Advertisement

Effects of Mycorrhizal Fungi on Slope Stabilisation Functions of Plants

  • Frank GrafEmail author
  • Alexander Bast
  • Holger Gärtner
  • Anil Yildiz
Chapter
Part of the Springer Series in Geomechanics and Geoengineering book series (SSGG)

Abstract

Plants essentially contribute to the strength of soil and, in particular, steep slopes susceptible to erosion and shallow landslides. The corresponding functions of vegetation significantly control processes above and below ground such as interception, evapo-transpiration, soil aggregation and root reinforcement. Either way, they are all correlated with plant growth. Consequently, in order to unfold their soil stabilising potential, the plants must grow and sustainably survive. However, what sounds so obvious is anything but given under the often hostile conditions dominating on bare and steep slopes. This is exactly the point where mycorrhizal fungi come into play, known to improve the plants’ ability to overcome periods governed by strongly (growth) limiting factors. Within this scope, numerous investigations have been conducted in order to understand and quantify mycorrhizal effects on different plant and soil functions related to eco-engineering and, particularly, to soil and slope stability. Results on plant growth and survival as well as on soil aggregation and slope stabilisation are presented and discussed from a mycorrhizal perspective.

Keywords

Mycorrhiza Plant growth Survival Soil aggregation Slope stability Eco-engineering 

Notes

Acknowledgements

We thank the Swiss National Research Programme 68 (grant number 406840_143122, SOSTANAH), the EU project REVENUES (FP7-PEOPLE-2012-IAPP; grant number 324466) as well as the BAFU (no 09.0027.PJ/I211-3446) and the “Wolfermann Nägeli Stiftung Zürich” for supporting and funding our research.

References

  1. 1.
    Beniston, M., Stoffel, M., Hill, M.: Impacts of climatic change on water and natural hazards in the Alps: can current water governance cope with future challenges? Examples from the European “ACQWA” project. Environ. Sci. Policy 14, 734–743 (2011)CrossRefGoogle Scholar
  2. 2.
    Bezzola, G.R., Hegg, C.: Ereignisanalyse Hochwasser 2005. Teil 1 – Prozesse, Schäden und erste Einordnung. Bern, Bundesamt für Umwelt BAFU, 215 S. Eidgenössische Forschungsanstalt WSL, Birmensdorf (2007)Google Scholar
  3. 3.
    Chloros, N.: Enzyklopädie der Forstwirtschaft. Griechisch, Athen (1891)Google Scholar
  4. 4.
    Kontos, P.: Griechische Forstgeschichte. Griechisch, Athen (1929)Google Scholar
  5. 5.
    Goulas, K., Graf, F.: Lebendverbau in Wildbacheinzugsgebieten Griechenlands. Ingenieurbiologie 4, 19–25 (2003)Google Scholar
  6. 6.
    WAG: Bundesgesetz über den Wald (Waldgesetz, WaG), vom 4. SR 921.0, Oktober 1991Google Scholar
  7. 7.
    Hörman, G., Branding, A., Clemen, T., Herbst, M., Hinrichs, A.: Calculation and simulation of wind controlled canopy interception of beech forest in Northern Germany. Agric. For. Meteorol. 79, 131–148 (1996)CrossRefGoogle Scholar
  8. 8.
    Loshali, D.C., Singh, R.P.: Partitioning of rainfall by three Central Himalayan forests. For. Ecol. Manage. 53, 99–105 (1992)CrossRefGoogle Scholar
  9. 9.
    Liu, S.: A new model for the prediction of rainfall interception in forest canopies. Ecol. Model. 99, 151–159 (1997)CrossRefGoogle Scholar
  10. 10.
    Park, H.: Physical characteristics of heat and water exchange processes between vegetation and the atmosphere in a deciduous broad-leaved forest. Nagoya University (2000)Google Scholar
  11. 11.
    Price, A.G., Carlyle-Moses, D.E.: Measurement and modelling of growing-season canopy water fluxes in a mature mixed deciduous forest stand, southern Ontario, Canada. Agric. For. Meteorol. 119, 69–85 (2003)CrossRefGoogle Scholar
  12. 12.
    Deguchi, A., Hattori, S., Park, H.T.: The influence of seasonal changes in canopy structure on interception loss: application of the revised Gash model. J. Hydrol. 318, 80–102 (2006)CrossRefGoogle Scholar
  13. 13.
    Aston, A.R.: Rainfall interception by eight small trees. J. Hydrol. 42, 383–396 (1979)CrossRefGoogle Scholar
  14. 14.
    Querejeta, J.I., Egerton-Warburtona, L.M., Allen, M.F.: Hydraulic lift may buffer rhizosphere hyphae against the negative effects of severe soil drying in a California Oak savanna. Soil Biol. Biochem. 39, 409–417 (2008)CrossRefGoogle Scholar
  15. 15.
    Bauerle, T.L., Richards, J.H., Smart, D.R., Eissenstat, D.M.: Importance of internal hydraulic redistribution for prolonging the lifespan of roots in dry soil. Plant Cell Environ. 31, 177–186 (2008)Google Scholar
  16. 16.
    Yildiz, A., Askarinejad, A., Graf, F., Rickli, C., Springman, S.M.: Effects of roots and mycorrhizal fungi on the stability of slopes. In: Proceedings of the XVI ECSMGE Geotechnical Engineering for Infrastructure and Development, Edinburgh, pp. 1693–1698 (2015). doi:  https://doi.org/10.1680/ecsmge.60678
  17. 17.
    Frei, M.: Validation of a new approach to determine vegetation effects on superficial soil movements. ETH (2009).  https://doi.org/10.3929/ethz-a-005954329
  18. 18.
    Böll, A., Graf, F.: Nachweis von Vegetationswirkungen bei oberflächennahen Bodenbewegungen – Grundlagen eines neuen Ansatzes. Schweiz. Z. Forstwes. 152, 1–11 (2001)CrossRefGoogle Scholar
  19. 19.
    Graf, F., Frei, M., Böll, A.: Effects of vegetation on the angle of internal friction of a moraine. FOSNOLA 82, 61–78 (2009)Google Scholar
  20. 20.
    Bast, A., Wilcke, W., Graf, F., Lüscher, P., Gärtner, H.: The use of mycorrhiza for eco-engineering measures in steep alpine environments: effects on soil aggregate formation and fine-root development. Earth Surf. Proc. Land. 13, 1753–1763 (2014)CrossRefGoogle Scholar
  21. 21.
    Bast, A., Wilcke, W., Graf, F., Lüscher, P., Gärtner, H.: Does mycorrhizal inoculation improve plant survival, aggregate stability, and fine root development on a coarse-grained soil in an alpine eco-engineering field experiment? J. Geophys. Res. Biogeosci. (2016).  https://doi.org/10.1002/2016JG003422CrossRefGoogle Scholar
  22. 22.
    Wu, T.H.: Effect of vegetation on slope stability. Transp. Res. Rep. 965, 37–46 (1984)Google Scholar
  23. 23.
    Pollen, N., Simon, A.: Estimating the mechanical effects of riparian vegetation on stream bank stability using a fibre bundle model. Water Resour. Res. 41, W07025 (2005).  https://doi.org/10.1029/2004wr003801
  24. 24.
    Schwarz, M., Cohen, D., Or, D.: Soil-root mechanical interactions during pullout and failure of root bundles. J. Geophys. Res. 115, F04035 (2010).  https://doi.org/10.1029/2009JF001603CrossRefGoogle Scholar
  25. 25.
    Bast, A., Wilcke, W., Graf, F., Lüscher, P., Gärtner, H.: A simplified and rapid technique to determine an aggregate stability coefficient in coarse grained soils. CATENA 127, 170–176 (2015)CrossRefGoogle Scholar
  26. 26.
    Smith, S.E., Read, D.J.: Mycorrhizal Symbiosis, p. 787. Academic Press, London (2008)CrossRefGoogle Scholar
  27. 27.
    Cairnay, J.W.G., Chambers, S.M.: Ectomycorrhizal Fungi. Key Genera in Profile, 369 pp. Springer, Berlin, (1999)Google Scholar
  28. 28.
    Read, D.J., Boyd, R.: Water relations of mycorrhizal fungi and their host plants. In: Ayres, P.G., Boddy, L. (eds.) Water, Fungi and Plants, pp. 287–303. Cambridge University Press, Cambridge (1986)Google Scholar
  29. 29.
    Jansen, A.E.: Importance of ectomycorrhiza for forest ecosystems. In: Teller, A., Mathy, P., Jeffers, J.N.R. (eds.) Response of Forest Ecosystems to Environmental Changes, pp. 456–461. Elsevier, London and New York (1992)CrossRefGoogle Scholar
  30. 30.
    Budi, S.W., van Tuinen, D., Martinotti, G., Gianinazzi, S.: Isolation from the Sorghum bicolor mycorrhizasphere of a bacteria compatible with arbuscular mycorrhiza development and antagonistic towards soilborne fungal pathogens. Appl. Environ. Microbiol. 65, 5148–5150 (1999)Google Scholar
  31. 31.
    Filion, M., St-Arnaud, M., Fortin, J.A.: Direct interaction between the arbuscular mycorrhizal fungus Glomus intraradices and different rhizosphere micro-organisms. New Phytol. 141, 525–533 (1999)CrossRefGoogle Scholar
  32. 32.
    Bezzate, S., Aymerich, S., Chambert, R., Czarnes, S., Berger, O., Heulin, T.: Disruption of the Paenibacillus polymyxa levansucrase gene impairs its ability to aggregate soil in the wheat rhizosphere. Environ. Micorbiol. 2, 333–342 (2000)CrossRefGoogle Scholar
  33. 33.
    Hildebrandt, U., Janetta, K., Bothe, H.: Towards growth of arbuscular mycorrhizal fungi independent of a plant host. Appl. Environ. Microbiol. 68, 1919–1924 (2002)CrossRefGoogle Scholar
  34. 34.
    Mansfeld-Giese, K., Larsen, J., Bodker, L.: Bacterial populations associated with mycelium of the arbuscular mycorrhizal fungus Glomus intraradices. FEMS Micorbiol. Ecol. 41, 133–140 (2002)CrossRefGoogle Scholar
  35. 35.
    Caesar-Ton That, T.C., Shelver, W.L., Thorn, R.G., Cochran, V.L.: Generation of antibodies for soil aggregating basidiomycete detection as an early indicator of trends in soil quality. Appl. Soil. Ecol. 18, 99–116 (2001)CrossRefGoogle Scholar
  36. 36.
    Tagu, D., de Bellis, R., Balestrini, R., de Vries, O.M.H., Piccoli, G., Stocchi, V., Bonfante, P., Martin, F.: Immuno-localization of hydrophobin HYDPt-1 from the ectomycorrhizal basidiomycete Pisolithus tinctorius during colonization of Eucalyptus globulus roots. New Phytol. 149, 127–135 (2001)CrossRefGoogle Scholar
  37. 37.
    Mankel, A., Krause, K., Kothe, E.: Identification of hydrophobin gene that is developmentally regulated in the ectomycorrhizal fungus Tricholoma terreum. Apppl. Environ. Microbiol. 68, 1408–1413 (2002)CrossRefGoogle Scholar
  38. 38.
    Rillig, M.C., Mummey, D.L.: Mycorrhizas and soil structure. New Phytol. 171, 41–53 (2006)CrossRefGoogle Scholar
  39. 39.
    INOQ GmbH: Solkau 2, 29465 Schnega, Deutschland. Mykorrhiza Produkte – Forst (2016). http://inoq.de/produkte-service/mykorrhiza-produkte/inoq-forst/
  40. 40.
    Graf, F.: Anforderungen an den Boden bei Renaturierungen oberhalb der Waldgrenze. Ingenieurbiologie 4, 12–18 (1998)Google Scholar
  41. 41.
    Graf, F.: Ecology and sociology of macromycetes in snow-beds with Salix herbacea L. in the alpine Valley of Radönt (Grisons, Switzerland). Diss. Bot. 235, 1–242 (1994)Google Scholar
  42. 42.
    WinRhizo®: Régent Instruments Inc., 4040 rue Blain, Quebec, Qc G2B 5C3, Canada (2000). http://www.regent.qc.ca
  43. 43.
    Graf, F., Frei, M.: Soil aggregate stability related to soil density, root length, and mycorrhiza using site-specific Alnus incana and Melanogaster variegatus s.l. Ecol. Eng. 57, 314–323 (2013)CrossRefGoogle Scholar
  44. 44.
    SN 670 010: Geotechnische Erkundung – Geotechnische Kenngrössen. Schweizerischer Verband der Strassen-und Verkehrsfachleute VSS, Schweizer Norm, 19 S (2011)Google Scholar
  45. 45.
    Germann, P., Helbling, A., Vadilonga, T.: Rivulet approach to rates of preferential infiltration. Vadose Zone J. 6, 207–220 (2007)CrossRefGoogle Scholar
  46. 46.
    R Development Core Team: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0 (2016). http://www.R-project.org
  47. 47.
    Kaplan, E.L., Meier, P.: Nonparametric estimation from incomplete observations. J. Am. Stat. Assoc. 53, 457–481 (1958).  https://doi.org/10.1080/01621459.1958.10501452MathSciNetCrossRefzbMATHGoogle Scholar
  48. 48.
    Tableman, M., Kim, J.S.: Survival Analysis Using S: Analysis of Time-to-Event Data, 280 pp. Chapman & Hall/CRC Texts in Statistical Science, CRC Press, Boca Raton, Florida (2003)Google Scholar
  49. 49.
    Harrington, D.P., Fleming, T.R.: A class of rank test procedures for censored survival data. Biometrika 69, 553–566 (1982).  https://doi.org/10.1093/biomet/69.3.553)MathSciNetCrossRefzbMATHGoogle Scholar
  50. 50.
    Tukey, J.W.: On the comparative anatomy of transformations. Ann. Math. Stat. 28, 602–632 (1987)MathSciNetCrossRefGoogle Scholar
  51. 51.
    Bast, A.: Mycorrhizal inoculation as a promoter for sustainable eco-engineering measures in steep alpine environments? Diss. Univ. Bern, 149 S (2014)Google Scholar
  52. 52.
    Amaranthus, M.P., Trappe, J.M.: Effects of erosion on ecto- and VA-mycorrhizal inoculum potential of soil following forest fire in southwest Oregon. Plant Soil 150, 41–49 (1993)CrossRefGoogle Scholar
  53. 53.
    Last, F.T., Mason, P.A., Wilson, J., Deacon, J.W.: Fine roots and sheathing mycorrhizas: their formation, function and dynamics. Plant Soil 71, 9–21 (1983)CrossRefGoogle Scholar
  54. 54.
    Requena, N., Perez-Solis, E., Azcon-Aguilar, C., Jeffries, P., Barea, J.M.: Management of indigenous plant-microbe symbioses aids restoration of desertified ecosystems. Appl. Environ. Microbiol. 67, 495–498 (1983)CrossRefGoogle Scholar
  55. 55.
    Caravaca, F., Barea, J.M., Palenzuela, J., Figueroa, D., Alguacil, M.M., Roldan, A.: Establishment of shrub species in a degraded semiarid site after inoculation with native or allochthonous arbuscular mycorrhizal fungi. Appl. Soil. Ecol. 22, 103–111 (2003)CrossRefGoogle Scholar
  56. 56.
    King, E.G., Hobbs, R.J.: Identifying linkages among conceptual models of ecosystem degradation and restoration: towards an integrative framework. Restor. Ecol. 14, 369–378 (2006)CrossRefGoogle Scholar
  57. 57.
    Chaudhary, V.B., Bowker, M.A., O’Dell, T.E., Grace, J.B., Redman, A.E., Rillig, M.C., Johnson, N.C.: Untangle the biological contributions to soil stability in semiarid shrublands. Ecol. Appl. 19, 110–122 (2009)CrossRefGoogle Scholar
  58. 58.
    Jeffries, P., Gianinazzi, S., Perotto, S., Turnau, K., Barea, J.M.: The contribution of arbuscular mycorrhizal fungi in sustainable maintenance of plant health and soil fertility. Biol. Fertil. Soils 37, 1–16 (2003)Google Scholar
  59. 59.
    Byers, J.E., Cuddington, K., Jones, C.G., Talley, T.S., Hastings, A., Lambrinos, J.G., Crooks, J.A., Wilson, W.G.: Using ecosystem engineers to restore ecological systems. Trends Ecol. Evol. 21, 493–500 (2006)CrossRefGoogle Scholar
  60. 60.
    Grime, J.P., Mackey, J.M., Hillier, S.M., Read, D.J.: Floristic diversity in a model system using experimental microcosms. Nature 328, 420–422 (1987)CrossRefGoogle Scholar
  61. 61.
    Jakobsen, I., Joner, E.J., Larsen, J.: Hyphal phosphorus transport, a keystone to mycorrhizal enhancement of plant growth. In: Gianinazzi, S., Schüepp, H. (eds.) Impact of Mycorrhizal Colonisation on Root Architecture, Root Longevity and the Formation of Growth Regulators, pp. 133–146. Birkhäuser Verlag, Basel (1994)Google Scholar
  62. 62.
    Berta, G., Trotta, A., Fusconi, A., Hooker, J.E., Munro, M., Atkinson, D., Giovannetti, M., Morini, S., Fortuna, P., Tisserant, B., Gianinazzi-Pearson, V., Gianinazzi, S.: Arbuscular mycorrhizal induced changes to plant growth and root system morphology in Prunus cerasifera. Tree Physiol. 15(5), 281–293 (1995).  https://doi.org/10.1093/treephys/15.5.281CrossRefGoogle Scholar
  63. 63.
    Martins, A., Barroso, J., Pais, M.S.: Effect of ectomycorrhizal fungi on survival and growth of micropropagated plants and seedlings of Castanea sativa Mill. Myorrhiza 6, 265–270 (1996)CrossRefGoogle Scholar
  64. 64.
    Nara, K., Hogetsu, T.: Ectomycorrhizal fungi on established shrubs facilitate subsequent seedling establishment of successional plant species. Ecology 85, 1700–1707 (2004)CrossRefGoogle Scholar
  65. 65.
    Perry, D.A., Molina, R., Amaranthus, M.P.: Mycorrhizae, mycorrhizospheres, and reforestation: current knowledge and research needs. Can. J. For. Res. 17, 929–940 (1987)CrossRefGoogle Scholar
  66. 66.
    Fox, F.: Groupings of ectomycorrhizal fungi of birch and pine, based on establishment of mycorrhiza on seedlings from spores in unsterile soil. Trans. Br. Mycol. Soc. 87, 371–380 (1986)CrossRefGoogle Scholar
  67. 67.
    Gibson, F., Deacon, J.W.: Experimental study of establishment of ectomycorrhizas in different regions of birch root systems. Trans. Br. Mycol Soc. 91, 239–251 (1988)CrossRefGoogle Scholar
  68. 68.
    Harley, J.L., Harley, E.L.: A check-list of mycorrhizae in the British Flora. New Phytol. 105, 1–102 (1987)CrossRefGoogle Scholar
  69. 69.
    Crockford, R.H., Richardson, D.P.: Partitioning of rainfall into throughfall, stem flow and interception: effect of forest type, ground cover and climate. Hydrol. Process. 14, 2903–2920 (2000)CrossRefGoogle Scholar
  70. 70.
    Gigante, V., Iacobellis, V., Manfreda, S., Milelli, P., Porthogese, I.: Influences of Leaf Area Index estimations on water balance modeling in a Mediterranean semi-arid basin. Nat. Hazards Earth Syst. Sci. 9, 979–991 (2009)CrossRefGoogle Scholar
  71. 71.
    Jarvis, P.G., Stewart, J.B.: Evaporation of water from plantation forest. In: Ford, E.D., Malcolm, D.C., Atterson, J. (eds.) The Ecology of Even-aged Forest Plantations. Institute of Terrestrial Ecology, Cambridge (1978)Google Scholar
  72. 72.
    Gash, J.H.C., Morton, A.J.: An application of the Rutter model to the estimation of the interception loss from Thetford Forest. J. Hydrol. 38, 49–58 (1978)CrossRefGoogle Scholar
  73. 73.
    Teklehaimanot, Z., Jarvis, P.G., Ledger, D.C.: Rainfall interception and boundary layer conductance in relation to tree spacing. J. Hydrol. 123, 261–278 (1991)CrossRefGoogle Scholar
  74. 74.
    Ng, C.W.W., Liu, H.W., Feng, S.: Analytical solutions for calculating pore-water pressure in an infinite unsaturated slope with different root architectures. Can. Geotech. J. 52, 1981–1992 (2015)CrossRefGoogle Scholar
  75. 75.
    Bader, A.: How plants and mycorrhizal fungi contribute to soil aggregate stability. Master thesis, 146 pp. ETH (2014). http://www.wsl.ch/fe/gebirgshydrologie/wildbaeche/ projekte/SOSTANH/Theses_EN/AnjaBader
  76. 76.
    Pohl, M., Graf, F., Butler, A., Rixen, C.: The relationship between plant species richness and soil aggregate stability can depend on disturbance. Plant Soil 355, 87–102 (2012)CrossRefGoogle Scholar
  77. 77.
    LeBissonnais, Y.: Aggregate stability and assessment of soil crustability and erodibility. I. Theory and methodology. Eur. J. Soil Sci. 47, 425–437 (1996)CrossRefGoogle Scholar
  78. 78.
    Berta, G., Fusconi, A., Trotta, A., Cannerini, S.: Morphogenetic modifications induced by the mycorrhizal fungus Glomus strain E3 in the root system of Allium porrum L. New Phytol. 114, 207–215 (1990)CrossRefGoogle Scholar
  79. 79.
    Zhang, M.X., Javadi, A.A., Min, X.: Triaxial tests of sand reinforced with 3D inclusions. Geotext. Geomembr. 24, 201–209 (2006)CrossRefGoogle Scholar
  80. 80.
    Moos, C., Bebi, P., Graf, F., Mattli, J., Rickli, C., Schwarz, M.: How does forest structure affect root reinforcement and susceptibility to shallow landslides? Earth Surf. Process. Landforms 41, 951–960 (2016)CrossRefGoogle Scholar
  81. 81.
    Rickli, C. (ed.): Vegetationswirkungen und Rutschungen. Untersuchung zum Einfluss der Vegetation auf oberflächennahe Rutschprozesse anhand der Unwetterereignisse in Sachseln OW am 15. August 1997. Birmensdorf, Bern, Eidg. Forschungsanstalt WSL, Bundesamt für Umwelt, Wald und Landschaft. 97 S (2001)Google Scholar
  82. 82.
    Frehner, M., Wasser, B., Schwitter, R.: Nachhaltigkeit und Erfolgskontrolle im Schutzwald. Wegleitung für Pflegemassnahmen in Wäldern mit Schutzfunktion, Vollzug Umwelt. Bundesamt für Umwelt, Wald und Landschaft, Bern, 564 S (2005)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • Frank Graf
    • 1
    Email author
  • Alexander Bast
    • 2
  • Holger Gärtner
    • 2
  • Anil Yildiz
    • 1
    • 2
    • 3
  1. 1.WSL Institute for Snow and Avalanche Research SLFDavos DorfSwitzerland
  2. 2.Swiss Federal Institute for Forest, Snow and Landscape Research WSLBirmensdorfSwitzerland
  3. 3.IGT Institute for Geotechnical Engineering, ETH ZürichZurichSwitzerland

Personalised recommendations