Iwamoto F, Fujiki Y, Nagamine Y. Recruitment of the RNA helicase RHAU to stress granules via a unique RNA-binding domain. J Biol Chem. 2008;283:35186–98.PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    Banani SF, Lee HO, Hyman AA, Rosen MK. Biomolecular condensates: organizers of cellular biochemistry. Nat Rev Mol Cell Biol. 2017;18:285–98.PubMedCrossRefPubMedCentralGoogle Scholar
  123. 123.
    Brangwynne CP, Eckmann CR, Courson DS, Rybarska A, Hoege C, Gharakhani J, et al. Germline P granules are liquid droplets that localize by controlled dissolution/condensation. Science. 2009;324:1729–32.PubMedCrossRefPubMedCentralGoogle Scholar
  124. 124.
    Patel A, Lee HO, Jawerth L, Maharana S, Jahnel M, Hein MY, et al. A liquid-to-solid phase transition of the ALS Protein FUS accelerated by disease mutation. Cell. 2015;162:1066–77.PubMedCrossRefPubMedCentralGoogle Scholar
  125. 125.
    Fromm SA, Kamenz J, Nöldeke ER, Neu A, Zocher G, Sprangers R. In vitro reconstitution of a cellular phase-transition process that involves the mRNA decapping machinery. Angew Chem Int Ed. 2014;53:7354–9.CrossRefGoogle Scholar
  126. 126.
    Nott TJ, Petsalaki E, Farber P, Jervis D, Fussner E, Plochowietz A, et al. Phase transition of a disordered nuage protein generates environmentally responsive membraneless organelles. Mol Cell. 2015;57:936–47.PubMedPubMedCentralCrossRefGoogle Scholar
  127. 127.
    Jain A, Vale RD. RNA phase transitions in repeat expansion disorders. Nature. 2017;546:243–7.PubMedPubMedCentralCrossRefGoogle Scholar
  128. 128.
    Conicella AE, Zerze GH, Mittal J, Fawzi NL. ALS mutations disrupt phase separation mediated by α-helical structure in the TDP-43 low-complexity C-terminal domain. Structure. 2016;24:1537–49.PubMedPubMedCentralCrossRefGoogle Scholar
  129. 129.
    Abrakhi S, Kretov DA, Desforges B, Dobra I, Bouhss A, Pastré D, et al. Nanoscale analysis reveals the maturation of neurodegeneration-associated protein aggregates: grown in mRNA granules then released by stress granule proteins. ACS Nano. 2017;11:7189–200.PubMedCrossRefPubMedCentralGoogle Scholar
  130. 130.
    Murakami T, Qamar S, Lin JQ, Schierle GSK, Rees E, Miyashita A, et al. ALS/FTD mutation-induced phase transition of FUS liquid droplets and reversible hydrogels into irreversible hydrogels impairs RNP granule function. Neuron. 2015;88:678–90.PubMedPubMedCentralCrossRefGoogle Scholar
  131. 131.
    Cherkasov V, Hofmann S, Druffel-Augustin S, Mogk A, Tyedmers J, Stoecklin G, et al. Coordination of translational control and protein homeostasis during severe heat stress. Curr Biol. 2013;23:2452–62.PubMedCrossRefPubMedCentralGoogle Scholar
  132. 132.
    Hilliker A, Gao Z, Jankowsky E, Parker R. The DEAD-box protein Ded1 modulates translation by the formation and resolution of an eIF4F-mRNA complex. Mol Cell. 2011;43:962–72.PubMedPubMedCentralCrossRefGoogle Scholar
  133. 133.
    Mazroui R, Di Marco S, Kaufman RJ, Gallouzi I-E. Inhibition of the ubiquitin-proteasome system induces stress granule formation. Mol Biol Cell. 2007;18:2603–18.PubMedPubMedCentralCrossRefGoogle Scholar
  134. 134.
    Walters RW, Muhlrad D, Garcia J, Parker R. Differential effects of Ydj1 and Sis1 on Hsp70-mediated clearance of stress granules in Saccharomyces cerevisiae. RNA. 2015;21:1660–71.PubMedPubMedCentralCrossRefGoogle Scholar
  135. 135.
    Walters RW, Parker R. Coupling of ribostasis and proteostasis: Hsp70 proteins in mRNA metabolism. Trends Biochem Sci. 2015;40:552–9.PubMedPubMedCentralCrossRefGoogle Scholar
  136. 136.
    Ganassi M, Mateju D, Bigi I, Mediani L, Poser I, Lee HO, et al. A surveillance function of the HSPB8-BAG3-HSP70 chaperone complex ensures stress granule integrity and dynamism. Mol Cell. 2016;63:796–810.PubMedCrossRefPubMedCentralGoogle Scholar
  137. 137.
    Meyer H, Bug M, Bremer S. Emerging functions of the VCP/p97 AAA-ATPase in the ubiquitin system. Nat Cell Biol. 2012;14:117–23.PubMedCrossRefPubMedCentralGoogle Scholar
  138. 138.
    Ohn T, Anderson P. The role of posttranslational modifications in the assembly of stress granules. Wiley Interdiscip Rev RNA. 2010;1:486–93.PubMedCrossRefPubMedCentralGoogle Scholar
  139. 139.
    Kedersha N, Panas MD, Achorn CA, Lyons S, Tisdale S, Hickman T, et al. G3BP-Caprin1-USP10 complexes mediate stress granule condensation and associate with 40S subunits. J Cell Biol. 2016;212:845–60.PubMedPubMedCentralCrossRefGoogle Scholar
  140. 140.
    Tsai N-P, Ho P-C, Wei L-N. Regulation of stress granule dynamics by Grb7 and FAK signalling pathway. EMBO J. 2008;27:715–26.PubMedPubMedCentralCrossRefGoogle Scholar
  141. 141.
    De Leeuw F, Zhang T, Wauquier C, Huez G, Kruys V, Gueydan C. The cold-inducible RNA-binding protein migrates from the nucleus to cytoplasmic stress granules by a methylation-dependent mechanism and acts as a translational repressor. Exp Cell Res. 2007;313:4130–44.PubMedCrossRefPubMedCentralGoogle Scholar
  142. 142.
    Carpio MA, López Sambrooks C, Durand ES, Hallak ME. The arginylation-dependent association of calreticulin with stress granules is regulated by calcium. Biochem J. 2010;429:63–72.PubMedCrossRefPubMedCentralGoogle Scholar
  143. 143.
    Ohn T, Kedersha N, Hickman T, Tisdale S, Anderson P. A functional RNAi screen links O-GlcNAc modification of ribosomal proteins to stress granule and processing body assembly. Nat Cell Biol. 2008;10:1224–31.PubMedPubMedCentralCrossRefGoogle Scholar
  144. 144.
    Kwon S, Zhang Y, Matthias P. The deacetylase HDAC6 is a novel critical component of stress granules involved in the stress response. Genes Dev. 2007;21:3381–94.PubMedPubMedCentralCrossRefGoogle Scholar
  145. 145.
    Jayabalan AK, Sanchez A, Park RY, Yoon SP, Kang G-Y, Baek J-H, et al. NEDDylation promotes stress granule assembly. Nat Commun. 2016;7:12125.PubMedPubMedCentralCrossRefGoogle Scholar
  146. 146.
    Leung AKL, Vyas S, Rood JE, Bhutkar A, Sharp PA, Chang P. Poly(ADP-ribose) regulates stress responses and microRNA activity in the cytoplasm. Mol Cell. 2011;42:489–99.PubMedPubMedCentralCrossRefGoogle Scholar
  147. 147.
    Han TW, Kato M, Xie S, Wu LC, Mirzaei H, Pei J, et al. Cell-free formation of RNA granules: bound RNAs identify features and components of cellular assemblies. Cell. 2012;149:768–79.PubMedCrossRefPubMedCentralGoogle Scholar
  148. 148.
    Ivanov PA, Chudinova EM, Nadezhdina ES. Disruption of microtubules inhibits cytoplasmic ribonucleoprotein stress granule formation. Exp Cell Res. 2003;290:227–33.PubMedCrossRefPubMedCentralGoogle Scholar
  149. 149.
    Loschi M, Leishman CC, Berardone N, Boccaccio GL. Dynein and kinesin regulate stress-granule and P-body dynamics. J Cell Sci. 2009;122:3973–82.PubMedPubMedCentralCrossRefGoogle Scholar
  150. 150.
    Fujimura K, Katahira J, Kano F, Yoneda Y, Murata M. Microscopic dissection of the process of stress granule assembly. Biochim Biophys Acta. 2009;1793:1728–37.PubMedCrossRefPubMedCentralGoogle Scholar
  151. 151.
    Chernov KG, Barbet A, Hamon L, Ovchinnikov LP, Curmi PA, Pastré D. Role of microtubules in stress granule assembly. J Biol Chem. 2009;284:36569–80.PubMedPubMedCentralCrossRefGoogle Scholar
  152. 152.
    Zurla C, Lifland AW, Santangelo PJ. Characterizing mRNA interactions with RNA granules during translation initiation inhibition. PLoS One. 2011;6:e19727.PubMedPubMedCentralCrossRefGoogle Scholar
  153. 153.
    Nadezhdina ES, Lomakin AJ, Shpilman AA, Chudinova EM, Ivanov PA. Microtubules govern stress granule mobility and dynamics. Biochim Biophys Acta Mol Cell Res. 2010;1803:361–71.CrossRefGoogle Scholar
  154. 154.
    Krisenko MO, Higgins RL, Ghosh S, Zhou Q, Trybula JS, Wang W-H, et al. Syk is recruited to stress granules and promotes their clearance through autophagy. J Biol Chem. 2015;290:27803–15.PubMedPubMedCentralCrossRefGoogle Scholar
  155. 155.
    Alberti S, Mateju D, Mediani L, Carra S. Granulostasis: protein quality control of RNP granules. Front Mol Neurosci. 2017;10:84.PubMedPubMedCentralCrossRefGoogle Scholar
  156. 156.
    Colombrita C, Zennaro E, Fallini C, Weber M, Sommacal A, Buratti E, et al. TDP-43 is recruited to stress granules in conditions of oxidative insult. J Neurochem. 2009;111:1051–61.PubMedCrossRefPubMedCentralGoogle Scholar
  157. 157.
    Freibaum BD, Chitta RK, High AA, Taylor JP. Global analysis of TDP-43 interacting proteins reveals strong association with RNA splicing and translation machinery. J Proteome Res. 2010;9:1104–20.PubMedPubMedCentralCrossRefGoogle Scholar
  158. 158.
    Parker SJ, Meyerowitz J, James JL, Liddell JR, Crouch PJ, Kanninen KM, et al. Endogenous TDP-43 localized to stress granules can subsequently form protein aggregates. Neurochem Int. 2012;60:415–24.PubMedCrossRefPubMedCentralGoogle Scholar
  159. 159.
    Ayala V, Granado-Serrano AB, Cacabelos D, Naudí A, Ilieva EV, Boada J, et al. Cell stress induces TDP-43 pathological changes associated with ERK1/2 dysfunction: implications in ALS. Acta Neuropathol. 2011;122:259–70.PubMedCrossRefPubMedCentralGoogle Scholar
  160. 160.
    Meyerowitz J, Parker SJ, Vella LJ, Ng DC, Price KA, Liddell JR, et al. C-Jun N-terminal kinase controls TDP-43 accumulation in stress granules induced by oxidative stress. Mol Neurodegener. 2011;6:57.PubMedPubMedCentralCrossRefGoogle Scholar
  161. 161.
    Volkening K, Leystra-Lantz C, Yang W, Jaffee H, Strong MJ. Tar DNA binding protein of 43 kDa (TDP-43), 14-3-3 proteins and copper/zinc superoxide dismutase (SOD1) interact to modulate NFL mRNA stability. Implications for altered RNA processing in amyotrophic lateral sclerosis (ALS). Brain Res. 2009;1305:168–82.PubMedCrossRefPubMedCentralGoogle Scholar
  162. 162.
    Andersson MK, Ståhlberg A, Arvidsson Y, Olofsson A, Semb H, Stenman G, et al. The multifunctional FUS, EWS and TAF15 proto-oncoproteins show cell type-specific expression patterns and involvement in cell spreading and stress response. BMC Cell Biol. 2008;9:37.PubMedPubMedCentralCrossRefGoogle Scholar
  163. 163.
    Sama RRK, Ward CL, Kaushansky LJ, Lemay N, Ishigaki S, Urano F, et al. FUS/TLS assembles into stress granules and is a prosurvival factor during hyperosmolar stress. J Cell Physiol. 2013;228:2222–31.PubMedPubMedCentralCrossRefGoogle Scholar
  164. 164.
    Vance C, Scotter EL, Nishimura AL, Troakes C, Mitchell JC, Kathe C, et al. ALS mutant FUS disrupts nuclear localization and sequesters wild-type FUS within cytoplasmic stress granules. Hum Mol Genet. 2013;22:2676–88.PubMedPubMedCentralCrossRefGoogle Scholar
  165. 165.
    Lenzi J, De Santis R, de Turris V, Morlando M, Laneve P, Calvo A, et al. ALS mutant FUS proteins are recruited into stress granules in induced pluripotent stem cell-derived motoneurons. Dis Model Mech. 2015;8:755–66.PubMedPubMedCentralCrossRefGoogle Scholar
  166. 166.
    Dormann D, Rodde R, Edbauer D, Bentmann E, Fischer I, Hruscha A, et al. ALS-associated fused in sarcoma (FUS) mutations disrupt Transportin-mediated nuclear import. EMBO J. 2010;29:2841–57.PubMedPubMedCentralCrossRefGoogle Scholar
  167. 167.
    Liu G, Coyne AN, Pei F, Vaughan S, Chaung M, Daniela C, Zarnescu JRB. Endocytosis regulates TDP-43 toxicity and turnover. Nat Commun. 2017;8(1):2092.PubMedPubMedCentralCrossRefGoogle Scholar
  168. 168.
    Aulas A, Stabile S, Vande Velde C. Endogenous TDP-43, but not FUS, contributes to stress granule assembly via G3BP. Mol Neurodegener. 2012;7:54.PubMedPubMedCentralCrossRefGoogle Scholar
  169. 169.
    Johnson BS, Snead D, Lee JJ, McCaffery JM, Shorter J, Gitler AD. TDP-43 is intrinsically aggregation-prone, and amyotrophic lateral sclerosis-linked mutations accelerate aggregation and increase toxicity. J Biol Chem. 2009;284:20329–39.PubMedPubMedCentralCrossRefGoogle Scholar
  170. 170.
    Guo W, Chen Y, Zhou X, Kar A, Ray P, Chen X, et al. An ALS-associated mutation affecting TDP-43 enhances protein aggregation, fibril formation and neurotoxicity. Nat Struct Mol Biol. 2011;18:822–30.PubMedPubMedCentralCrossRefGoogle Scholar
  171. 171.
    Orrù S, Coni P, Floris A, Littera R, Carcassi C, Sogos V, et al. Reduced stress granule formation and cell death in fibroblasts with the A382T mutation of TARDBP gene: evidence for loss of TDP-43 nuclear function. Hum Mol Genet. 2016;25:4473–83.PubMedPubMedCentralGoogle Scholar
  172. 172.
    Guil S, Long JC, Caceres JF. hnRNP A1 relocalization to the stress granules reflects a role in the stress response. Mol Cell Biol. 2006;26:5744–58.PubMedPubMedCentralCrossRefGoogle Scholar
  173. 173.
    Nonhoff U, Ralser M, Welzel F, Piccini I, Balzereit D, Yaspo M-L, et al. Ataxin-2 interacts with the DEAD/H-box RNA helicase DDX6 and interferes with P-bodies and stress granules. Mol Biol Cell. 2007;18:1385–96.PubMedPubMedCentralCrossRefGoogle Scholar
  174. 174.
    Seguin SJ, Morelli FF, Vinet J, Amore D, De Biasi S, Poletti A, et al. Inhibition of autophagy, lysosome and VCP function impairs stress granule assembly. Cell Death Differ. 2014;21(12):1838–51.PubMedPubMedCentralCrossRefGoogle Scholar
  175. 175.
    Wang T, Xu W, Qin M, Yang Y, Bao P, Shen F, et al. Pathogenic mutations in the valosin-containing protein/p97(VCP) N-domain inhibit the SUMOylation of VCP and lead to impaired stress response. J Biol Chem. 2016;291:14373–84.PubMedPubMedCentralCrossRefGoogle Scholar
  176. 176.
    Monahan Z, Shewmaker F, Pandey UB. Stress granules at the intersection of autophagy and ALS. Brain Res. 2016;1649(Pt B):189–200.PubMedPubMedCentralCrossRefGoogle Scholar
  177. 177.
    Al-Saif A, Al-Mohanna F, Bohlega S. A mutation in sigma-1 receptor causes juvenile amyotrophic lateral sclerosis. Ann Neurol. 2011;70:913–9.PubMedCrossRefPubMedCentralGoogle Scholar
  178. 178.
    Yu A, Shibata Y, Shah B, Calamini B, Lo DC, Morimoto RI. Protein aggregation can inhibit clathrin-mediated endocytosis by chaperone competition. Proc Natl Acad Sci U S A. 2014;111:E1481–90.PubMedPubMedCentralCrossRefGoogle Scholar
  179. 179.
    Scotter EL, Vance C, Nishimura AL, Lee Y-B, Chen H-J, Urwin H, et al. Differential roles of the ubiquitin proteasome system and autophagy in the clearance of soluble and aggregated TDP-43 species. J Cell Sci. 2014;127:1263–78.PubMedPubMedCentralCrossRefGoogle Scholar
  180. 180.
    Wang X, Fan H, Ying Z, Li B, Wang H, Wang G. Degradation of TDP-43 and its pathogenic form by autophagy and the ubiquitin-proteasome system. Neurosci Lett. 2010;469:112–6.PubMedCrossRefPubMedCentralGoogle Scholar
  181. 181.
    Witke W, Podtelejnikov AV, Di Nardo A, Sutherland JD, Gurniak CB, Dotti C, et al. In mouse brain profilin I and profilin II associate with regulators of the endocytic pathway and actin assembly. EMBO J. 1998;17:967–76.PubMedPubMedCentralCrossRefGoogle Scholar
  182. 182.
    Tanaka Y, Nonaka T, Suzuki G, Kametani F, Hasegawa M. Gain-of-function profilin 1 mutations linked to familial amyotrophic lateral sclerosis cause seed-dependent intracellular TDP-43 aggregation. Hum Mol Genet. 2016;25:1420–33.PubMedCrossRefPubMedCentralGoogle Scholar
  183. 183.
    Daoud H, Zhou S, Noreau A, Sabbagh M, Belzil V, Dionne-Laporte A, et al. Exome sequencing reveals SPG11 mutations causing juvenile ALS. Neurobiol Aging. 2012;33:839.e5–9.CrossRefGoogle Scholar
  184. 184.
    Belzil VV, Bauer PO, Prudencio M, Gendron TF, Stetler CT, Yan IK, et al. Reduced C9orf72 gene expression in c9FTD/ALS is caused by histone trimethylation, an epigenetic event detectable in blood. Acta Neuropathol. 2013;126:895–905.PubMedPubMedCentralCrossRefGoogle Scholar
  185. 185.
    Fratta P, Mizielinska S, Nicoll AJ, Zloh M, Fisher EMC, Parkinson G, et al. C9orf72 hexanucleotide repeat associated with amyotrophic lateral sclerosis and frontotemporal dementia forms RNA G-quadruplexes. Sci Rep. 2012;2:1016.PubMedPubMedCentralCrossRefGoogle Scholar
  186. 186.
    Waite AJ, Bäumer D, East S, Neal J, Morris HR, Ansorge O, et al. Reduced C9orf72 protein levels in frontal cortex of amyotrophic lateral sclerosis and frontotemporal degeneration brain with the C9ORF72 hexanucleotide repeat expansion. Neurobiol Aging. 2014;35:1779.e5–1779.e13.CrossRefGoogle Scholar
  187. 187.
    Xiao S, MacNair L, McLean J, McGoldrick P, McKeever P, Soleimani S, et al. C9orf72 isoforms in amyotrophic lateral sclerosis and frontotemporal lobar degeneration. Brain Res. 2016;1647:43–9.PubMedCrossRefPubMedCentralGoogle Scholar
  188. 188.
    Gitler AD, Tsuiji H. There has been an awakening: emerging mechanisms of C9orf72 mutations in FTD/ALS. Brain Res. 2016;1647:19–29.PubMedPubMedCentralCrossRefGoogle Scholar
  189. 189.
    Tang BL. C9orf72’s interaction with Rab GTPases—modulation of membrane traffic and autophagy. Front Cell Neurosci. 2016;10:228.PubMedPubMedCentralGoogle Scholar
  190. 190.
    Freibaum BD, Taylor JP. The role of dipeptide repeats in C9ORF72-related ALS-FTD. Front Mol Neurosci. 2017;10:35.PubMedPubMedCentralCrossRefGoogle Scholar
  191. 191.
    Nassif M, Woehlbier U, Manque PA. The enigmatic role of C9ORF72 in autophagy. Front Neurosci. 2017;11:442.PubMedPubMedCentralCrossRefGoogle Scholar
  192. 192.
    Zhang D, Iyer LM, He F, Aravind L. Discovery of novel DENN proteins: implications for the evolution of eukaryotic intracellular membrane structures and human disease. Front Genet. 2012;3:1–10.Google Scholar
  193. 193.
    Levine TP, Daniels RD, Gatta AT, Wong LH, Hayes MJ. The product of C9orf72, a gene strongly implicated in neurodegeneration, is structurally related to DENN Rab-GEFs. Bioinformatics. 2013;29:499–503.PubMedPubMedCentralCrossRefGoogle Scholar
  194. 194.
    Farg MA, Sundaramoorthy V, Sultana JM, Yang S, Atkinson RAK, Levina V, et al. C9ORF72, implicated in amytrophic lateral sclerosis and frontotemporal dementia, regulates endosomal trafficking. Hum Mol Genet. 2014;23:3579–95.PubMedPubMedCentralCrossRefGoogle Scholar
  195. 195.
    Webster CP, Smith EF, Bauer CS, Moller A, Hautbergue GM, Ferraiuolo L, et al. The C9orf72 protein interacts with Rab1a and the ULK1 complex to regulate initiation of autophagy. EMBO J. 2016;35:1656–76.PubMedPubMedCentralCrossRefGoogle Scholar
  196. 196.
    Sellier C, Campanari M-L, Julie Corbier C, Gaucherot A, Kolb-Cheynel I, Oulad-Abdelghani M, et al. Loss of C9ORF72 impairs autophagy and synergizes with polyQ Ataxin-2 to induce motor neuron dysfunction and cell death. EMBO J. 2016;35:1276–97.PubMedPubMedCentralCrossRefGoogle Scholar
  197. 197.
    Mori K, Weng S-M, Arzberger T, May S, Rentzsch K, Kremmer E, et al. The C9orf72 GGGGCC repeat is translated into aggregating dipeptide-repeat proteins in FTLD/ALS. Science. 2013;339:1335–8.CrossRefGoogle Scholar
  198. 198.
    Zu T, Liu Y, Bañez-Coronel M, Reid T, Pletnikova O, Lewis J, et al. RAN proteins and RNA foci from antisense transcripts in C9ORF72 ALS and frontotemporal dementia. Proc Natl Acad Sci U S A. 2013;110:E4968–77.PubMedPubMedCentralCrossRefGoogle Scholar
  199. 199.
    Kwon I, Xiang S, Kato M, Wu L, Theodoropoulos P, Wang T, et al. Poly-dipeptides encoded by the C9orf72 repeats bind nucleoli, impede RNA biogenesis, and kill cells. Science. 2014;345:1139–45.PubMedPubMedCentralCrossRefGoogle Scholar
  200. 200.
    Wen X, Tan W, Westergard T, Krishnamurthy K, Markandaiah SS, Shi Y, et al. Antisense proline-arginine RAN dipeptides linked to C9ORF72-ALS/FTD form toxic nuclear aggregates that initiate in vitro and in vivo neuronal death. Neuron. 2014;84:1213–25.PubMedPubMedCentralCrossRefGoogle Scholar
  201. 201.
    Gendron TF, Bieniek KF, Zhang Y-J, Jansen-West K, Ash PEA, Caulfield T, et al. Antisense transcripts of the expanded C9ORF72 hexanucleotide repeat form nuclear RNA foci and undergo repeat-associated non-ATG translation in c9FTD/ALS. Acta Neuropathol. 2013;126:829–44.PubMedPubMedCentralCrossRefGoogle Scholar
  202. 202.
    Haeusler AR, Donnelly CJ, Rothstein JD. The expanding biology of the C9orf72 nucleotide repeat expansion in neurodegenerative disease. Nat Rev Neurosci. 2016;17:383–95.PubMedCrossRefPubMedCentralGoogle Scholar
  203. 203.
    Rossi S, Serrano A, Gerbino V, Giorgi A, Di Francesco L, Nencini M, et al. Nuclear accumulation of mRNAs underlies G4C2-repeat-induced translational repression in a cellular model of C9orf72 ALS. J Cell Sci. 2015;128:1787–99.CrossRefPubMedGoogle Scholar
  204. 204.
    Bunton-Stasyshyn RKA, Saccon RA, Fratta P, Fisher EMC. SOD1 function and its implications for amyotrophic lateral sclerosis pathology. Neuroscientist. 2015;21:519–29.PubMedCrossRefPubMedCentralGoogle Scholar
  205. 205.
    Borchelt DR, Lee MK, Slunt HS, Guarnieri M, Xu ZS, Wong PC, et al. Superoxide dismutase 1 with mutations linked to familial amyotrophic lateral sclerosis possesses significant activity. Proc Natl Acad Sci U S A. 1994;91:8292–6.PubMedPubMedCentralCrossRefGoogle Scholar
  206. 206.
    Renton AE, Chiò A, Traynor BJ. State of play in amyotrophic lateral sclerosis genetics. Nat Neurosci. 2014;17:17–23.PubMedCrossRefPubMedCentralGoogle Scholar
  207. 207.
    Geser F, Robinson JL, Malunda JA, Xie SX, Clark CM, Kwong LK, et al. Pathological 43-kDa transactivation response DNA-binding protein in older adults with and without severe mental illness. Arch Neurol. 2010;67:1238–50.PubMedPubMedCentralCrossRefGoogle Scholar
  208. 208.
    Uchino A, Takao M, Hatsuta H, Sumikura H, Nakano Y, Nogami A, et al. Incidence and extent of TDP-43 accumulation in aging human brain. Acta Neuropathol Commun. 2015;3:35.PubMedPubMedCentralCrossRefGoogle Scholar
  209. 209.
    Baloh RH. TDP-43: the relationship between protein aggregation and neurodegeneration in amyotrophic lateral sclerosis and frontotemporal lobar degeneration. FEBS J. 2011;278:3539–49.PubMedPubMedCentralCrossRefGoogle Scholar
  210. 210.
    Hara T, Nakamura K, Matsui M, Yamamoto A, Nakahara Y, Suzuki-Migishima R, et al. Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice. Nature. 2006;441:885–9.PubMedCrossRefPubMedCentralGoogle Scholar
  211. 211.
    Komatsu M, Waguri S, Chiba T, Murata S, Iwata J, Tanida I, et al. Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature. 2006;441:880–4.PubMedCrossRefPubMedCentralGoogle Scholar
  212. 212.
    Rubinsztein DC, Mariño G, Kroemer G. Autophagy and aging. Cell. 2011;146:682–95.PubMedCrossRefPubMedCentralGoogle Scholar
  213. 213.
    Haigis MC, Yankner BA. The aging stress response. Mol Cell. 2010;40:333–44.PubMedPubMedCentralCrossRefGoogle Scholar
  214. 214.
    Lipinski MM, Zheng B, Lu T, Yan Z, Py BF, Ng A, et al. Genome-wide analysis reveals mechanisms modulating autophagy in normal brain aging and in Alzheimer’s disease. Proc Natl Acad Sci. 2010;107:14164–9.PubMedPubMedCentralCrossRefGoogle Scholar
  215. 215.
    Shibata M, Lu T, Furuya T, Degterev A, Mizushima N, Yoshimori T, et al. Regulation of intracellular accumulation of mutant Huntingtin by Beclin 1. J Biol Chem. 2006;281:14474–85.PubMedCrossRefPubMedCentralGoogle Scholar
  216. 216.
    Frake RA, Ricketts T, Menzies FM, Rubinsztein DC. Autophagy and neurodegeneration. J Clin Invest. 2015;125:65–74.PubMedPubMedCentralCrossRefGoogle Scholar
  217. 217.
    Barmada SJ, Serio A, Arjun A, Bilican B, Daub A, Ando DM, et al. Autophagy induction enhances TDP43 turnover and survival in neuronal ALS models. Nat Chem Biol. 2014;10:677–85.PubMedPubMedCentralCrossRefGoogle Scholar
  218. 218.
    Wang I-F, Guo B-S, Liu Y-C, Wu C-C, Yang C-H, Tsai K-J, et al. Autophagy activators rescue and alleviate pathogenesis of a mouse model with proteinopathies of the TAR DNA-binding protein 43. Proc Natl Acad Sci U S A. 2012;109:15024–9.PubMedPubMedCentralCrossRefGoogle Scholar
  219. 219.
    Koga H, Kaushik S, Cuervo AM. Protein homeostasis and aging: the importance of exquisite quality control. Ageing Res Rev. 2011;10:205–15.PubMedCrossRefPubMedCentralGoogle Scholar
  220. 220.
    Brehme M, Voisine C, Rolland T, Wachi S, Soper JH, Zhu Y, et al. A chaperome subnetwork safeguards proteostasis in aging and neurodegenerative disease. Cell Rep. 2014;9:1135–50.PubMedPubMedCentralCrossRefGoogle Scholar
  221. 221.
    Kaarniranta K, Oksala N, Karjalainen HM, Suuronen T, Sistonen L, Helminen HJ, et al. Neuronal cells show regulatory differences in the hsp70 gene response. Brain Res Mol Brain Res. 2002;101:136–40.PubMedCrossRefGoogle Scholar
  222. 222.
    Batulan Z, Shinder GA, Minotti S, He BP, Doroudchi MM, Nalbantoglu J, et al. High threshold for induction of the stress response in motor neurons is associated with failure to activate HSF1. J Neurosci. 2003;23:5789–98.PubMedCrossRefPubMedCentralGoogle Scholar
  223. 223.
    Rolfe DF, Brown GC. Cellular energy utilization and molecular origin of standard metabolic rate in mammals. Physiol Rev. 1997;77:731–58.PubMedCrossRefGoogle Scholar
  224. 224.
    Stranahan AM, Mattson MP. Recruiting adaptive cellular stress responses for successful brain ageing. Nat Rev Neurosci. 2012;13:209–16.PubMedPubMedCentralCrossRefGoogle Scholar
  225. 225.
    Shaw PJ, Ince PG, Falkous G, Mantle D. Oxidative damage to protein in sporadic motor neuron disease spinal cord. Ann Neurol. 1995;38:691–5.PubMedCrossRefGoogle Scholar
  226. 226.
    Ferrante RJ, Browne SE, Shinobu LA, Bowling AC, Baik MJ, MacGarvey U, et al. Evidence of increased oxidative damage in both sporadic and familial amyotrophic lateral sclerosis. J Neurochem. 1997;69:2064–74.PubMedCrossRefPubMedCentralGoogle Scholar
  227. 227.
    Abe K, Pan LH, Watanabe M, Kato T, Itoyama Y. Induction of nitrotyrosine-like immunoreactivity in the lower motor neuron of amyotrophic lateral sclerosis. Neurosci Lett. 1995;199:152–4.PubMedCrossRefPubMedCentralGoogle Scholar
  228. 228.
    Barber SC, Shaw PJ. Oxidative stress in ALS: key role in motor neuron injury and therapeutic target. Free Radic Biol Med. 2010;48:629–41.PubMedCrossRefPubMedCentralGoogle Scholar
  229. 229.
    Kagias K, Nehammer C, Pocock R. Neuronal responses to physiological stress. Front Genet. 2012;3:222.PubMedPubMedCentralCrossRefGoogle Scholar
  230. 230.
    Lechler MC, Crawford ED, Groh N, Widmaier K, Jung R, Kirstein J, et al. Reduced insulin/IGF-1 signaling restores the dynamic properties of key stress granule proteins during aging. Cell Rep. 2017;18:454–67.PubMedPubMedCentralCrossRefGoogle Scholar
  231. 231.
    Kenyon CJ. The genetics of ageing. Nature. 2010;464:504–12.PubMedCrossRefPubMedCentralGoogle Scholar
  232. 232.
    Stout GJ, Stigter ECA, Essers PB, Mulder KW, Kolkman A, Snijders DS, et al. Insulin/IGF-1-mediated longevity is marked by reduced protein metabolism. Mol Syst Biol. 2013;9:679.PubMedPubMedCentralCrossRefGoogle Scholar
  233. 233.
    Kanai Y, Dohmae N, Hirokawa N. Kinesin transports RNA. Neuron. 2004;43:513–25.PubMedCrossRefPubMedCentralGoogle Scholar
  234. 234.
    Fallini C, Bassell GJ, Rossoll W. The ALS disease protein TDP-43 is actively transported in motor neuron axons and regulates axon outgrowth. Hum Mol Genet. 2012;21:3703–18.PubMedPubMedCentralCrossRefGoogle Scholar
  235. 235.
    Gopal PP, Nirschl JJ, Klinman E, Holzbaur ELF. Amyotrophic lateral sclerosis-linked mutations increase the viscosity of liquid-like TDP-43 RNP granules in neurons. Proc Natl Acad Sci U S A. 2017;114:E2466–75.PubMedPubMedCentralCrossRefGoogle Scholar
  236. 236.
    Alami NH, Smith RB, Carrasco MA, Williams LA, Winborn CS, Han SSW, et al. Axonal transport of TDP-43 mRNA granules is impaired by ALS-causing mutations. Neuron. 2014;81:536–43.PubMedPubMedCentralCrossRefGoogle Scholar
  237. 237.
    Feiler MS, Strobel B, Freischmidt A, Helferich AM, Kappel J, Brewer BM, et al. TDP-43 is intercellularly transmitted across axon terminals. J Cell Biol. 2015;211:897–911.PubMedPubMedCentralCrossRefGoogle Scholar
  238. 238.
    Iguchi Y, Eid L, Parent M, Soucy G, Bareil C, Riku Y, et al. Exosome secretion is a key pathway for clearance of pathological TDP-43. Brain. 2016;139:3187–201.PubMedPubMedCentralCrossRefGoogle Scholar
  239. 239.
    Grad LI, Yerbury JJ, Turner BJ, Guest WC, Pokrishevsky E, O’Neill MA, et al. Intercellular propagated misfolding of wild-type Cu/Zn superoxide dismutase occurs via exosome-dependent and -independent mechanisms. Proc Natl Acad Sci U S A. 2014;111:3620–5.PubMedPubMedCentralCrossRefGoogle Scholar
  240. 240.
    Petrov D, Mansfield C, Moussy A, Hermine O. ALS clinical trials review: 20 years of failure. Are we any closer to registering a new treatment? Front Aging Neurosci. 2017;9:68.PubMedPubMedCentralCrossRefGoogle Scholar
  241. 241.
    Lagier-Tourenne C, Baughn M, Rigo F, Sun S, Liu P, Li H-R, et al. Targeted degradation of sense and antisense C9orf72 RNA foci as therapy for ALS and frontotemporal degeneration. Proc Natl Acad Sci U S A. 2013;110:E4530–9.PubMedPubMedCentralCrossRefGoogle Scholar
  242. 242.
    Donnelly CJ, Zhang P-W, Pham JT, Haeusler AR, Mistry NA, Vidensky S, et al. RNA toxicity from the ALS/FTD C9ORF72 expansion is mitigated by antisense intervention. Neuron. 2013;80:415–28.PubMedPubMedCentralCrossRefGoogle Scholar
  243. 243.
    van Zundert B, Brown RH. Silencing strategies for therapy of SOD1-mediated ALS. Neurosci Lett. 2017;636:32–9.PubMedCrossRefPubMedCentralGoogle Scholar
  244. 244.
    Forostyak S, Sykova E. Neuroprotective potential of cell-based therapies in ALS: from bench to bedside. Front Neurosci. 2017;11:591.PubMedPubMedCentralCrossRefGoogle Scholar
  245. 245.
    Sonenberg N, Hinnebusch AG. Regulation of translation initiation in eukaryotes: mechanisms and biological targets. Cell. 2009;136:731–45.PubMedPubMedCentralCrossRefGoogle Scholar
  246. 246.
    Jennings MD, Pavitt GD. A new function and complexity for protein translation initiation factor eIF2B. Cell Cycle. 2014;13:2660–5.PubMedPubMedCentralCrossRefGoogle Scholar
  247. 247.
    Kim H-J, Raphael AR, LaDow ES, McGurk L, Weber RA, Trojanowski JQ, et al. Therapeutic modulation of eIF2α phosphorylation rescues TDP-43 toxicity in amyotrophic lateral sclerosis disease models. Nat Genet. 2014;46:152–60.PubMedCrossRefPubMedCentralGoogle Scholar
  248. 248.
    Axten JM, Medina JR, Feng Y, Shu A, Romeril SP, Grant SW, et al. Discovery of 7-Methyl-5-(1-{[3-(trifluoromethyl)phenyl]acetyl}-2,3-dihydro-1 H -indol-5-yl)-7 H-pyrrolo[2,3- d ]pyrimidin-4-amine (GSK2606414), a potent and selective first-in-class inhibitor of protein kinase R (PKR)-like endoplasmic reticulum kinase (PERK). J Med Chem. 2012;55:7193–207.PubMedCrossRefPubMedCentralGoogle Scholar
  249. 249.
    Sidrauski C, McGeachy AM, Ingolia NT, Walter P. The small molecule ISRIB reverses the effects of eIF2α phosphorylation on translation and stress granule assembly. elife. 2015;4Google Scholar
  250. 250.
    Sidrauski C, Tsai JC, Kampmann M, Hearn BR, Vedantham P, Jaishankar P, et al. Pharmacological dimerization and activation of the exchange factor eIF2B antagonizes the integrated stress response. elife. 2015;4:e07314.PubMedPubMedCentralCrossRefGoogle Scholar
  251. 251.
    Halliday M, Radford H, Sekine Y, Moreno J, Verity N, le Quesne J, et al. Partial restoration of protein synthesis rates by the small molecule ISRIB prevents neurodegeneration without pancreatic toxicity. Cell Death Dis. 2015;6:e1672.PubMedPubMedCentralCrossRefGoogle Scholar
  252. 252.
    Castillo K, Nassif M, Valenzuela V, Rojas F, Matus S, Mercado G, et al. Trehalose delays the progression of amyotrophic lateral sclerosis by enhancing autophagy in motoneurons. Autophagy. 2013;9:1308–20.PubMedCrossRefPubMedCentralGoogle Scholar
  253. 253.
    Zhang X, Chen S, Song L, Tang Y, Shen Y, Jia L, et al. MTOR-independent, autophagic enhancer trehalose prolongs motor neuron survival and ameliorates the autophagic flux defect in a mouse model of amyotrophic lateral sclerosis. Autophagy. 2014;10:588–602.PubMedPubMedCentralCrossRefGoogle Scholar
  254. 254.
    Hetz C, Thielen P, Matus S, Nassif M, Court F, Kiffin R, et al. XBP-1 deficiency in the nervous system protects against amyotrophic lateral sclerosis by increasing autophagy. Genes Dev. 2009;23:2294–306.PubMedPubMedCentralCrossRefGoogle Scholar
  255. 255.
    Zhang X, Li L, Chen S, Yang D, Wang Y, Zhang X, et al. Rapamycin treatment augments motor neuron degeneration in SOD1(G93A) mouse model of amyotrophic lateral sclerosis. Autophagy. 2011;7:412–25.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Nikita Fernandes
    • 1
  • Nichole Eshleman
    • 1
  • J. Ross Buchan
    • 1
  1. 1.Department of Molecular and Cellular BiologyUniversity of ArizonaTucsonUSA

Personalised recommendations