RNA Nucleocytoplasmic Transport Defects in Neurodegenerative Diseases

  • Ashley Boehringer
  • Robert BowserEmail author
Part of the Advances in Neurobiology book series (NEUROBIOL, volume 20)


In eukaryotic cells, transcription and translation are compartmentalized by the nuclear membrane, requiring an active transport of RNA from the nucleus into the cytoplasm. This is accomplished by a variety of transport complexes that contain either a member of the exportin family of proteins and translocation fueled by GTP hydrolysis or in the case of mRNA by complexes containing the export protein NXF1. Recent evidence indicates that RNA transport is altered in a number of different neurodegenerative diseases including Huntington’s disease, Alzheimer’s disease, frontotemporal dementia, and amyotrophic lateral sclerosis. Alterations in RNA transport predominately fall into three categories: Alterations in the nuclear membrane and mislocalization and aggregation of the nucleoporins that make up the nuclear pore; alterations in the Ran gradient and the proteins that control it which impacts exportin based nuclear export; and alterations of proteins that are required for the export of mRNA leading nuclear accumulation of mRNA.


RNA TREX Exportin Nuclear pore complex Amyotrophic lateral sclerosis Alzheimer’s disease Huntington’s disease Frontotemporal dementia 


  1. 1.
    Paine PL. Nucleocytoplasmic movement of fluorescent tracers microinjected into living salivary gland cells. J Cell Biol. 1975;66(3):652–7.CrossRefPubMedGoogle Scholar
  2. 2.
    De Robertis EM, Longthorne RF, Gurdon JB. Intracellular migration of nuclear proteins in Xenopus oocytes. Nature. 1978;272(5650):254–6.CrossRefPubMedGoogle Scholar
  3. 3.
    Dingwall C, Sharnick SV, Laskey RA. A polypeptide domain that specifies migration of nucleoplasmin into the nucleus. Cell. 1982;30(2):449–58.CrossRefPubMedGoogle Scholar
  4. 4.
    Segref A, et al. Mex67p, a novel factor for nuclear mRNA export, binds to both poly(A)+ RNA and nuclear pores. EMBO J. 1997;16(11):3256–71.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Herold A, Klymenko T, Izaurralde E. NXF1/p15 heterodimers are essential for mRNA nuclear export in Drosophila. RNA. 2001;7(12):1768–80.PubMedPubMedCentralGoogle Scholar
  6. 6.
    Thomas F, Kutay U. Biogenesis and nuclear export of ribosomal subunits in higher eukaryotes depend on the CRM1 export pathway. J Cell Sci. 2003;116(Pt 12):2409–19.CrossRefPubMedGoogle Scholar
  7. 7.
    Wild T, et al. A protein inventory of human ribosome biogenesis reveals an essential function of exportin 5 in 60S subunit export. PLoS Biol. 2010;8(10):e1000522.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Rouquette J, Choesmel V, Gleizes PE. Nuclear export and cytoplasmic processing of precursors to the 40S ribosomal subunits in mammalian cells. EMBO J. 2005;24(16):2862–72.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Fornerod M, et al. CRM1 is an export receptor for leucine-rich nuclear export signals. Cell. 1997;90(6):1051–60.CrossRefPubMedGoogle Scholar
  10. 10.
    Watanabe M, et al. Involvement of CRM1, a nuclear export receptor, in mRNA export in mammalian cells and fission yeast. Genes Cells. 1999;4(5):291–7.CrossRefPubMedGoogle Scholar
  11. 11.
    Kutay U, et al. Identification of a tRNA-specific nuclear export receptor. Mol Cell. 1998;1(3):359–69.CrossRefPubMedGoogle Scholar
  12. 12.
    Arts GJ, Fornerod M, Mattaj IW. Identification of a nuclear export receptor for tRNA. Curr Biol. 1998;8(6):305–14.CrossRefPubMedGoogle Scholar
  13. 13.
    Lund E, et al. Nuclear export of microRNA precursors. Science. 2004;303(5654):95–8.CrossRefGoogle Scholar
  14. 14.
    Bohnsack MT, Czaplinski K, Gorlich D. Exportin 5 is a RanGTP-dependent dsRNA-binding protein that mediates nuclear export of pre-miRNAs. RNA. 2004;10(2):185–91.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Reichelt R, et al. Correlation between structure and mass distribution of the nuclear pore complex and of distinct pore complex components. J Cell Biol. 1990;110(4):883–94.CrossRefPubMedGoogle Scholar
  16. 16.
    Cronshaw JM, et al. Proteomic analysis of the mammalian nuclear pore complex. J Cell Biol. 2002;158(5):915–27.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Frey S, Gorlich D. A saturated FG-repeat hydrogel can reproduce the permeability properties of nuclear pore complexes. Cell. 2007;130(3):512–23.CrossRefPubMedGoogle Scholar
  18. 18.
    Fukuda M, et al. CRM1 is responsible for intracellular transport mediated by the nuclear export signal. Nature. 1997;390(6657):308–11.CrossRefPubMedGoogle Scholar
  19. 19.
    Bischoff FR, Ponstingl H. Catalysis of guanine nucleotide exchange on Ran by the mitotic regulator RCC1. Nature. 1991;354(6348):80–2.CrossRefPubMedGoogle Scholar
  20. 20.
    Brennan CM, Gallouzi IE, Steitz JA. Protein ligands to HuR modulate its interaction with target mRNAs in vivo. J Cell Biol. 2000;151(1):1–14.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Topisirovic I, et al. Molecular dissection of the eukaryotic initiation factor 4E (eIF4E) export-competent RNP. EMBO J. 2009;28(8):1087–98.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Yang J, et al. Two closely related human nuclear export factors utilize entirely distinct export pathways. Mol Cell. 2001;8(2):397–406.CrossRefPubMedGoogle Scholar
  23. 23.
    Henderson BR, Eleftheriou A. A comparison of the activity, sequence specificity, and CRM1-dependence of different nuclear export signals. Exp Cell Res. 2000;256(1):213–24.CrossRefPubMedGoogle Scholar
  24. 24.
    Kalderon D, et al. A short amino acid sequence able to specify nuclear location. Cell. 1984;39(3 Pt 2):499–509.CrossRefPubMedGoogle Scholar
  25. 25.
    Petosa C, et al. Architecture of CRM1/Exportin1 suggests how cooperativity is achieved during formation of a nuclear export complex. Mol Cell. 2004;16(5):761–75.CrossRefPubMedGoogle Scholar
  26. 26.
    Yi R, et al. Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes Dev. 2003;17(24):3011–6.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Okada C, et al. A high-resolution structure of the pre-microRNA nuclear export machinery. Science. 2009;326(5957):1275–9.CrossRefPubMedGoogle Scholar
  28. 28.
    Strasser K, et al. TREX is a conserved complex coupling transcription with messenger RNA export. Nature. 2002;417(6886):304–8.CrossRefPubMedGoogle Scholar
  29. 29.
    McCloskey A, et al. hnRNP C tetramer measures RNA length to classify RNA polymerase II transcripts for export. Science. 2012;335(6076):1643–6.CrossRefPubMedGoogle Scholar
  30. 30.
    Reed R, Cheng H. TREX, SR proteins and export of mRNA. Curr Opin Cell Biol. 2005;17(3):269–73.CrossRefPubMedGoogle Scholar
  31. 31.
    Cheng H, et al. Human mRNA export machinery recruited to the 5′ end of mRNA. Cell. 2006;127(7):1389–400.CrossRefPubMedGoogle Scholar
  32. 32.
    Viphakone N, et al. TREX exposes the RNA-binding domain of Nxf1 to enable mRNA export. Nat Commun. 2012;3:1006.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Wickramasinghe VO, Stewart M, Laskey RA. GANP enhances the efficiency of mRNA nuclear export in mammalian cells. Nucleus. 2010;1(5):393–6.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Kohler A, et al. Yeast Ataxin-7 links histone deubiquitination with gene gating and mRNA export. Nat Cell Biol. 2008;10(6):707–15.CrossRefPubMedGoogle Scholar
  35. 35.
    Sheffield LG, et al. Nuclear pore complex proteins in Alzheimer disease. J Neuropathol Exp Neurol. 2006;65(1):45–54.CrossRefPubMedGoogle Scholar
  36. 36.
    Gasset-Rosa F, et al. Polyglutamine-expanded huntingtin exacerbates age-related disruption of nuclear integrity and nucleocytoplasmic transport. Neuron. 2017;94(1):48–57e4.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Grima JC, et al. Mutant Huntingtin disrupts the nuclear pore complex. Neuron. 2017;94(1):93–107e6.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Shang J, et al. Aberrant distributions of nuclear pore complex proteins in ALS mice and ALS patients. Neuroscience. 2017;350:158–68.CrossRefPubMedGoogle Scholar
  39. 39.
    Freibaum BD, et al. GGGGCC repeat expansion in C9orf72 compromises nucleocytoplasmic transport. Nature. 2015;525(7567):129–33.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Zhang K, et al. The C9orf72 repeat expansion disrupts nucleocytoplasmic transport. Nature. 2015;525(7567):56–61.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Boehringer A, et al. ALS associated mutations in matrin 3 alter protein-protein interactions and impede mRNA nuclear export. Sci Rep. 2017;7(1):14529.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Suhr ST, et al. Identities of sequestered proteins in aggregates from cells with induced polyglutamine expression. J Cell Biol. 2001;153(2):283–94.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Kinoshita Y, et al. Nuclear contour irregularity and abnormal transporter protein distribution in anterior horn cells in amyotrophic lateral sclerosis. J Neuropathol Exp Neurol. 2009;68(11):1184–92.CrossRefPubMedGoogle Scholar
  44. 44.
    Boeynaems S, et al. Drosophila screen connects nuclear transport genes to DPR pathology in c9ALS/FTD. Sci Rep. 2016;6:20877.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Shi KY, et al. Toxic PRn poly-dipeptides encoded by the C9orf72 repeat expansion block nuclear import and export. Proc Natl Acad Sci U S A. 2017;114(7):E1111–7.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Lee KH, et al. C9orf72 dipeptide repeats impair the assembly, dynamics, and function of membrane-less organelles. Cell. 2016;167(3):774–788e17.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Woerner AC, et al. Cytoplasmic protein aggregates interfere with nucleocytoplasmic transport of protein and RNA. Science. 2016;351(6269):173–6.CrossRefGoogle Scholar
  48. 48.
    Ahmed Z, et al. Accelerated lipofuscinosis and ubiquitination in granulin knockout mice suggest a role for progranulin in successful aging. Am J Pathol. 2010;177(1):311–24.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Chen-Plotkin AS, et al. Variations in the progranulin gene affect global gene expression in frontotemporal lobar degeneration. Hum Mol Genet. 2008;17(10):1349–62.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Ward ME, et al. Early retinal neurodegeneration and impaired Ran-mediated nuclear import of TDP-43 in progranulin-deficient FTLD. J Exp Med. 2014;211(10):1937–45.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Cho KI, et al. Ranbp2 haploinsufficiency mediates distinct cellular and biochemical phenotypes in brain and retinal dopaminergic and glia cells elicited by the Parkinsonian neurotoxin, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Cell Mol Life Sci. 2012;69(20):3511–27.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Cho KI, et al. Loss of Ranbp2 in motoneurons causes disruption of nucleocytoplasmic and chemokine signaling, proteostasis of hnRNPH3 and Mmp28, and development of amyotrophic lateral sclerosis-like syndromes. Dis Model Mech. 2017;10(5):559–79.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Stalekar M, et al. Proteomic analyses reveal that loss of TDP-43 affects RNA processing and intracellular transport. Neuroscience. 2015;293:157–70.CrossRefPubMedGoogle Scholar
  54. 54.
    Zhang YJ, et al. C9ORF72 poly(GA) aggregates sequester and impair HR23 and nucleocytoplasmic transport proteins. Nat Neurosci. 2016;19(5):668–77.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Hautbergue GM, et al. SRSF1-dependent nuclear export inhibition of C9ORF72 repeat transcripts prevents neurodegeneration and associated motor deficits. Nat Commun. 2017;8:16063.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Kaneb HM, et al. Deleterious mutations in the essential mRNA metabolism factor, hGle1, in amyotrophic lateral sclerosis. Hum Mol Genet. 2015;24(5):1363–73.CrossRefPubMedGoogle Scholar
  57. 57.
    Kim JE, et al. Altered nucleocytoplasmic proteome and transcriptome distributions in an in vitro model of amyotrophic lateral sclerosis. PLoS One. 2017;12(4):e0176462.CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Rossi S, et al. Nuclear accumulation of mRNAs underlies G4C2-repeat-induced translational repression in a cellular model of C9orf72 ALS. J Cell Sci. 2015;128(9):1787–99.CrossRefPubMedGoogle Scholar
  59. 59.
    Rabut G, Lenart P, Ellenberg J. Dynamics of nuclear pore complex organization through the cell cycle. Curr Opin Cell Biol. 2004;16(3):314–21.CrossRefPubMedGoogle Scholar
  60. 60.
    D'Angelo MA, et al. Age-dependent deterioration of nuclear pore complexes causes a loss of nuclear integrity in postmitotic cells. Cell. 2009;136(2):284–95.CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Savas JN, et al. Extremely long-lived nuclear pore proteins in the rat brain. Science. 2012;335(6071):942.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of NeurobiologyBarrow Neurological InstitutePhoenixUSA
  2. 2.School of Life SciencesArizona State UniversityPhoenixUSA

Personalised recommendations