Synthesizing Controllers: On the Correspondence Between LTL Synthesis and Non-deterministic Planning

  • Alberto Camacho
  • Jorge A. Baier
  • Christian Muise
  • Sheila A. McIlraith
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10832)


Linear Temporal Logic (\(\mathsf {LTL}\)) synthesis can be understood as the problem of building a controller that defines a winning strategy, for a two-player game against the environment, where the objective is to satisfy a given \(\mathsf {LTL}\) formula. It is an important problem with applications in software synthesis, including controller synthesis. In this paper we establish the correspondence between \(\mathsf {LTL}\) synthesis and fully observable non-deterministic (FOND) planning. We study \(\mathsf {LTL}\) interpreted over both finite and infinite traces. We also provide the first explicit compilation that translates an \(\mathsf {LTL}\) synthesis problem to a FOND problem. Experiments with state-of-the-art \(\mathsf {LTL}\) FOND and synthesis solvers show automated planning to be a viable and effective tool for highly structured \(\mathsf {LTL}\) synthesis problems.


Automated planning Controller synthesis LTL Non-deterministic planning 



The authors gratefully acknowledge funding from the Natural Sciences and Engineering Research Council of Canada (NSERC) and Fondecyt grant numbers 1150328 and 1161526.


  1. 1.
    Church, A.: Applications of recursive arithmetic to the problem of circuit synthesis. In: Summaries of the Summer Institute of Symbolic Logic, Cornell University, vol. 1, pp. 3–50 (1957)Google Scholar
  2. 2.
    Bloem, R., Jobstmann, B., Piterman, N., Pnueli, A., Saar, Y.: Synthesis of reactive (1) designs. J. Comput. Syst. Sci. JCSS 78(3), 911–938 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Pnueli, A.: The temporal logic of programs. In: FOCS, pp. 46–57 (1977)Google Scholar
  4. 4.
    Pnueli, A., Rosner, R.: On the synthesis of a reactive module. In: POPL, pp. 179–190 (1989)Google Scholar
  5. 5.
    Bohy, A., Bruyère, V., Filiot, E., Jin, N., Raskin, J.-F.: Acacia+, a tool for LTL synthesis. In: Madhusudan, P., Seshia, S.A. (eds.) CAV 2012. LNCS, vol. 7358, pp. 652–657. Springer, Heidelberg (2012). Scholar
  6. 6.
    Jobstmann, B., Bloem, R.: Optimizations for LTL synthesis. In: FMCAD, pp. 117–124 (2006)Google Scholar
  7. 7.
    De Giacomo, G., Felli, P., Patrizi, F., Sardiña, S.: Two-player game structures for generalized planning and agent composition. In: AAAI (2010)Google Scholar
  8. 8.
    Patrizi, F., Lipovetzky, N., Geffner, H.: Fair LTL synthesis for non-deterministic systems using strong cyclic planners. In: IJCAI (2013)Google Scholar
  9. 9.
    Sardiña, S., D’Ippolito, N.: Towards fully observable non-deterministic planning as assumption-based automatic synthesis. In: IJCAI, pp. 3200–3206 (2015)Google Scholar
  10. 10.
    De Giacomo, G., Vardi, M.Y.: Synthesis for LTL and LDL on finite traces. In: IJCAI, pp. 1558–1564 (2015)Google Scholar
  11. 11.
    Camacho, A., Triantafillou, E., Muise, C., Baier, J.A., McIlraith, S.A.: Non-deterministic planning with temporally extended goals: LTL over finite and infinite traces. In: AAAI, pp. 3716–3724 (2017)Google Scholar
  12. 12.
    Camacho, A., Baier, J.A., Muise, C.J., McIlraith, S.A.: Finite LTL synthesis as planning. In: ICAPS (2018, to appear)Google Scholar
  13. 13.
    Mattmüller, R., Ortlieb, M., Helmert, M., Bercher, P.: Pattern database heuristics for fully observable nondeterministic planning. In: ICAPS, pp. 105–112 (2010)Google Scholar
  14. 14.
    Muise, C., McIlraith, S.A., Beck, J.C.: Improved non-deterministic planning by exploiting state relevance. In: ICAPS, pp. 172–180 (2012)Google Scholar
  15. 15.
    Geffner, H., Bonet, B.: A concise introduction to models and methods for automated planning. Synth. Lectu. Artif. Intell. Mach. Learn. 7(2), 1–141 (2013)CrossRefzbMATHGoogle Scholar
  16. 16.
    De Giacomo, G., Vardi, M.Y.: Linear temporal logic and linear dynamic logic on finite traces. In: IJCAI (2013)Google Scholar
  17. 17.
    Vardi, M.Y., Wolper, P.: Reasoning about infinite computations. Inf. Comput. 115(1), 1–37 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Baier, J.A., McIlraith, S.A.: Planning with temporally extended goals using heuristic search. In: ICAPS, pp. 342–345 (2006)Google Scholar
  19. 19.
    Kissmann, P., Edelkamp, S.: Solving fully-observable non-deterministic planning problems via translation into a general game. In: Mertsching, B., Hund, M., Aziz, Z. (eds.) KI 2009. LNCS (LNAI), vol. 5803, pp. 1–8. Springer, Heidelberg (2009). Scholar
  20. 20.
    Rintanen, J., Heljanko, K., Niemelä, I.: Planning as satisfiability: parallel plans and algorithms for plan search. Artif. Intell. AIJ 170(12–13), 1031–1080 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Reiter, R.: Knowledge in Action: Logical Foundations for Specifying and Implementing Dynamical Systems. MIT Press, Cambridge (2001)zbMATHGoogle Scholar
  22. 22.
    Duret-Lutz, A., Lewkowicz, A., Fauchille, A., Michaud, T., Renault, E., Xu, L.: Spot 2.0 - a framework for LTL and \(\omega \)-automata manipulation. In: ATVA, pp. 122–129 (2016)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Alberto Camacho
    • 1
  • Jorge A. Baier
    • 2
  • Christian Muise
    • 3
  • Sheila A. McIlraith
    • 1
  1. 1.Department of Computer ScienceUniversity of TorontoTorontoCanada
  2. 2.Chilean Center for Semantic Web ResearchPontificia Universidad Católica de ChileSantiagoChile
  3. 3.IBM Research, Cambridge Research CenterCambridgeUSA

Personalised recommendations