RNA Editing Deficiency in Neurodegeneration

  • Ileana Lorenzini
  • Stephen Moore
  • Rita SattlerEmail author
Part of the Advances in Neurobiology book series (NEUROBIOL, volume 20)


The molecular process of RNA editing allows changes in RNA transcripts that increase genomic diversity. These highly conserved RNA editing events are catalyzed by a group of enzymes known as adenosine deaminases acting on double-stranded RNA (ADARs). ADARs are necessary for normal development, they bind to over thousands of genes, impact millions of editing sites, and target critical components of the central nervous system (CNS) such as glutamate receptors, serotonin receptors, and potassium channels. Dysfunctional ADARs are known to cause alterations in CNS protein products and therefore play a role in chronic or acute neurodegenerative and psychiatric diseases as well as CNS cancer. Here, we review how RNA editing deficiency impacts CNS function and summarize its role during disease pathogenesis.


RNA editing MARCH AMPA GluA2 5HT receptors K channels Excitotoxicity Neurodegeneration Psychiatric diseases Cancer 


  1. 1.
    Rueter SM, Dawson TR, Emeson RB. Regulation of alternative splicing by RNA editing. Nature. 1999;399(6731):75–80.PubMedCrossRefGoogle Scholar
  2. 2.
    Gerber AP, Keller W. RNA editing by base deamination: more enzymes, more targets, new mysteries. Trends Biochem Sci. 2001;26(6):376–84.PubMedCrossRefGoogle Scholar
  3. 3.
    Paul MS, Bass BL. Inosine exists in mRNA at tissue-specific levels and is most abundant in brain mRNA. EMBO J. 1998;17(4):1120–7.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Gal-Mark N, et al. Abnormalities in A-to-I RNA editing patterns in CNS injuries correlate with dynamic changes in cell type composition. Sci Rep. 2017;7:43421.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Lee SY, et al. RCARE: RNA sequence comparison and annotation for RNA editing. BMC Med Genomics. 2015;8(Suppl 2):S8.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Gu T, et al. Canonical A-to-I and C-to-U RNA editing is enriched at 3′UTRs and microRNA target sites in multiple mouse tissues. PLoS One. 2012;7(3):e33720.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Kim DD, et al. Widespread RNA editing of embedded alu elements in the human transcriptome. Genome Res. 2004;14(9):1719–25.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Yang JH, et al. Intracellular localization of differentially regulated RNA-specific adenosine deaminase isoforms in inflammation. J Biol Chem. 2003;278(46):45833–42.PubMedCrossRefGoogle Scholar
  9. 9.
    Patterson JB, Samuel CE. Expression and regulation by interferon of a double-stranded-RNA-specific adenosine deaminase from human cells: evidence for two forms of the deaminase. Mol Cell Biol. 1995;15(10):5376–88.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Wang Q, et al. Stress-induced apoptosis associated with null mutation of ADAR1 RNA editing deaminase gene. J Biol Chem. 2004;279(6):4952–61.PubMedCrossRefGoogle Scholar
  11. 11.
    Hartner JC, et al. Liver disintegration in the mouse embryo caused by deficiency in the RNA-editing enzyme ADAR1. J Biol Chem. 2004;279(6):4894–902.PubMedCrossRefGoogle Scholar
  12. 12.
    Yao L, et al. Large-scale prediction of ADAR-mediated effective human A-to-I RNA editing. Brief Bioinform. 2017;PMID:28968662.Google Scholar
  13. 13.
    Higuchi M, et al. Point mutation in an AMPA receptor gene rescues lethality in mice deficient in the RNA-editing enzyme ADAR2. Nature. 2000;406(6791):78–81.PubMedCrossRefGoogle Scholar
  14. 14.
    Chen CX, Cho DS, Wang Q, Lai F, Carter KC, Nishikura K. A third member of the RNA-specific adenosine deaminase gene family, ADAR3, contains both single- and double-stranded RNA binding domains. RNA. 2000;6:755–67.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Galipon J, et al. Differential binding of three major human ADAR isoforms to coding and long non-coding transcripts. Genes (Basel). 2017;8(2):pii:E68.CrossRefGoogle Scholar
  16. 16.
    Oakes E, et al. Adenosine deaminase that acts on RNA 3 (ADAR3) binding to glutamate receptor subunit B pre-mRNA inhibits RNA editing in glioblastoma. J Biol Chem. 2017;292(10):4326–35.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Fitzgerald LW, Iyer G, Conklin DS, Krause CM, Marshall A, Patterson JP, Tran DP, Jonak GJ, Hartig PR. Messenger RNA editing of the human serotonin 5-HT 2C receptor. Europsychopharmacology. 1999;21(2S):82S–90S.CrossRefGoogle Scholar
  18. 18.
    Bazak L, et al. A-to-I RNA editing occurs at over a hundred million genomic sites, located in a majority of human genes. Genome Res. 2014;24(3):365–76.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Ramaswami G, et al. Identifying RNA editing sites using RNA sequencing data alone. Nat Methods. 2013;10(2):128–32.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Ramaswami G, et al. Accurate identification of human Alu and non-Alu RNA editing sites. Nat Methods. 2012;9(6):579–81.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Neeman Y, et al. RNA editing level in the mouse is determined by the genomic repeat repertoire. RNA. 2006;12(10):1802–9.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Rodriguez J, Menet JS, Rosbash M. Nascent-seq indicates widespread cotranscriptional RNA editing in drosophila. Mol Cell. 2012;47(1):27–37.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Levanon EY, et al. Systematic identification of abundant A-to-I editing sites in the human transcriptome. Nat Biotechnol. 2004;22(8):1001–5.PubMedCrossRefGoogle Scholar
  24. 24.
    Blow M, et al. A survey of RNA editing in human brain. Genome Res. 2004;14(12):2379–87.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Athanasiadis A, Rich A, Maas S. Widespread A-to-I RNA editing of Alu-containing mRNAs in the human transcriptome. PLoS Biol. 2004;2(12):e391.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Tan MH, et al. Dynamic landscape and regulation of RNA editing in mammals. Nature. 2017;550(7675):249–54.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Bahn JH, et al. Genomic analysis of ADAR1 binding and its involvement in multiple RNA processing pathways. Nat Commun. 2015;6:6355.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Korenberg JR, Rykowski MC. Human genome Orginazation: alu, lines, and the molecular structure of metaphase chromosome bands. Cell. 1988;53:391–400.PubMedCrossRefGoogle Scholar
  29. 29.
    Yablonovitch AL, et al. The evolution and adaptation of A-to-I RNA editing. PLoS Genet. 2017;13(11):e1007064.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Hwang T, et al. Dynamic regulation of RNA editing in human brain development and disease. Nat Neurosci. 2016;19(8):1093–9.PubMedCrossRefGoogle Scholar
  31. 31.
    Higuchi M, et al. RNA editing of AMPA receptor subunit GluR-B: a base-paired intron-exon structure determines position and efficiency. Cell. 1993;75(7):1361–70.PubMedCrossRefGoogle Scholar
  32. 32.
    Burns CM, et al. Regulation of serotonin-2C receptor G-protein coupling by RNA editing. Nature. 1997;387(6630):303–8.PubMedCrossRefGoogle Scholar
  33. 33.
    Henley JM, Wilkinson KA. Synaptic AMPA receptor composition in development, plasticity and disease. Nat Rev Neurosci. 2016;17(6):337–50.PubMedCrossRefGoogle Scholar
  34. 34.
    Huganir RL, Nicoll RA. AMPARs and synaptic plasticity: the last 25 years. Neuron. 2013;80(3):704–17.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Hollmann M, Hartley M, Heinemann SF. Calcium permeability of KA-AMPA-gated glutamate receptor channels depnds on subunit composition. Science. 1991;252:851–3.PubMedCrossRefGoogle Scholar
  36. 36.
    Bennett MV, et al. The GluR2 hypothesis: ca(++)-permeable AMPA receptors in delayed neurodegeneration. Cold Spring Harb Symp Quant Biol. 1996;61:373–84.PubMedCrossRefGoogle Scholar
  37. 37.
    Wright A, Vissel B. The essential role of AMPA receptor GluR2 subunit RNA editing in the normal and diseased brain. Front Mol Neurosci. 2012;5:34.PubMedPubMedCentralGoogle Scholar
  38. 38.
    Wenthold RJ, et al. Evidence for multiple AMPA receptor complexes in hippocampal CA1/CA2 neurons. J Neurosci. 1996;16(6):1982–9.PubMedCrossRefGoogle Scholar
  39. 39.
    Isaac JT, Ashby MC, McBain CJ. The role of the GluR2 subunit in AMPA receptor function and synaptic plasticity. Neuron. 2007;54(6):859–71.PubMedCrossRefGoogle Scholar
  40. 40.
    Cull-Candy S, Kelly L, Farrant M. Regulation of Ca2+-permeable AMPA receptors: synaptic plasticity and beyond. Curr Opin Neurobiol. 2006;16(3):288–97.PubMedCrossRefGoogle Scholar
  41. 41.
    Sanderson JL, Gorski JA, Dell'Acqua ML. NMDA receptor-dependent LTD requires transient synaptic incorporation of ca(2+)-permeable AMPARs mediated by AKAP150-anchored PKA and calcineurin. Neuron. 2016;89(5):1000–15.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Nishikura K. Functions and regulation of RNA editing by ADAR deaminases. Annu Rev Biochem. 2010;79:321–49.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Washburn MC, et al. The dsRBP and inactive editor ADR-1 utilizes dsRNA binding to regulate A-to-I RNA editing across the C. elegans transcriptome. Cell Rep. 2014;6(4):599–607.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Melcher T, et al. RED2, a brain-specific member of the RNA-specific adenosine deaminase family. J Biol Chem. 1996;271(50):31795–8.PubMedCrossRefGoogle Scholar
  45. 45.
    Melcher T, et al. Editing of alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptor GluR-B pre-mRNA in vitro reveals site-selective adenosine to inosine conversion. J Biol Chem. 1995;270(15):8566–70.PubMedCrossRefGoogle Scholar
  46. 46.
    Sommer B, et al. RNA editing in brain controls a determinant of ion flow in glutamate-gated channels. Cell. 1991;67(1):11–9.PubMedCrossRefGoogle Scholar
  47. 47.
    Ray RS, et al. Impaired respiratory and body temperature control upon acute serotonergic neuron inhibition. Science. 2011;333(6042):637–42.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Gershon MD, et al. 5-HT receptor subtypes outside the central nervous system. Roles in the physiology of the gut. Neuropsychopharmacology. 1990;3(5–6):385–95.PubMedGoogle Scholar
  49. 49.
    Spencer NJ, Keating DJ. Is there a role for endogenous 5-HT in gastrointestinal motility? How recent studies have changed our understanding. Adv Exp Med Biol. 2016;891:113–22.PubMedCrossRefGoogle Scholar
  50. 50.
    Hood JL, Emeson RB. Editing of neurotransmitter receptor and ion channel RNAs in the nervous system. Curr Top Microbiol Immunol. 2012;353:61–90.PubMedPubMedCentralGoogle Scholar
  51. 51.
    Bockaert J, et al. Neuronal 5-HT metabotropic receptors: fine-tuning of their structure, signaling, and roles in synaptic modulation. Cell Tissue Res. 2006;326(2):553–72.PubMedCrossRefGoogle Scholar
  52. 52.
    Hoyer D, Clarke DE, Fozard JR, Hartig PR, Martin GR, Mylecharane EJ, Saxena PR, Humphrey PP. International Union of Pharmacology classification of receptors for 5-hydroxytryptamine (serotonin). Pharmacol Rev. 1994;46(2):157–203.PubMedGoogle Scholar
  53. 53.
    McCorvy JD, Roth BL. Structure and function of serotonin G protein-coupled receptors. Pharmacol Ther. 2015;150:129–42.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Helton L, Thor KB, Baez M. 5-Hydroxytryptamine2A, 5-hydroxytryptamine2B, and 5-hydroxytryptamine2C receptor mRNA expression in the spinal cord of rat, cat, monkey and human. Mol Neurosci. 1994;5:2617–20.Google Scholar
  55. 55.
    Iwamoto K, et al. Measuring RNA editing of serotonin 2C receptor. Biochemistry (Mosc). 2011;76(8):912–4.CrossRefGoogle Scholar
  56. 56.
    Price RD, et al. RNA editing of the human serotonin 5-HT2C receptor alters receptor-mediated activation of G13 protein. J Biol Chem. 2001;276(48):44663–8.PubMedCrossRefGoogle Scholar
  57. 57.
    Niswender CM, Copeland SC, Herrick-Davis K, Emeson RB, Sanders-Bush E. RNA editing of the human serotonin 5-hydroxytryptamine 2C receptor silences constitutive activity. J Biol Chem. 1999;274(14):9472–8.PubMedCrossRefGoogle Scholar
  58. 58.
    Sanders-Bush E, Price RD. RNA editing of the human serotonin 5-HT2C receptor delays agonist-stimulated calcium release. Mol Pharmacol. 2000;58(4):859–62.PubMedCrossRefGoogle Scholar
  59. 59.
    Coetzee WA, Amarillo Y, Chiu J, Chow A, Lau D, McCormack T, Moreno H, Nadal MS, Ozaita A, Pountney D, Saganich M, Vega-Saenz de Miera E, Rudy B. Molecular diversity of K+ channels. Ann N Y Acad Sci. 1999;868:233–85.PubMedCrossRefGoogle Scholar
  60. 60.
    Tian C, et al. Potassium channels: structures, diseases, and modulators. Chem Biol Drug Des. 2014;83(1):1–26.PubMedCrossRefGoogle Scholar
  61. 61.
    Wang H, Kunkel DD, Schwartzkroin PA, Tempel BL. Localization of Kv1.1 and Kv1.2, two K channel proteins, to synaptic terminals, somata, and dendrites in the mouse brain. J Neurosci. 1994;14(8):4588–99.PubMedCrossRefGoogle Scholar
  62. 62.
    Robbins CA, Tempel BL. Kv1.1 and Kv1.2: similar channels, different seizure models. Epilepsia. 2012;53(Suppl 1):134–41.PubMedCrossRefGoogle Scholar
  63. 63.
    Bhalla T, et al. Control of human potassium channel inactivation by editing of a small mRNA hairpin. Nat Struct Mol Biol. 2004;11(10):950–6.PubMedCrossRefGoogle Scholar
  64. 64.
    Rettig J, Heinemann SH, Wunder F, Lorra C, Parcej DN, Dolly JO, Pongs O. Inactivation properties of voltage-gated K+ channels altered by presence of beta-subunit. Nature. 1994;369(6478):289–94.PubMedCrossRefGoogle Scholar
  65. 65.
    Kumar A, Singh A, Ekavali. A review on Alzheimer’s disease pathophysiology and its management: an update. Pharmacol Rep. 2015;67(2):195–203.PubMedCrossRefGoogle Scholar
  66. 66.
    Area-Gomez E, Schon EA. Alzheimer disease. Adv Exp Med Biol. 2017;997:149–56.PubMedCrossRefGoogle Scholar
  67. 67.
    Calderon-Garciduenas AL, Duyckaerts C. Alzheimer disease. Handb Clin Neurol. 2017;145:325–37.PubMedCrossRefGoogle Scholar
  68. 68.
    Akbarian S, Smith MA, Jones EG. Editing for an AMPA receptor subunit RNA in prefrontal cortex and striatum in Alzheimer’s disease, Huntington’s disease and schizophrenia. Brain Res. 1995;699(2):297–304.PubMedCrossRefGoogle Scholar
  69. 69.
    Gaisler-Salomon I, et al. Hippocampus-specific deficiency in RNA editing of GluA2 in Alzheimer’s disease. Neurobiol Aging. 2014;35(8):1785–91.PubMedCrossRefGoogle Scholar
  70. 70.
    Payami H, et al. Apolipoprotein E genotype and Alzheimer’s disease. Lancet. 1993;342(8873):738.PubMedCrossRefGoogle Scholar
  71. 71.
    Saunders AM, et al. Association of apolipoprotein E allele epsilon 4 with late-onset familial and sporadic Alzheimer’s disease. Neurology. 1993;43(8):1467–72.PubMedCrossRefGoogle Scholar
  72. 72.
    Valastro B, et al. AMPA receptor regulation and LTP in the hippocampus of young and aged apolipoprotein E-deficient mice. Neurobiol Aging. 2001;22(1):9–15.PubMedCrossRefGoogle Scholar
  73. 73.
    Cantanelli P, et al. Age-dependent modifications of AMPA receptor subunit expression levels and related cognitive effects in 3xTg-AD mice. Front Aging Neurosci. 2014;6:200.PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Stilling RM, et al. De-regulation of gene expression and alternative splicing affects distinct cellular pathways in the aging hippocampus. Front Cell Neurosci. 2014;8:373.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Stilling RM, et al. K-lysine acetyltransferase 2a regulates a hippocampal gene expression network linked to memory formation. EMBO J. 2014;33(17):1912–27.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Khermesh K, et al. Reduced levels of protein recoding by A-to-I RNA editing in Alzheimer’s disease. RNA. 2016;22(2):290–302.PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Vucic S, Rothstein JD, Kiernan MC. Advances in treating amyotrophic lateral sclerosis: insights from pathophysiological studies. Trends Neurosci. 2014;37(8):433–42.PubMedCrossRefGoogle Scholar
  78. 78.
    Taylor JP, Brown RH Jr, Cleveland DW. Decoding ALS: from genes to mechanism. Nature. 2016;539(7628):197–206.PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Bettencourt C, Houlden H. Exome sequencing uncovers hidden pathways in familial and sporadic ALS. Nat Neurosci. 2015;18(5):611–3.PubMedCrossRefGoogle Scholar
  80. 80.
    Chien-Liang Glenn Lin LAB, Lin J, Margaret Dykes-Hoberg TC, Lora-Clawson JDR. 1-s2.0-S0896627300809976-main.Pdf. Neuron. 1998;20:589–602.CrossRefGoogle Scholar
  81. 81.
    Rothstein JD, et al. Abnormal excitatory amino acid metabolism in amyotrophic lateral sclerosis. Ann Neurol. 1990;28(1):18–25.PubMedCrossRefGoogle Scholar
  82. 82.
    Lu YM, Yin HZ, Chiang J, Weiss JH. Ca2+-permeable AMPA/Kainate and NMDA channels: high rate of Ca2+ influx underlies potent induction of injury. J Neurosci. 1996;16(17):5457–65.PubMedCrossRefGoogle Scholar
  83. 83.
    Carriedo SG, Yin HZ, Weiss JH. Motor neurons are selectively vulnerable to AMPA/kainate receptor-mediated injury in vitro. J Neurosci. 1996;16(13):4069–79.PubMedCrossRefGoogle Scholar
  84. 84.
    Takuma H, et al. Reduction of GluR2 RNA editing, a molecular change that increases calcium influx through AMPA receptors, selective in the spinal ventral gray of patients with amyotrophic lateral sclerosis. Ann Neurol. 1999;46(6):806–15.PubMedCrossRefGoogle Scholar
  85. 85.
    Kawahara Y, et al. Human spinal motoneurons express low relative abundance of GluR2 mRNA: an implication for excitotoxicity in ALS. J Neurochem. 2003;85(3):680–9.PubMedCrossRefGoogle Scholar
  86. 86.
    Williams TL, et al. Calcium-permeable alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors: a molecular determinant of selective vulnerability in amyotrophic lateral sclerosis. Ann Neurol. 1997;42(2):200–7.PubMedCrossRefGoogle Scholar
  87. 87.
    Van Den Bosch L, et al. Ca(2+)-permeable AMPA receptors and selective vulnerability of motor neurons. J Neurol Sci. 2000;180(1–2):29–34.CrossRefGoogle Scholar
  88. 88.
    Morrison BM, et al. Light and electron microscopic distribution of the AMPA receptor subunit, GluR2, in the spinal cord of control and G86R mutant superoxide dismutase transgenic mice. J Comp Neurol. 1998;395(4):523–34.PubMedCrossRefGoogle Scholar
  89. 89.
    Kawahara Y, et al. Glutamate receptors: RNA editing and death of motor neurons. Nature. 2004;427(6977):801.PubMedCrossRefGoogle Scholar
  90. 90.
    Kwak S, Kawahara Y. Deficient RNA editing of GluR2 and neuronal death in amyotropic lateral sclerosis. J Mol Med (Berl). 2005;83(2):110–20.CrossRefGoogle Scholar
  91. 91.
    Hideyama T, et al. Profound downregulation of the RNA editing enzyme ADAR2 in ALS spinal motor neurons. Neurobiol Dis. 2012;45(3):1121–8.PubMedCrossRefGoogle Scholar
  92. 92.
    Hideyama T, et al. Induced loss of ADAR2 engenders slow death of motor neurons from Q/R site-unedited GluR2. J Neurosci. 2010;30(36):11917–25.PubMedCrossRefGoogle Scholar
  93. 93.
    Aizawa H, et al. TDP-43 pathology in sporadic ALS occurs in motor neurons lacking the RNA editing enzyme ADAR2. Acta Neuropathol. 2010;120(1):75–84.PubMedCrossRefGoogle Scholar
  94. 94.
    Yamashita T, et al. Calpain-dependent disruption of nucleo-cytoplasmic transport in ALS motor neurons. Sci Rep. 2017;7:39994.PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Yamashita T, Akamatsu M, Kwak S. Altered intracellular milieu of ADAR2-deficient motor neurons in amyotrophic lateral sclerosis. Genes (Basel). 2017;8(2):pii: E60.CrossRefGoogle Scholar
  96. 96.
    Aizawa H, et al. Deficient RNA-editing enzyme ADAR2 in an amyotrophic lateral sclerosis patient with a FUSP525L mutation. J Clin Neurosci. 2016;32:128–9.PubMedCrossRefGoogle Scholar
  97. 97.
    D’Erchia AM, et al. Massive transcriptome sequencing of human spinal cord tissues provides new insights into motor neuron degeneration in ALS. Sci Rep. 2017;7(1):10046.PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Donnelly CJ, et al. RNA toxicity from the ALS/FTD C9ORF72 expansion is mitigated by antisense intervention. Neuron. 2013;80(2):415–28.PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Bates GP, et al. Huntington disease. Nat Rev Dis Primers. 2015;1:15005.PubMedCrossRefGoogle Scholar
  100. 100.
    Olney JW, de Gubareff T. Glutamate neurotoxicity and Huntington’s chorea. Nature. 1978;271(5645):557–9.PubMedCrossRefGoogle Scholar
  101. 101.
    McGeer EG, McGeer PL. Duplication of biochemical changes of Huntington’s chorea by intrastriatal injections of glutamic and kainic acids. Nature. 1976;263(5577):517–9.PubMedCrossRefGoogle Scholar
  102. 102.
    Coyle JT, Schwarcz R. Lesion of striatal neurones with kainic acid provides a model for Huntington’s chorea. Nature. 1976;263(5574):244–6.PubMedCrossRefGoogle Scholar
  103. 103.
    Beal MF. Huntington’s disease, energy, and excitotoxicity. Neurobiol Aging. 1994;15(2):275–6.PubMedCrossRefGoogle Scholar
  104. 104.
    Paschen W, Hedreen JC, Ross CA. RNA editing of the glutamate receptor subunits GluR2 and GluR6 in human brain tissue. J Neurochem. 1994;63(5):1596–602.PubMedCrossRefGoogle Scholar
  105. 105.
    Fourie C, et al. Differential changes in postsynaptic density proteins in postmortem Huntington’s disease and Parkinson’s disease human brains. J Neurodegener Dis. 2014;2014:938530.PubMedPubMedCentralGoogle Scholar
  106. 106.
    Garrett E, Alexander M. Biology of Parkinson’s disease: pathogenesis and pathophysiology of a multisystem neurodegenerative disorder. Dialogues Clin Neurosci. 2004;6(3):259–80.Google Scholar
  107. 107.
    Jankovic J. Parkinson's disease: clinical features and diagnosis. J Neurol Neurosurg Psychiatry. 2008;79(4):368–76.PubMedCrossRefGoogle Scholar
  108. 108.
    Maiti P, Manna J, Dunbar GL. Current understanding of the molecular mechanisms in Parkinson’s disease: targets for potential treatments. Transl Neurodegener. 2017;6:28.PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Dong XX, Wang Y, Qin ZH. Molecular mechanisms of excitotoxicity and their relevance to pathogenesis of neurodegenerative diseases. Acta Pharmacol Sin. 2009;30(4):379–87.PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Labbe C, Lorenzo-Betancor O, Ross OA. Epigenetic regulation in Parkinson’s disease. Acta Neuropathol. 2016;132(4):515–30.PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Paz-Yaacov N, et al. Adenosine-to-inosine RNA editing shapes transcriptome diversity in primates. Proc Natl Acad Sci U S A. 2010;107(27):12174–9.PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Wettengel J, et al. Harnessing human ADAR2 for RNA repair – recoding a PINK1 mutation rescues mitophagy. Nucleic Acids Res. 2017;45(5):2797–808.PubMedGoogle Scholar
  113. 113.
    Chen T, et al. Genetic and epigenetic mechanisms of epilepsy: a review. Neuropsychiatr Dis Treat. 2017;13:1841–59.PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Wang J, et al. Epilepsy-associated genes. Seizure. 2017;44:11–20.PubMedCrossRefGoogle Scholar
  115. 115.
    Brusa R, et al. Early-onset epilepsy and postnatal lethality associated with an editing-deficient GluR-B allele in mice. Science. 1995;270(5242):1677–80.PubMedCrossRefGoogle Scholar
  116. 116.
    Hu RQ, et al. Gamma-hydroxybutyric acid-induced absence seizures in GluR2 null mutant mice. Brain Res. 2001;897(1–2):27–35.PubMedCrossRefGoogle Scholar
  117. 117.
    Kortenbruck G, et al. RNA editing at the Q/R site for the glutamate receptor subunits GLUR2, GLUR5, and GLUR6 in hippocampus and temporal cortex from epileptic patients. Neurobiol Dis. 2001;8(3):459–68.PubMedCrossRefGoogle Scholar
  118. 118.
    Kitaura H, et al. Ca(2+)-permeable AMPA receptors associated with epileptogenesis of hypothalamic hamartoma. Epilepsia. 2017;58(4):e59–63.PubMedCrossRefGoogle Scholar
  119. 119.
    Srivastava PK, et al. Genome-wide analysis of differential RNA editing in epilepsy. Genome Res. 2017;27(3):440–50.PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    RAB JN, Allen SG, Fujikawa DG, Wasterlain CG. Hypoxic neuronal necrosis: protein synthesisindependent activation of a cell death program. PNAS. 2003;100(5):2825–30.CrossRefGoogle Scholar
  121. 121.
    Saver JL. Time is brain—quantified. Stroke. 2006;37(1):263–6.PubMedCrossRefGoogle Scholar
  122. 122.
    Vilela P, Rowley HA. Brain ischemia: CT and MRI techniques in acute ischemic stroke. Eur J Radiol. 2017;96:162–72.PubMedCrossRefGoogle Scholar
  123. 123.
    Khoshnam SE, et al. Pathogenic mechanisms following ischemic stroke. Neurol Sci. 2017;38(7):1167–86.PubMedCrossRefGoogle Scholar
  124. 124.
    Peng PL, et al. ADAR2-dependent RNA editing of AMPA receptor subunit GluR2 determines vulnerability of neurons in forebrain ischemia. Neuron. 2006;49(5):719–33.PubMedCrossRefGoogle Scholar
  125. 125.
    Liu S, et al. Expression of ca(2+)-permeable AMPA receptor channels primes cell death in transient forebrain ischemia. Neuron. 2004;43(1):43–55.PubMedCrossRefGoogle Scholar
  126. 126.
    Ahuja CS, et al. Traumatic spinal cord injury. Nat Rev Dis Primers. 2017;3:17018.PubMedCrossRefGoogle Scholar
  127. 127.
    Ahuja CS, et al. Traumatic spinal cord injury-repair and regeneration. Neurosurgery. 2017;80(3S):S9–S22.PubMedCrossRefGoogle Scholar
  128. 128.
    Di Narzo AF, et al. Decrease of mRNA editing after spinal cord injury is caused by down-regulation of ADAR2 that is triggered by inflammatory response. Sci Rep. 2015;5:12615.PubMedPubMedCentralCrossRefGoogle Scholar
  129. 129.
    Murray KC, et al. Recovery of motoneuron and locomotor function after spinal cord injury depends on constitutive activity in 5-HT2C receptors. Nat Med. 2010;16(6):694–700.PubMedPubMedCentralCrossRefGoogle Scholar
  130. 130.
    Huang YJ, Lane HY, Lin CH. New treatment strategies of depression: based on mechanisms related to neuroplasticity. Neural Plast. 2017;2017:4605971.PubMedPubMedCentralGoogle Scholar
  131. 131.
    Palacios JM, Pazos A, Hoyer D. A short history of the 5-HT2C receptor: from the choroid plexus to depression, obesity and addiction treatment. Psychopharmacology. 2017;234(9–10):1395–418.PubMedCrossRefGoogle Scholar
  132. 132.
    Lin SH, Lee LT, Yang YK. Serotonin and mental disorders: a concise review on molecular neuroimaging evidence. Clin Psychopharmacol Neurosci. 2014;12(3):196–202.PubMedPubMedCentralCrossRefGoogle Scholar
  133. 133.
    Owen MJ, Sawa A, Mortensen PB. Schizophrenia. Lancet. 2016;388(10039):86–97.PubMedPubMedCentralCrossRefGoogle Scholar
  134. 134.
    Baxter G, et al. 5-HT2 receptor subtypes: a family re-united? Trends Pharmacol Sci. 1995;16(3):105–10.PubMedCrossRefGoogle Scholar
  135. 135.
    Sergeeva OA, Amberger BT, Haas HL. Editing of AMPA and serotonin 2C receptors in individual central neurons, controlling wakefulness. Cell Mol Neurobiol. 2007;27(5):669–80.PubMedCrossRefGoogle Scholar
  136. 136.
    Barnes NM, Sharp T. A review of central 5-HT receptors and their function. Neuropharmacology. 1999;38(8):1083–152.PubMedCrossRefGoogle Scholar
  137. 137.
    Lyddon R, et al. Serotonin 2c receptor RNA editing in major depression and suicide. World J Biol Psychiatry. 2013;14(8):590–601.PubMedCrossRefGoogle Scholar
  138. 138.
    Kubota-Sakashita M, et al. A role of ADAR2 and RNA editing of glutamate receptors in mood disorders and schizophrenia. Mol Brain. 2014;7:5.PubMedPubMedCentralCrossRefGoogle Scholar
  139. 139.
    Park TM, Haning WF III. Stimulant use disorders. Child Adolesc Psychiatr Clin N Am. 2016;25(3):461–71.PubMedCrossRefGoogle Scholar
  140. 140.
    Mathuru AS. A little rein on addiction. Semin Cell Dev Biol. 2017.
  141. 141.
    Lopez-Quintero C, et al. Probability and predictors of transition from first use to dependence on nicotine, alcohol, cannabis, and cocaine: results of the National Epidemiologic Survey on alcohol and related conditions (NESARC). Drug Alcohol Depend. 2011;115(1–2):120–30.PubMedCrossRefGoogle Scholar
  142. 142.
    Everitt BJ. Neural and psychological mechanisms underlying compulsive drug seeking habits and drug memories—indications for novel treatments of addiction. Eur J Neurosci. 2014;40(1):2163–82.PubMedPubMedCentralCrossRefGoogle Scholar
  143. 143.
    Carr KD, et al. AMPA receptor subunit GluR1 downstream of D-1 dopamine receptor stimulation in nucleus accumbens shell mediates increased drug reward magnitude in food-restricted rats. Neuroscience. 2010;165(4):1074–86.PubMedCrossRefGoogle Scholar
  144. 144.
    Zheng D, et al. Nucleus accumbens AMPA receptor involvement in cocaine-conditioned place preference under different dietary conditions in rats. Psychopharmacology. 2015;232(13):2313–22.PubMedPubMedCentralCrossRefGoogle Scholar
  145. 145.
    Schmidt HD, et al. ADAR2-dependent GluA2 editing regulates cocaine seeking. Mol Psychiatry. 2015;20(11):1460–6.PubMedCrossRefGoogle Scholar
  146. 146.
    Deborah L, Christensen P, et al. Prevalence and characteristics of autism spectrum disorder among children aged 8 years – autism and developmental disabilities monitoring network, 11 sites, United States, 2012. MMWR. 2016;65(3):1–23.CrossRefGoogle Scholar
  147. 147.
    Park HR, et al. A short review on the current understanding of autism spectrum disorders. Exp Neurobiol. 2016;25(1):1–13.PubMedPubMedCentralCrossRefGoogle Scholar
  148. 148.
    Eran A, et al. Comparative RNA editing in autistic and neurotypical cerebella. Mol Psychiatry. 2013;18(9):1041–8.PubMedCrossRefGoogle Scholar
  149. 149.
    Shamay-Ramot A, et al. Fmrp interacts with adar and regulates RNA editing, synaptic density and locomotor activity in zebrafish. PLoS Genet. 2015;11(12):e1005702.PubMedPubMedCentralCrossRefGoogle Scholar
  150. 150.
    Feng Y, et al. Altered RNA editing in mice lacking ADAR2 autoregulation. Mol Cell Biol. 2006;26(2):480–8.PubMedPubMedCentralCrossRefGoogle Scholar
  151. 151.
    Bahn JH, et al. Accurate identification of A-to-I RNA editing in human by transcriptome sequencing. Genome Res. 2012;22(1):142–50.PubMedPubMedCentralCrossRefGoogle Scholar
  152. 152.
    Wang C, et al. Mechanisms and implications of ADAR-mediated RNA editing in cancer. Cancer Lett. 2017;411:27–34.PubMedCrossRefGoogle Scholar
  153. 153.
    Maas S, et al. Underediting of glutamate receptor GluR-B mRNA in malignant gliomas. Proc Natl Acad Sci U S A. 2001;98(25):14687–92.PubMedPubMedCentralCrossRefGoogle Scholar
  154. 154.
    Paz N, et al. Altered adenosine-to-inosine RNA editing in human cancer. Genome Res. 2007;17(11):1586–95.PubMedPubMedCentralCrossRefGoogle Scholar
  155. 155.
    Galeano F, et al. ADAR2-editing activity inhibits glioblastoma growth through the modulation of the CDC14B/Skp2/p21/p27 axis. Oncogene. 2013;32(8):998–1009.PubMedCrossRefGoogle Scholar
  156. 156.
    Cenci C, et al. Down-regulation of RNA editing in pediatric astrocytomas: ADAR2 editing activity inhibits cell migration and proliferation. J Biol Chem. 2008;283(11):7251–60.PubMedCrossRefGoogle Scholar
  157. 157.
    Choudhury Y, et al. Attenuated adenosine-to-inosine editing of microRNA-376a* promotes invasiveness of glioblastoma cells. J Clin Invest. 2012;122(11):4059–76.PubMedPubMedCentralCrossRefGoogle Scholar
  158. 158.
    Cesarini V, et al. ADAR2/miR-589-3p axis controls glioblastoma cell migration/invasion. Nucleic Acids Res. 2017;46(4):2045–59.PubMedCentralCrossRefPubMedGoogle Scholar
  159. 159.
    Paul D, et al. A-to-I editing in human miRNAs is enriched in seed sequence, influenced by sequence contexts and significantly hypoedited in glioblastoma multiforme. Sci Rep. 2017;7(1):2466.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Ileana Lorenzini
    • 1
  • Stephen Moore
    • 1
    • 2
  • Rita Sattler
    • 3
    Email author
  1. 1.Barrow Neurological Institute, Department of Neurobiology, Dignity HealthSt. Joseph’s Hospital and Medical CenterPhoenixUSA
  2. 2.Interdisciplinary Graduate Program in NeuroscienceArizona State UniversityTempeUSA
  3. 3.Department of Neurobiology and NeurologyDignityhealth St. Joseph’s Hospital, Barrow Neurological InstitutePhoenixUSA

Personalised recommendations