Advertisement

An Epigenetic Spin to ALS and FTD

  • Mark T. W. Ebbert
  • Rebecca J. Lank
  • Veronique V. Belzil
Chapter
Part of the Advances in Neurobiology book series (NEUROBIOL, volume 20)

Abstract

Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are two devastating and lethal neurodegenerative diseases seen comorbidly in up to 15% of patients. Despite several decades of research, no effective treatment or disease-modifying strategies have been developed. We now understand more than before about the genetics and biology behind ALS and FTD, but the genetic etiology for the majority of patients is still unknown and the phenotypic variability observed across patients, even those carrying the same mutation, is enigmatic. Additionally, susceptibility factors leading to neuronal vulnerability in specific central nervous system regions involved in disease are yet to be identified. As the inherited but dynamic epigenome acts as a cell-specific interface between the inherited fixed genome and both cell-intrinsic mechanisms and environmental input, adaptive epigenetic changes might contribute to the ALS/FTD aspects we still struggle to comprehend. This chapter summarizes our current understanding of basic epigenetic mechanisms, how they relate to ALS and FTD, and their potential as therapeutic targets. A clear understanding of the biological mechanisms driving these two currently incurable diseases is urgent—well-needed therapeutic strategies need to be developed soon. Disease-specific epigenetic changes have already been observed in patients and these might be central to this endeavor.

Keywords

Amyotrophic lateral sclerosis Epigenetic modifications Frontotemporal dementia Methylation RNA-mediated regulation 

Notes

Acknowledgments

We would like to thank Dr. Tamas Ordog, Director of the Epigenomics Translational Program at Mayo Clinic Center for Individualized Medicine for reviewing and providing critical input for this manuscript.

References

  1. 1.
    Cronin S, Hardiman O, Traynor BJ. Ethnic variation in the incidence of ALS: a systematic review. Neurology. 2007;68:1002–7.  https://doi.org/10.1212/01.wnl.0000258551.96893.6f.CrossRefPubMedGoogle Scholar
  2. 2.
    Marin B, Boumediene F, Logroscino G, Couratier P, Babron MC, Leutenegger AL, et al. Variation in worldwide incidence of amyotrophic lateral sclerosis: a meta-analysis. Int J Epidemiol. 2017;46:57–74.  https://doi.org/10.1093/ije/dyw061.CrossRefPubMedGoogle Scholar
  3. 3.
    Bradley WG. Neurology in clinical practice. 3rd ed. Boston, MA: Butterworth-Heinemann; 2000.Google Scholar
  4. 4.
    Chio A, Logroscino G, Hardiman O, Swingler R, Mitchell D, Beghi E, et al. Prognostic factors in ALS: a critical review. Amyotroph Lateral Scler. 2009;10:310–23.  https://doi.org/10.3109/17482960802566824.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Burrell JR, Kiernan MC, Vucic S, Hodges JR. Motor neuron dysfunction in frontotemporal dementia. Brain. 2011;134:2582–94.  https://doi.org/10.1093/brain/awr195. awr195 [pii].CrossRefPubMedGoogle Scholar
  6. 6.
    Giordana MT, Ferrero P, Grifoni S, Pellerino A, Naldi A, Montuschi A. Dementia and cognitive impairment in amyotrophic lateral sclerosis: a review. Neurol Sci. 2011;32:9–16.  https://doi.org/10.1007/s10072-010-0439-6.CrossRefPubMedGoogle Scholar
  7. 7.
    Gordon PH, Delgadillo D, Piquard A, Bruneteau G, Pradat PF, Salachas F, et al. The range and clinical impact of cognitive impairment in French patients with ALS: a cross-sectional study of neuropsychological test performance. Amyotroph Lateral Scler. 2011;12:372–8.  https://doi.org/10.3109/17482968.2011.580847.CrossRefPubMedGoogle Scholar
  8. 8.
    Lomen-Hoerth C, Anderson T, Miller B. The overlap of amyotrophic lateral sclerosis and frontotemporal dementia. Neurology. 2002;59:1077–9.CrossRefPubMedGoogle Scholar
  9. 9.
    Ringholz GM, Appel SH, Bradshaw M, Cooke NA, Mosnik DM, Schulz PE. Prevalence and patterns of cognitive impairment in sporadic ALS. Neurology. 2005;65:586–90.CrossRefPubMedGoogle Scholar
  10. 10.
    Knopman DS, Roberts RO. Estimating the number of persons with frontotemporal lobar degeneration in the US population. J Mol Neurosci. 2011;45:330–5.  https://doi.org/10.1007/s12031-011-9538-y.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Hodges JR, Davies R, Xuereb J, Kril J, Halliday G. Survival in frontotemporal dementia. Neurology. 2003;61:349–54.CrossRefPubMedGoogle Scholar
  12. 12.
    Pal S, Tyler JK. Epigenetics and aging. Sci Adv. 2016;2:e1600584.  https://doi.org/10.1126/sciadv.1600584.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Luger K, Mader AW, Richmond RK, Sargent DF, Richmond TJ. Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature. 1997;389:251–60.  https://doi.org/10.1038/38444.CrossRefPubMedGoogle Scholar
  14. 14.
    Illingworth RS, Gruenewald-Schneider U, Webb S, Kerr AR, James KD, Turner DJ, et al. Orphan CpG islands identify numerous conserved promoters in the mammalian genome. PLoS Genet. 2010;6:e1001134.  https://doi.org/10.1371/journal.pgen.1001134.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Maunakea AK, Nagarajan RP, Bilenky M, Ballinger TJ, D’Souza C, Fouse SD, et al. Conserved role of intragenic DNA methylation in regulating alternative promoters. Nature. 2010;466:253–7.  https://doi.org/10.1038/nature09165.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Saxonov S, Berg P, Brutlag DL. A genome-wide analysis of CpG dinucleotides in the human genome distinguishes two distinct classes of promoters. Proc Natl Acad Sci U S A. 2006;103:1412–7.  https://doi.org/10.1073/pnas.0510310103.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    He Y, Ecker JR. Non-CG methylation in the human genome. Annu Rev Genomics Hum Genet. 2015;16:55–77.  https://doi.org/10.1146/annurev-genom-090413-025437.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Stroud H, Su SC, Hrvatin S, Greben AW, Renthal W, Boxer LD, et al. Early-life gene expression in neurons modulates lasting epigenetic states. Cell. 2017;171:1151–1164.e16.  https://doi.org/10.1016/j.cell.2017.09.047.CrossRefPubMedGoogle Scholar
  19. 19.
    Kinney SR, Pradhan S. Regulation of expression and activity of DNA (cytosine-5) methyltransferases in mammalian cells. Prog Mol Biol Transl Sci. 2011;101:311–33.  https://doi.org/10.1016/B978-0-12-387685-0.00009-3.CrossRefPubMedGoogle Scholar
  20. 20.
    Gabel HW, Kinde B, Stroud H, Gilbert CS, Harmin DA, Kastan NR, et al. Disruption of DNA-methylation-dependent long gene repression in Rett syndrome. Nature. 2015;522:89–93.  https://doi.org/10.1038/nature14319.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Guo JU, Su Y, Shin JH, Shin J, Li H, Xie B, et al. Distribution, recognition and regulation of non-CpG methylation in the adult mammalian brain. Nat Neurosci. 2014;17:215–22.  https://doi.org/10.1038/nn.3607.CrossRefPubMedGoogle Scholar
  22. 22.
    Lister R, Mukamel EA, Nery JR, Urich M, Puddifoot CA, Johnson ND, et al. Global epigenomic reconfiguration during mammalian brain development. Science. 2013;341:1237905.  https://doi.org/10.1126/science.1237905.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Darst RP, Pardo CE, Ai L, Brown KD, Kladde MP (2010) Bisulfite sequencing of DNA. Curr Protoc Mol Biol Chapter 7:Unit 7 9 1-17. doi: https://doi.org/10.1002/0471142727.mb0709s91CrossRefGoogle Scholar
  24. 24.
    Hahn MA, Szabo PE, Pfeifer GP. 5-Hydroxymethylcytosine: a stable or transient DNA modification? Genomics. 2014;104:314–23.  https://doi.org/10.1016/j.ygeno.2014.08.015.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Wu X, Zhang Y. TET-mediated active DNA demethylation: mechanism, function and beyond. Nat Rev Genet. 2017;18:517–34.  https://doi.org/10.1038/nrg.2017.33.CrossRefPubMedGoogle Scholar
  26. 26.
    Lu X, Han D, Zhao BS, Song CX, Zhang LS, Dore LC, et al. Base-resolution maps of 5-formylcytosine and 5-carboxylcytosine reveal genome-wide DNA demethylation dynamics. Cell Res. 2015;25:386–9.  https://doi.org/10.1038/cr.2015.5.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Shmookler Reis RJ, Goldstein S. Mitochondrial DNA in mortal and immortal human cells. Genome number, integrity, and methylation. J Biol Chem. 1983;258:9078–85.PubMedGoogle Scholar
  28. 28.
    Infantino V, Castegna A, Iacobazzi F, Spera I, Scala I, Andria G, et al. Impairment of methyl cycle affects mitochondrial methyl availability and glutathione level in Down’s syndrome. Mol Genet Metab. 2011;102:378–82.  https://doi.org/10.1016/j.ymgme.2010.11.166.CrossRefPubMedGoogle Scholar
  29. 29.
    Bellizzi D, D’Aquila P, Scafone T, Giordano M, Riso V, Riccio A, et al. The control region of mitochondrial DNA shows an unusual CpG and non-CpG methylation pattern. DNA Res. 2013;20:537–47.  https://doi.org/10.1093/dnares/dst029.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Shock LS, Thakkar PV, Peterson EJ, Moran RG, Taylor SM. DNA methyltransferase 1, cytosine methylation, and cytosine hydroxymethylation in mammalian mitochondria. Proc Natl Acad Sci U S A. 2011;108:3630–5.  https://doi.org/10.1073/pnas.1012311108.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Byun HM, Barrow TM. Analysis of pollutant-induced changes in mitochondrial DNA methylation. Methods Mol Biol. 2015;1265:271–83.  https://doi.org/10.1007/978-1-4939-2288-8_19.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Byun HM, Panni T, Motta V, Hou L, Nordio F, Apostoli P, et al. Effects of airborne pollutants on mitochondrial DNA methylation. Part Fibre Toxicol. 2013;10:18.  https://doi.org/10.1186/1743-8977-10-18.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Hong EE, Okitsu CY, Smith AD, Hsieh CL. Regionally specific and genome-wide analyses conclusively demonstrate the absence of CpG methylation in human mitochondrial DNA. Mol Cell Biol. 2013;33:2683–90.  https://doi.org/10.1128/MCB.00220-13.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Liu B, Du Q, Chen L, Fu G, Li S, Fu L, et al. CpG methylation patterns of human mitochondrial DNA. Sci Rep. 2016;6:23421.  https://doi.org/10.1038/srep23421.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Mechta M, Ingerslev LR, Fabre O, Picard M, Barres R. Evidence suggesting absence of mitochondrial DNA methylation. Front Genet. 2017;8:166.  https://doi.org/10.3389/fgene.2017.00166.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Chestnut BA, Chang Q, Price A, Lesuisse C, Wong M, Martin LJ. Epigenetic regulation of motor neuron cell death through DNA methylation. J Neurosci. 2011;31:16619–36.  https://doi.org/10.1523/JNEUROSCI.1639-11.2011.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Doynova MD, Berretta A, Jones MB, Jasoni CL, Vickers MH, O’Sullivan JM. Interactions between mitochondrial and nuclear DNA in mammalian cells are non-random. Mitochondrion. 2016;30:187–96.  https://doi.org/10.1016/j.mito.2016.08.003.CrossRefPubMedGoogle Scholar
  38. 38.
    Rodley CD, Grand RS, Gehlen LR, Greyling G, Jones MB, O’Sullivan JM. Mitochondrial-nuclear DNA interactions contribute to the regulation of nuclear transcript levels as part of the inter-organelle communication system. PLoS One. 2012;7:e30943.  https://doi.org/10.1371/journal.pone.0030943.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Glover-Cutter K, Kim S, Espinosa J, Bentley DL. RNA polymerase II pauses and associates with pre-mRNA processing factors at both ends of genes. Nat Struct Mol Biol. 2008;15:71–8.  https://doi.org/10.1038/nsmb1352.CrossRefPubMedGoogle Scholar
  40. 40.
    Liu J, Jia G. Methylation modifications in eukaryotic messenger RNA. J Genet Genomics. 2014;41:21–33.  https://doi.org/10.1016/j.jgg.2013.10.002.CrossRefPubMedGoogle Scholar
  41. 41.
    Liu H, Kiledjian M. Decapping the message: a beginning or an end. Biochem Soc Trans. 2006;34:35–8.  https://doi.org/10.1042/BST20060035.CrossRefPubMedGoogle Scholar
  42. 42.
    Kiani J, Grandjean V, Liebers R, Tuorto F, Ghanbarian H, Lyko F, et al. RNA-mediated epigenetic heredity requires the cytosine methyltransferase Dnmt2. PLoS Genet. 2013;9:e1003498.  https://doi.org/10.1371/journal.pgen.1003498.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Amort T, Souliere MF, Wille A, Jia XY, Fiegl H, Worle H, et al. Long noncoding RNAs as targets for cytosine methylation. RNA Biol. 2013;10:1003–8.  https://doi.org/10.4161/rna.24454.CrossRefPubMedGoogle Scholar
  44. 44.
    Dominissini D, Moshitch-Moshkovitz S, Schwartz S, Salmon-Divon M, Ungar L, Osenberg S, et al. Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq. Nature. 2012;485:201–6.  https://doi.org/10.1038/nature11112.CrossRefPubMedGoogle Scholar
  45. 45.
    Roundtree IA, Luo GZ, Zhang Z, Wang X, Zhou T, Cui Y, et al. YTHDC1 mediates nuclear export of N(6)-methyladenosine methylated mRNAs. Elife. 2017;6:pii: e31311.  https://doi.org/10.7554/eLife.31311.CrossRefGoogle Scholar
  46. 46.
    Jia G, Fu Y, He C. Reversible RNA adenosine methylation in biological regulation. Trends Genet. 2013;29:108–15.  https://doi.org/10.1016/j.tig.2012.11.003.CrossRefPubMedGoogle Scholar
  47. 47.
    Jia G, Fu Y, Zhao X, Dai Q, Zheng G, Yang Y, et al. N6-methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO. Nat Chem Biol. 2011;7:885–7.  https://doi.org/10.1038/nchembio.687.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Zheng G, Dahl JA, Niu Y, Fedorcsak P, Huang CM, Li CJ, et al. ALKBH5 is a mammalian RNA demethylase that impacts RNA metabolism and mouse fertility. Mol Cell. 2013;49:18–29.  https://doi.org/10.1016/j.molcel.2012.10.015.CrossRefPubMedGoogle Scholar
  49. 49.
    Consortium EP. An integrated encyclopedia of DNA elements in the human genome. Nature. 2012;489:57–74.  https://doi.org/10.1038/nature11247.CrossRefGoogle Scholar
  50. 50.
    Knowling S, Morris KV. Non-coding RNA and antisense RNA. Nature’s trash or treasure? Biochimie. 2011;93:1922–7.  https://doi.org/10.1016/j.biochi.2011.07.031.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Baek D, Villen J, Shin C, Camargo FD, Gygi SP, Bartel DP. The impact of microRNAs on protein output. Nature. 2008;455:64–71.  https://doi.org/10.1038/nature07242.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Guo H, Ingolia NT, Weissman JS, Bartel DP. Mammalian microRNAs predominantly act to decrease target mRNA levels. Nature. 2010;466:835–40.  https://doi.org/10.1038/nature09267.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Gosline SJ, Gurtan AM, JnBaptiste CK, Bosson A, Milani P, Dalin S, et al. Elucidating microRNA regulatory networks using transcriptional, post-transcriptional, and histone modification measurements. Cell Rep. 2016;14:310–9.  https://doi.org/10.1016/j.celrep.2015.12.031.CrossRefPubMedGoogle Scholar
  54. 54.
    Lewis BP, Shih IH, Jones-Rhoades MW, Bartel DP, Burge CB. Prediction of mammalian microRNA targets. Cell. 2003;115:787–98.CrossRefPubMedGoogle Scholar
  55. 55.
    Saito Y, Saito H, Liang G, Friedman JM. Epigenetic alterations and microRNA misexpression in cancer and autoimmune diseases: a critical review. Clin Rev Allergy Immunol. 2014;47:128–35.  https://doi.org/10.1007/s12016-013-8401-z.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Saito Y, Liang G, Egger G, Friedman JM, Chuang JC, Coetzee GA, et al. Specific activation of microRNA-127 with downregulation of the proto-oncogene BCL6 by chromatin-modifying drugs in human cancer cells. Cancer Cell. 2006;9:435–43.  https://doi.org/10.1016/j.ccr.2006.04.020.CrossRefPubMedGoogle Scholar
  57. 57.
    Carmell MA, Girard A, van de Kant HJ, Bourc’his D, Bestor TH, de Rooij DG, et al. MIWI2 is essential for spermatogenesis and repression of transposons in the mouse male germline. Dev Cell. 2007;12:503–14.  https://doi.org/10.1016/j.devcel.2007.03.001.CrossRefPubMedGoogle Scholar
  58. 58.
    Rouget C, Papin C, Boureux A, Meunier AC, Franco B, Robine N, et al. Maternal mRNA deadenylation and decay by the piRNA pathway in the early Drosophila embryo. Nature. 2010;467:1128–32.  https://doi.org/10.1038/nature09465.CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Watanabe T, Takeda A, Tsukiyama T, Mise K, Okuno T, Sasaki H, et al. Identification and characterization of two novel classes of small RNAs in the mouse germline: retrotransposon-derived siRNAs in oocytes and germline small RNAs in testes. Genes Dev. 2006;20:1732–43.  https://doi.org/10.1101/gad.1425706.CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Yang N, Kazazian HH Jr. L1 retrotransposition is suppressed by endogenously encoded small interfering RNAs in human cultured cells. Nat Struct Mol Biol. 2006;13:763–71.  https://doi.org/10.1038/nsmb1141.CrossRefPubMedGoogle Scholar
  61. 61.
    Guttman M, Amit I, Garber M, French C, Lin MF, Feldser D, et al. Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals. Nature. 2009;458:223–7.  https://doi.org/10.1038/nature07672.CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Khalil AM, Guttman M, Huarte M, Garber M, Raj A, Rivea Morales D, et al. Many human large intergenic noncoding RNAs associate with chromatin-modifying complexes and affect gene expression. Proc Natl Acad Sci U S A. 2009;106:11667–72.  https://doi.org/10.1073/pnas.0904715106.CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    De Santa F, Barozzi I, Mietton F, Ghisletti S, Polletti S, Tusi BK, et al. A large fraction of extragenic RNA pol II transcription sites overlap enhancers. PLoS Biol. 2010;8:e1000384.  https://doi.org/10.1371/journal.pbio.1000384.CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Kim TK, Hemberg M, Gray JM, Costa AM, Bear DM, Wu J, et al. Widespread transcription at neuronal activity-regulated enhancers. Nature. 2010;465:182–7.  https://doi.org/10.1038/nature09033.CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Preker P, Nielsen J, Kammler S, Lykke-Andersen S, Christensen MS, Mapendano CK, et al. RNA exosome depletion reveals transcription upstream of active human promoters. Science. 2008;322:1851–4.  https://doi.org/10.1126/science.1164096.CrossRefPubMedGoogle Scholar
  66. 66.
    Affymetrix ETP, Cold Spring Harbor Laboratory ETP. Post-transcriptional processing generates a diversity of 5′-modified long and short RNAs. Nature. 2009;457:1028–32.  https://doi.org/10.1038/nature07759.CrossRefGoogle Scholar
  67. 67.
    Han J, Kim D, Morris KV. Promoter-associated RNA is required for RNA-directed transcriptional gene silencing in human cells. Proc Natl Acad Sci U S A. 2007;104:12422–7.  https://doi.org/10.1073/pnas.0701635104.CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Morris KV, Santoso S, Turner AM, Pastori C, Hawkins PG. Bidirectional transcription directs both transcriptional gene activation and suppression in human cells. PLoS Genet. 2008;4:e1000258.  https://doi.org/10.1371/journal.pgen.1000258.CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Wang X, Arai S, Song X, Reichart D, Du K, Pascual G, et al. Induced ncRNAs allosterically modify RNA-binding proteins in cis to inhibit transcription. Nature. 2008;454:126–30.  https://doi.org/10.1038/nature06992.CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Jenuwein T, Allis CD. Translating the histone code. Science. 2001;293:1074–80.  https://doi.org/10.1126/science.1063127.CrossRefPubMedGoogle Scholar
  71. 71.
    Ernst J, Kellis M. Chromatin-state discovery and genome annotation with ChromHMM. Nat Protoc. 2017;12:2478–92.  https://doi.org/10.1038/nprot.2017.124.CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Hake SB, Allis CD. Histone H3 variants and their potential role in indexing mammalian genomes: the “H3 barcode hypothesis”. Proc Natl Acad Sci U S A. 2006;103:6428–35.  https://doi.org/10.1073/pnas.0600803103.CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    DeJesus-Hernandez M, Mackenzie IR, Boeve BF, Boxer AL, Baker M, Rutherford NJ, et al. Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS. Neuron. 2011;72:245–56.  https://doi.org/10.1016/j.neuron.2011.09.011. S0896-6273(11)00828-2 [pii].CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Rademakers R, van Blitterswijk M. Motor neuron disease in 2012: novel causal genes and disease modifiers. Nat Rev Neurol. 2013;9:63–4.  https://doi.org/10.1038/nrneurol.2012.276. nrneurol.2012.276 [pii].CrossRefPubMedGoogle Scholar
  75. 75.
    Renton AE, Majounie E, Waite A, Simon-Sanchez J, Rollinson S, Gibbs JR, et al. A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-linked ALS-FTD. Neuron. 2011;72:257–68.  https://doi.org/10.1016/j.neuron.2011.09.010. S0896-6273(11)00797-5 [pii].CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Renton AE, Chio A, Traynor BJ. State of play in amyotrophic lateral sclerosis genetics. Nat Neurosci. 2014;17:17–23.  https://doi.org/10.1038/nn.3584. nn.3584 [pii].CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Coppede F, Stoccoro A, Mosca L, Gallo R, Tarlarini C, Lunetta C, et al. Increase in DNA methylation in patients with amyotrophic lateral sclerosis carriers of not fully penetrant SOD1 mutations. Amyotroph Lateral Scler Frontotemporal Degener. 2017;19(1-2):93.  https://doi.org/10.1080/21678421.2017.1367401.CrossRefPubMedGoogle Scholar
  78. 78.
    Morahan JM, Yu B, Trent RJ, Pamphlett R. A genome-wide analysis of brain DNA methylation identifies new candidate genes for sporadic amyotrophic lateral sclerosis. Amyotroph Lateral Scler. 2009;10:418–29.  https://doi.org/10.3109/17482960802635397.CrossRefPubMedGoogle Scholar
  79. 79.
    Figueroa-Romero C, Hur J, Bender DE, Delaney CE, Cataldo MD, Smith AL, et al. Identification of epigenetically altered genes in sporadic amyotrophic lateral sclerosis. PLoS One. 2012;7:e52672.  https://doi.org/10.1371/journal.pone.0052672.CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Tremolizzo L, Messina P, Conti E, Sala G, Cecchi M, Airoldi L, et al. Whole-blood global DNA methylation is increased in amyotrophic lateral sclerosis independently of age of onset. Amyotroph Lateral Scler Frontotemporal Degener. 2014;15:98–105.  https://doi.org/10.3109/21678421.2013.851247.CrossRefPubMedGoogle Scholar
  81. 81.
    Banzhaf-Strathmann J, Claus R, Mucke O, Rentzsch K, van der Zee J, Engelborghs S, et al. Promoter DNA methylation regulates progranulin expression and is altered in FTLD. Acta Neuropathol Commun. 2013;1:16.  https://doi.org/10.1186/2051-5960-1-16.CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Galimberti D, D’Addario C, Dell’osso B, Fenoglio C, Marcone A, Cerami C, et al. Progranulin gene (GRN) promoter methylation is increased in patients with sporadic frontotemporal lobar degeneration. Neurol Sci. 2013;34:899–903.  https://doi.org/10.1007/s10072-012-1151-5.CrossRefPubMedGoogle Scholar
  83. 83.
    Li Y, Chen JA, Sears RL, Gao F, Klein ED, Karydas A, et al. An epigenetic signature in peripheral blood associated with the haplotype on 17q21.31, a risk factor for neurodegenerative tauopathy. PLoS Genet. 2014;10:e1004211.  https://doi.org/10.1371/journal.pgen.1004211.CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Wong M, Gertz B, Chestnut BA, Martin LJ. Mitochondrial DNMT3A and DNA methylation in skeletal muscle and CNS of transgenic mouse models of ALS. Front Cell Neurosci. 2013;7:279.  https://doi.org/10.3389/fncel.2013.00279.CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Dobrowolny G, Bernardini C, Martini M, Baranzini M, Barba M, Musaro A. Muscle Expression of SOD1(G93A) Modulates microRNA and mRNA Transcription Pattern Associated with the Myelination Process in the Spinal Cord of Transgenic Mice. Front Cell Neurosci. 2015;9:463.  https://doi.org/10.3389/fncel.2015.00463.CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    Figueroa-Romero C, Hur J, Lunn JS, Paez-Colasante X, Bender DE, Yung R, et al. Expression of microRNAs in human post-mortem amyotrophic lateral sclerosis spinal cords provides insight into disease mechanisms. Mol Cell Neurosci. 2016;71:34–45.  https://doi.org/10.1016/j.mcn.2015.12.008.CrossRefPubMedGoogle Scholar
  87. 87.
    Marcuzzo S, Bonanno S, Kapetis D, Barzago C, Cavalcante P, D’Alessandro S, et al. Up-regulation of neural and cell cycle-related microRNAs in brain of amyotrophic lateral sclerosis mice at late disease stage. Mol Brain. 2015;8:5.  https://doi.org/10.1186/s13041-015-0095-0.CrossRefPubMedPubMedCentralGoogle Scholar
  88. 88.
    Toivonen JM, Manzano R, Olivan S, Zaragoza P, Garcia-Redondo A, Osta R. MicroRNA-206: a potential circulating biomarker candidate for amyotrophic lateral sclerosis. PLoS One. 2014;9:e89065.  https://doi.org/10.1371/journal.pone.0089065.CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    Zhang Z, Almeida S, Lu Y, Nishimura AL, Peng L, Sun D, et al. Downregulation of microRNA-9 in iPSC-derived neurons of FTD/ALS patients with TDP-43 mutations. PLoS One. 2013;8:e76055.  https://doi.org/10.1371/journal.pone.0076055.CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    Jiao J, Herl LD, Farese RV, Gao FB. MicroRNA-29b regulates the expression level of human progranulin, a secreted glycoprotein implicated in frontotemporal dementia. PLoS One. 2010;5:e10551.  https://doi.org/10.1371/journal.pone.0010551.CrossRefPubMedPubMedCentralGoogle Scholar
  91. 91.
    Gascon E, Lynch K, Ruan H, Almeida S, Verheyden JM, Seeley WW, et al. Alterations in microRNA-124 and AMPA receptors contribute to social behavioral deficits in frontotemporal dementia. Nat Med. 2014;20:1444–51.  https://doi.org/10.1038/nm.3717.CrossRefPubMedPubMedCentralGoogle Scholar
  92. 92.
    Bauer PO. Methylation of C9orf72 expansion reduces RNA foci formation and dipeptide-repeat proteins expression in cells. Neurosci Lett. 2016;612:204–9.  https://doi.org/10.1016/j.neulet.2015.12.018.CrossRefPubMedGoogle Scholar
  93. 93.
    Liu EY, Russ J, Wu K, Neal D, Suh E, McNally AG, et al. C9orf72 hypermethylation protects against repeat expansion-associated pathology in ALS/FTD. Acta Neuropathol. 2014;128:525–41.  https://doi.org/10.1007/s00401-014-1286-y.CrossRefPubMedPubMedCentralGoogle Scholar
  94. 94.
    Xi Z, Rainero I, Rubino E, Pinessi L, Bruni AC, Maletta RG, et al. Hypermethylation of the CpG-island near the C9orf72 G(4)C(2)-repeat expansion in FTLD patients. Hum Mol Genet. 2014;23:5630–7.  https://doi.org/10.1093/hmg/ddu279.CrossRefPubMedGoogle Scholar
  95. 95.
    Xi Z, Zhang M, Bruni AC, Maletta RG, Colao R, Fratta P, et al. The C9orf72 repeat expansion itself is methylated in ALS and FTLD patients. Acta Neuropathol. 2015;129:715–27.  https://doi.org/10.1007/s00401-015-1401-8.CrossRefPubMedGoogle Scholar
  96. 96.
    Xi Z, Zinman L, Moreno D, Schymick J, Liang Y, Sato C, et al. Hypermethylation of the CpG island near the G4C2 repeat in ALS with a C9orf72 expansion. Am J Hum Genet. 2013;92:981–9.  https://doi.org/10.1016/j.ajhg.2013.04.017.CrossRefPubMedPubMedCentralGoogle Scholar
  97. 97.
    Esanov R, Belle KC, van Blitterswijk M, Belzil VV, Rademakers R, Dickson DW, et al. C9orf72 promoter hypermethylation is reduced while hydroxymethylation is acquired during reprogramming of ALS patient cells. Exp Neurol. 2015;277:171–7.  https://doi.org/10.1016/j.expneurol.2015.12.022.CrossRefPubMedPubMedCentralGoogle Scholar
  98. 98.
    Belzil VV, Bauer PO, Prudencio M, Gendron TF, Stetler CT, Yan IK, et al. Reduced C9orf72 gene expression in c9FTD/ALS is caused by histone trimethylation, an epigenetic event detectable in blood. Acta Neuropathol. 2013;126:895–905.  https://doi.org/10.1007/s00401-013-1199-1.CrossRefPubMedPubMedCentralGoogle Scholar
  99. 99.
    Ebbert MTW, Ross CA, Pregent LJ, Lank RJ, Zhang C, Katzman RB, et al. Conserved DNA methylation combined with differential frontal cortex and cerebellar expression distinguishes C9orf72-associated and sporadic ALS, and implicates SERPINA1 in disease. Acta Neuropathol. 2017;134:715–28.  https://doi.org/10.1007/s00401-017-1760-4.CrossRefPubMedGoogle Scholar
  100. 100.
    Banack SA, Cox PA. Biomagnification of cycad neurotoxins in flying foxes: implications for ALS-PDC in Guam. Neurology. 2003;61:387–9.CrossRefPubMedGoogle Scholar
  101. 101.
    Bradley WG, Mash DC. Beyond Guam: the cyanobacteria/BMAA hypothesis of the cause of ALS and other neurodegenerative diseases. Amyotroph Lateral Scler. 2009;10(Suppl 2):7–20.  https://doi.org/10.3109/17482960903286009.CrossRefPubMedGoogle Scholar
  102. 102.
    Chiu AS, Gehringer MM, Welch JH, Neilan BA. Does alpha-amino-beta-methylaminopropionic acid (BMAA) play a role in neurodegeneration? Int J Environ Res Public Health. 2011;8:3728–46.  https://doi.org/10.3390/ijerph8093728.CrossRefPubMedPubMedCentralGoogle Scholar
  103. 103.
    Dastur DK. Cycad toxicity in monkeys: clinical, pathological, and biochemical aspects. Fed Proc. 1964;23:1368–9.PubMedGoogle Scholar
  104. 104.
    Polsky FI, Nunn PB, Bell EA. Distribution and toxicity of alpha-amino-beta-methylaminopropionic acid. Fed Proc. 1972;31:1473–5.PubMedGoogle Scholar
  105. 105.
    Remely M, Stefanska B, Lovrecic L, Magnet U, Haslberger AG. Nutriepigenomics: the role of nutrition in epigenetic control of human diseases. Curr Opin Clin Nutr Metab Care. 2015;18:328–33.  https://doi.org/10.1097/MCO.0000000000000180.CrossRefPubMedGoogle Scholar
  106. 106.
    Meltz Steinberg K, Nicholas TJ, Koboldt DC, Yu B, Mardis E, Pamphlett R. Whole genome analyses reveal no pathogenetic single nucleotide or structural differences between monozygotic twins discordant for amyotrophic lateral sclerosis. Amyotroph Lateral Scler Frontotemporal Degener. 2015;16:385–92.  https://doi.org/10.3109/21678421.2015.1040029.CrossRefPubMedGoogle Scholar
  107. 107.
    Xi Z, Yunusova Y, van Blitterswijk M, Dib S, Ghani M, Moreno D, et al. Identical twins with the C9orf72 repeat expansion are discordant for ALS. Neurology. 2014;83:1476–8.  https://doi.org/10.1212/WNL.0000000000000886.CrossRefPubMedPubMedCentralGoogle Scholar
  108. 108.
    Young PE, Kum Jew S, Buckland ME, Pamphlett R, Suter CM. Epigenetic differences between monozygotic twins discordant for amyotrophic lateral sclerosis (ALS) provide clues to disease pathogenesis. PLoS One. 2017;12:e0182638.  https://doi.org/10.1371/journal.pone.0182638.CrossRefPubMedPubMedCentralGoogle Scholar
  109. 109.
    Erwin JA, Marchetto MC, Gage FH. Mobile DNA elements in the generation of diversity and complexity in the brain. Nat Rev Neurosci. 2014;15:497–506.  https://doi.org/10.1038/nrn3730.CrossRefPubMedPubMedCentralGoogle Scholar
  110. 110.
    Hunter RG, Gagnidze K, McEwen BS, Pfaff DW. Stress and the dynamic genome: steroids, epigenetics, and the transposome. Proc Natl Acad Sci U S A. 2015;112:6828–33.  https://doi.org/10.1073/pnas.1411260111.CrossRefPubMedGoogle Scholar
  111. 111.
    Hunter RG, McEwen BS, Pfaff DW. Environmental stress and transposon transcription in the mammalian brain. Mob Genet Elements. 2013;3:e24555.  https://doi.org/10.4161/mge.24555.CrossRefPubMedPubMedCentralGoogle Scholar
  112. 112.
    Johnson R, Guigo R. The RIDL hypothesis: transposable elements as functional domains of long noncoding RNAs. RNA. 2014;20:959–76.  https://doi.org/10.1261/rna.044560.114.CrossRefPubMedPubMedCentralGoogle Scholar
  113. 113.
    McEwen BS, Bowles NP, Gray JD, Hill MN, Hunter RG, Karatsoreos IN, et al. Mechanisms of stress in the brain. Nat Neurosci. 2015;18:1353–63.  https://doi.org/10.1038/nn.4086.CrossRefPubMedPubMedCentralGoogle Scholar
  114. 114.
    Reilly MT, Faulkner GJ, Dubnau J, Ponomarev I, Gage FH. The role of transposable elements in health and diseases of the central nervous system. J Neurosci. 2013;33:17577–86. https://doi.org/10.1523/JNEUROSCI.3369-13.2013.CrossRefPubMedPubMedCentralGoogle Scholar
  115. 115.
    Bakir F, Damluji SF, Amin-Zaki L, Murtadha M, Khalidi A, al-Rawi NY, et al. Methylmercury poisoning in Iraq. Science. 1973;181:230–41.CrossRefPubMedGoogle Scholar
  116. 116.
    Cicero CE, Mostile G, Vasta R, Rapisarda V, Signorelli SS, Ferrante M, et al. Metals and neurodegenerative diseases. A systematic review. Environ Res. 2017;159:82–94.  https://doi.org/10.1016/j.envres.2017.07.048.CrossRefPubMedGoogle Scholar
  117. 117.
    Combs GF Jr. Selenium in global food systems. Br J Nutr. 2001;85:517–47.CrossRefPubMedGoogle Scholar
  118. 118.
    Fang F, Peters TL, Beard JD, Umbach DM, Keller J, Mariosa D, et al. Blood Lead, Bone Turnover, and Survival in Amyotrophic Lateral Sclerosis. Am J Epidemiol. 2017;186:1057–64.  https://doi.org/10.1093/aje/kwx176.CrossRefPubMedPubMedCentralGoogle Scholar
  119. 119.
    Johnson FO, Atchison WD. The role of environmental mercury, lead and pesticide exposure in development of amyotrophic lateral sclerosis. Neurotoxicology. 2009;30:761–5.  https://doi.org/10.1016/j.neuro.2009.07.010.CrossRefPubMedPubMedCentralGoogle Scholar
  120. 120.
    Migliore L, Coppede F. Environmental-induced oxidative stress in neurodegenerative disorders and aging. Mutat Res. 2009;674:73–84.  https://doi.org/10.1016/j.mrgentox.2008.09.013.CrossRefPubMedGoogle Scholar
  121. 121.
    Pogue AI, Jones BM, Bhattacharjee S, Percy ME, Zhao Y, Lukiw WJ. Metal-sulfate induced generation of ROS in human brain cells: detection using an isomeric mixture of 5- and 6-carboxy-2′,7′-dichlorofluorescein diacetate (carboxy-DCFDA) as a cell permeant tracer. Int J Mol Sci. 2012;13:9615–26.  https://doi.org/10.3390/ijms13089615.CrossRefPubMedPubMedCentralGoogle Scholar
  122. 122.
    Hakansson N, Gustavsson P, Johansen C, Floderus B. Neurodegenerative diseases in welders and other workers exposed to high levels of magnetic fields. Epidemiology. 2003;14:420–6; . discussion 427–428.  https://doi.org/10.1097/01.EDE.0000078446.76859.c9.CrossRefPubMedGoogle Scholar
  123. 123.
    Cronin S, Greenway MJ, Prehn JH, Hardiman O. Paraoxonase promoter and intronic variants modify risk of sporadic amyotrophic lateral sclerosis. J Neurol Neurosurg Psychiatry. 2007;78:984–6.  https://doi.org/10.1136/jnnp.2006.112581.CrossRefPubMedPubMedCentralGoogle Scholar
  124. 124.
    Diekstra FP, Beleza-Meireles A, Leigh NP, Shaw CE, Al-Chalabi A. Interaction between PON1 and population density in amyotrophic lateral sclerosis. Neuroreport. 2009;20:186–90.  https://doi.org/10.1097/WNR.0b013e32831af220.CrossRefPubMedGoogle Scholar
  125. 125.
    Matin MA, Hussain K. Striatal neurochemical changes and motor dysfunction in mipafox-treated animals. Methods Find Exp Clin Pharmacol. 1985;7:79–81.PubMedGoogle Scholar
  126. 126.
    Merwin SJ, Obis T, Nunez Y, Re DB. Organophosphate neurotoxicity to the voluntary motor system on the trail of environment-caused amyotrophic lateral sclerosis: the known, the misknown, and the unknown. Arch Toxicol. 2017;91:2939–52.  https://doi.org/10.1007/s00204-016-1926-1.CrossRefPubMedPubMedCentralGoogle Scholar
  127. 127.
    Morahan JM, Yu B, Trent RJ, Pamphlett R. A gene-environment study of the paraoxonase 1 gene and pesticides in amyotrophic lateral sclerosis. Neurotoxicology. 2007;28:532–40.  https://doi.org/10.1016/j.neuro.2006.11.007.CrossRefPubMedGoogle Scholar
  128. 128.
    Saeed M, Siddique N, Hung WY, Usacheva E, Liu E, Sufit RL, et al. Paraoxonase cluster polymorphisms are associated with sporadic ALS. Neurology. 2006;67:771–6.  https://doi.org/10.1212/01.wnl.0000227187.52002.88.CrossRefPubMedGoogle Scholar
  129. 129.
    Sanchez-Santed F, Colomina MT, Herrero Hernandez E. Organophosphate pesticide exposure and neurodegeneration. Cortex. 2016;74:417–26.  https://doi.org/10.1016/j.cortex.2015.10.003.CrossRefPubMedGoogle Scholar
  130. 130.
    Valdmanis PN, Kabashi E, Dyck A, Hince P, Lee J, Dion P, et al. Association of paraoxonase gene cluster polymorphisms with ALS in France, Quebec, and Sweden. Neurology. 2008;71:514–20.  https://doi.org/10.1212/01.wnl.0000324997.21272.0c. 71/7/514 [pii].CrossRefPubMedGoogle Scholar
  131. 131.
    Chio A, Benzi G, Dossena M, Mutani R, Mora G. Severely increased risk of amyotrophic lateral sclerosis among Italian professional football players. Brain. 2005;128:472–6.  https://doi.org/10.1093/brain/awh373.CrossRefPubMedGoogle Scholar
  132. 132.
    Horner RD, Grambow SC, Coffman CJ, Lindquist JH, Oddone EZ, Allen KD, et al. Amyotrophic lateral sclerosis among 1991 Gulf War veterans: evidence for a time-limited outbreak. Neuroepidemiology. 2008;31:28–32.  https://doi.org/10.1159/000136648.CrossRefPubMedGoogle Scholar
  133. 133.
    Miranda ML, Alicia Overstreet Galeano M, Tassone E, Allen KD, Horner RD. Spatial analysis of the etiology of amyotrophic lateral sclerosis among 1991 Gulf War veterans. Neurotoxicology. 2008;29:964–70.  https://doi.org/10.1016/j.neuro.2008.05.005.CrossRefPubMedGoogle Scholar
  134. 134.
    Pupillo E, Poloni M, Bianchi E, Giussani G, Logroscino G, Zoccolella S, et al. Trauma and amyotrophic lateral sclerosis: a european population-based case-control study from the EURALS consortium. Amyotroph Lateral Scler Frontotemporal Degener. 2018;19(1-2):118.  https://doi.org/10.1080/21678421.2017.1386687.CrossRefPubMedGoogle Scholar
  135. 135.
    Szczygielski J, Mautes A, Steudel WI, Falkai P, Bayer TA, Wirths O. Traumatic brain injury: cause or risk of Alzheimer’s disease? A review of experimental studies. J Neural Transm (Vienna). 2005;112:1547–64.  https://doi.org/10.1007/s00702-005-0326-0.CrossRefGoogle Scholar
  136. 136.
    Oates N, Pamphlett R. An epigenetic analysis of SOD1 and VEGF in ALS. Amyotroph Lateral Scler. 2007;8:83–6.  https://doi.org/10.1080/17482960601149160.CrossRefPubMedGoogle Scholar
  137. 137.
    Yang Y, Gozen O, Vidensky S, Robinson MB, Rothstein JD. Epigenetic regulation of neuron-dependent induction of astroglial synaptic protein GLT1. Glia. 2010;58:277–86.  https://doi.org/10.1002/glia.20922.CrossRefPubMedPubMedCentralGoogle Scholar
  138. 138.
    Baker M, Mackenzie IR, Pickering-Brown SM, Gass J, Rademakers R, Lindholm C, et al. Mutations in progranulin cause tau-negative frontotemporal dementia linked to chromosome 17. Nature. 2006;442:916–9.  https://doi.org/10.1038/nature05016.CrossRefPubMedGoogle Scholar
  139. 139.
    Gass J, Cannon A, Mackenzie IR, Boeve B, Baker M, Adamson J, et al. Mutations in progranulin are a major cause of ubiquitin-positive frontotemporal lobar degeneration. Hum Mol Genet. 2006;15:2988–3001.  https://doi.org/10.1093/hmg/ddl241.CrossRefPubMedGoogle Scholar
  140. 140.
    Rademakers R, Neumann M, Mackenzie IR. Advances in understanding the molecular basis of frontotemporal dementia. Nat Rev Neurol. 2012;8:423–34.  https://doi.org/10.1038/nrneurol.2012.117.CrossRefPubMedPubMedCentralGoogle Scholar
  141. 141.
    Finch N, Baker M, Crook R, Swanson K, Kuntz K, Surtees R, et al. Plasma progranulin levels predict progranulin mutation status in frontotemporal dementia patients and asymptomatic family members. Brain. 2009;132:583–91.  https://doi.org/10.1093/brain/awn352.CrossRefPubMedPubMedCentralGoogle Scholar
  142. 142.
    Baker M, Litvan I, Houlden H, Adamson J, Dickson D, Perez-Tur J, et al. Association of an extended haplotype in the tau gene with progressive supranuclear palsy. Hum Mol Genet. 1999;8:711–5.CrossRefPubMedGoogle Scholar
  143. 143.
    Caffrey TM, Wade-Martins R. The role of MAPT sequence variation in mechanisms of disease susceptibility. Biochem Soc Trans. 2012;40:687–92.  https://doi.org/10.1042/BST20120063.CrossRefPubMedGoogle Scholar
  144. 144.
    Hoglinger GU, Melhem NM, Dickson DW, Sleiman PM, Wang LS, Klei L, et al. Identification of common variants influencing risk of the tauopathy progressive supranuclear palsy. Nat Genet. 2011;43:699–705.  https://doi.org/10.1038/ng.859.CrossRefPubMedPubMedCentralGoogle Scholar
  145. 145.
    Stefansson H, Helgason A, Thorleifsson G, Steinthorsdottir V, Masson G, Barnard J, et al. A common inversion under selection in Europeans. Nat Genet. 2005;37:129–37. https://doi.org/10.1038/ng1508.CrossRefPubMedGoogle Scholar
  146. 146.
    Arai T, Hasegawa M, Akiyama H, Ikeda K, Nonaka T, Mori H, et al. TDP-43 is a component of ubiquitin-positive tau-negative inclusions in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Biochem Biophys Res Commun. 2006;351:602–11. https://doi.org/10.1016/j.bbrc.2006.10.093.CrossRefPubMedGoogle Scholar
  147. 147.
    Neumann M, Sampathu DM, Kwong LK, Truax AC, Micsenyi MC, Chou TT, et al. Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science. 2006;314:130–3.CrossRefPubMedGoogle Scholar
  148. 148.
    Buratti E, De Conti L, Stuani C, Romano M, Baralle M, Baralle F. Nuclear factor TDP-43 can affect selected microRNA levels. FEBS J. 2010;277:2268–81. https://doi.org/10.1111/j.1742-4658.2010.07643.x.CrossRefPubMedGoogle Scholar
  149. 149.
    Emde A, Eitan C, Liou LL, Libby RT, Rivkin N, Magen I, et al. Dysregulated miRNA biogenesis downstream of cellular stress and ALS-causing mutations: a new mechanism for ALS. EMBO J. 2015;34:2633–51.  https://doi.org/10.15252/embj.201490493.CrossRefPubMedPubMedCentralGoogle Scholar
  150. 150.
    Kawahara Y, Mieda-Sato A. TDP-43 promotes microRNA biogenesis as a component of the Drosha and Dicer complexes. Proc Natl Acad Sci U S A. 2012;109:3347–52.  https://doi.org/10.1073/pnas.1112427109.CrossRefPubMedPubMedCentralGoogle Scholar
  151. 151.
    King IN, Yartseva V, Salas D, Kumar A, Heidersbach A, Ando DM, et al. The RNA-binding protein TDP-43 selectively disrupts microRNA-1/206 incorporation into the RNA-induced silencing complex. J Biol Chem. 2014;289:14263–71.  https://doi.org/10.1074/jbc.M114.561902.CrossRefPubMedPubMedCentralGoogle Scholar
  152. 152.
    Li Z, Lu Y, Xu XL, Gao FB. The FTD/ALS-associated RNA-binding protein TDP-43 regulates the robustness of neuronal specification through microRNA-9a in Drosophila. Hum Mol Genet. 2013;22:218–25.  https://doi.org/10.1093/hmg/dds420.CrossRefPubMedGoogle Scholar
  153. 153.
    Almeida S, Gascon E, Tran H, Chou HJ, Gendron TF, Degroot S, et al. Modeling key pathological features of frontotemporal dementia with C9ORF72 repeat expansion in iPSC-derived human neurons. Acta Neuropathol. 2013;126:385–99.  https://doi.org/10.1007/s00401-013-1149-y.CrossRefPubMedPubMedCentralGoogle Scholar
  154. 154.
    Ciura S, Lattante S, Le Ber I, Latouche M, Tostivint H, Brice A, et al. Loss of function of C9orf72 causes motor deficits in a zebrafish model of Amyotrophic Lateral Sclerosis. Ann Neurol. 2013;74:180.  https://doi.org/10.1002/ana.23946.CrossRefPubMedGoogle Scholar
  155. 155.
    Donnelly CJ, Zhang PW, Pham JT, Haeusler AR, Mistry NA, Vidensky S, et al. RNA toxicity from the ALS/FTD C9ORF72 expansion is mitigated by antisense intervention. Neuron. 2013;80:415–28.  https://doi.org/10.1016/j.neuron.2013.10.015.CrossRefPubMedPubMedCentralGoogle Scholar
  156. 156.
    Fratta P, Poulter M, Lashley T, Rohrer JD, Polke JM, Beck J, et al. Homozygosity for the C9orf72 GGGGCC repeat expansion in frontotemporal dementia. Acta Neuropathol. 2013;126:401–9.  https://doi.org/10.1007/s00401-013-1147-0.CrossRefPubMedPubMedCentralGoogle Scholar
  157. 157.
    Gendron TF, van Blitterswijk M, Bieniek KF, Daughrity LM, Jiang J, Rush BK, et al. Cerebellar c9RAN proteins associate with clinical and neuropathological characteristics of C9ORF72 repeat expansion carriers. Acta Neuropathol. 2015;130:559–73.  https://doi.org/10.1007/s00401-015-1474-4. s00401-015-1474-4 [pii].CrossRefPubMedPubMedCentralGoogle Scholar
  158. 158.
    Gijselinck I, Van Langenhove T, van der Zee J, Sleegers K, Philtjens S, Kleinberger G, et al. A C9orf72 promoter repeat expansion in a Flanders-Belgian cohort with disorders of the frontotemporal lobar degeneration-amyotrophic lateral sclerosis spectrum: a gene identification study. Lancet Neurol. 2012;11:54–65.  https://doi.org/10.1016/S1474-4422(11)70261-7. S1474-4422(11)70261-7 [pii].CrossRefPubMedGoogle Scholar
  159. 159.
    Mori K, Weng SM, Arzberger T, May S, Rentzsch K, Kremmer E, et al. The C9orf72 GGGGCC repeat is translated into aggregating dipeptide-repeat proteins in FTLD/ALS. Science. 2013;339:1335–8.  https://doi.org/10.1126/science.1232927. science.1232927 [pii].CrossRefGoogle Scholar
  160. 160.
    Russ J, Liu EY, Wu K, Neal D, Suh E, Irwin DJ, et al. Hypermethylation of repeat expanded C9orf72 is a clinical and molecular disease modifier. Acta Neuropathol. 2015;129:39–52.  https://doi.org/10.1007/s00401-014-1365-0.CrossRefPubMedGoogle Scholar
  161. 161.
    Ritossa F. Discovery of the heat shock response. Cell Stress Chaperones. 1996;1:97–8.CrossRefPubMedPubMedCentralGoogle Scholar
  162. 162.
    Meaney MJ, Szyf M. Environmental programming of stress responses through DNA methylation: life at the interface between a dynamic environment and a fixed genome. Dialogues Clin Neurosci. 2005;7:103–23.PubMedPubMedCentralGoogle Scholar
  163. 163.
    Caller TA, Doolin JW, Haney JF, Murby AJ, West KG, Farrar HE, et al. A cluster of amyotrophic lateral sclerosis in New Hampshire: a possible role for toxic cyanobacteria blooms. Amyotroph Lateral Scler. 2009;10(Suppl 2):101–8.  https://doi.org/10.3109/17482960903278485.CrossRefPubMedGoogle Scholar
  164. 164.
    Karlsson O, Roman E, Berg AL, Brittebo EB. Early hippocampal cell death, and late learning and memory deficits in rats exposed to the environmental toxin BMAA (beta-N-methylamino-L-alanine) during the neonatal period. Behav Brain Res. 2011;219:310–20.  https://doi.org/10.1016/j.bbr.2011.01.056.CrossRefPubMedGoogle Scholar
  165. 165.
    Purdie EL, Samsudin S, Eddy FB, Codd GA. Effects of the cyanobacterial neurotoxin beta-N-methylamino-L-alanine on the early-life stage development of zebrafish (Danio rerio). Aquat Toxicol. 2009;95:279–84.  https://doi.org/10.1016/j.aquatox.2009.02.009.CrossRefPubMedGoogle Scholar
  166. 166.
    Horvath S. DNA methylation age of human tissues and cell types. Genome Biol. 2013;14:R115.  https://doi.org/10.1186/gb-2013-14-10-r115.CrossRefPubMedPubMedCentralGoogle Scholar
  167. 167.
    Zhang M, Tartaglia MC, Moreno D, Sato C, McKeever P, Weichert A, et al. DNA methylation age-acceleration is associated with disease duration and age at onset in C9orf72 patients. Acta Neuropathol. 2017;134:271–9.  https://doi.org/10.1007/s00401-017-1713-y.CrossRefPubMedPubMedCentralGoogle Scholar
  168. 168.
    Tsankova NM, Berton O, Renthal W, Kumar A, Neve RL, Nestler EJ. Sustained hippocampal chromatin regulation in a mouse model of depression and antidepressant action. Nat Neurosci. 2006;9:519–25.  https://doi.org/10.1038/nn1659.CrossRefPubMedGoogle Scholar
  169. 169.
    Reul JM, Chandramohan Y. Epigenetic mechanisms in stress-related memory formation. Psychoneuroendocrinology. 2007;32(Suppl 1):S21–5.  https://doi.org/10.1016/j.psyneuen.2007.03.016.CrossRefPubMedGoogle Scholar
  170. 170.
    Griffiths BB, Hunter RG. Neuroepigenetics of stress. Neuroscience. 2014;275:420–35.  https://doi.org/10.1016/j.neuroscience.2014.06.041.CrossRefPubMedGoogle Scholar
  171. 171.
    Hunter RG, McEwen BS. Stress and anxiety across the lifespan: structural plasticity and epigenetic regulation. Epigenomics. 2013;5:177–94.  https://doi.org/10.2217/epi.13.8.CrossRefPubMedGoogle Scholar
  172. 172.
    Reul JM. Making memories of stressful events: a journey along epigenetic, gene transcription, and signaling pathways. Front Psych. 2014;5:00005.  https://doi.org/10.3389/fpsyt.2014.00005.CrossRefGoogle Scholar
  173. 173.
    Abel EL. Football increases the risk for Lou Gehrig’s disease, amyotrophic lateral sclerosis. Percept Mot Skills. 2007;104:1251–4.  https://doi.org/10.2466/pms.104.4.1251-1254.CrossRefPubMedGoogle Scholar
  174. 174.
    Wassenegger M, Heimes S, Riedel L, Sanger HL. RNA-directed de novo methylation of genomic sequences in plants. Cell. 1994;76:567–76.CrossRefPubMedPubMedCentralGoogle Scholar
  175. 175.
    Ho AS, Turcan S, Chan TA. Epigenetic therapy: use of agents targeting deacetylation and methylation in cancer management. Onco Targets Ther. 2013;6:223–32.  https://doi.org/10.2147/OTT.S34680.CrossRefPubMedPubMedCentralGoogle Scholar
  176. 176.
    Veerappan CS, Sleiman S, Coppola G. Epigenetics of Alzheimer’s disease and frontotemporal dementia. Neurotherapeutics. 2013;10:709–21.  https://doi.org/10.1007/s13311-013-0219-0.CrossRefPubMedPubMedCentralGoogle Scholar
  177. 177.
    Zeier Z, Esanov R, Belle KC, Volmar CH, Johnstone AL, Halley P, et al. Bromodomain inhibitors regulate the C9ORF72 locus in ALS. Exp Neurol. 2015;271:241–50.  https://doi.org/10.1016/j.expneurol.2015.06.017.CrossRefPubMedPubMedCentralGoogle Scholar
  178. 178.
    Koval ED, Shaner C, Zhang P, du Maine X, Fischer K, Tay J, et al. Method for widespread microRNA-155 inhibition prolongs survival in ALS-model mice. Hum Mol Genet. 2013;22:4127–35.  https://doi.org/10.1093/hmg/ddt261.CrossRefPubMedPubMedCentralGoogle Scholar
  179. 179.
    Nolan K, Mitchem MR, Jimenez-Mateos EM, Henshall DC, Concannon CG, Prehn JH. Increased expression of microRNA-29a in ALS mice: functional analysis of its inhibition. J Mol Neurosci. 2014;53:231–41.  https://doi.org/10.1007/s12031-014-0290-y.CrossRefPubMedGoogle Scholar
  180. 180.
    Morel L, Regan M, Higashimori H, Ng SK, Esau C, Vidensky S, et al. Neuronal exosomal miRNA-dependent translational regulation of astroglial glutamate transporter GLT1. J Biol Chem. 2013;288:7105–16.  https://doi.org/10.1074/jbc.M112.410944.CrossRefPubMedPubMedCentralGoogle Scholar
  181. 181.
    Lakshmaiah KC, Jacob LA, Aparna S, Lokanatha D, Saldanha SC. Epigenetic therapy of cancer with histone deacetylase inhibitors. J Cancer Res Ther. 2014;10:469–78.  https://doi.org/10.4103/0973-1482.137937.CrossRefPubMedGoogle Scholar
  182. 182.
    Ryu H, Smith K, Camelo SI, Carreras I, Lee J, Iglesias AH, et al. Sodium phenylbutyrate prolongs survival and regulates expression of anti-apoptotic genes in transgenic amyotrophic lateral sclerosis mice. J Neurochem. 2005;93:1087–98.  https://doi.org/10.1111/j.1471-4159.2005.03077.x.CrossRefPubMedGoogle Scholar
  183. 183.
    Cudkowicz ME, Andres PL, Macdonald SA, Bedlack RS, Choudry R, Brown RH Jr, et al. Phase 2 study of sodium phenylbutyrate in ALS. Amyotroph Lateral Scler. 2009;10:99–106.  https://doi.org/10.1080/17482960802320487.CrossRefPubMedGoogle Scholar
  184. 184.
    Prudencio M, Belzil VV, Batra R, Ross CA, Gendron TF, Pregent LJ, et al. Distinct brain transcriptome profiles in C9orf72-associated and sporadic ALS. Nat Neurosci. 2015;18:1175–82.  https://doi.org/10.1038/nn.4065.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Mark T. W. Ebbert
    • 1
  • Rebecca J. Lank
    • 2
  • Veronique V. Belzil
    • 1
    • 3
  1. 1.Department of NeuroscienceMayo ClinicJacksonvilleUSA
  2. 2.Department of NeurologyUniversity of MichiganAnn ArborUSA
  3. 3.Department of Neurology and NeurosurgeryMcGill UniversityQCCanada

Personalised recommendations