Advertisement

Synthesizing Controllers: On the Correspondence Between LTL Synthesis and Non-deterministic Planning

  • Alberto Camacho
  • Jorge A. Baier
  • Christian Muise
  • Sheila A. McIlraith
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10832)

Abstract

Linear Temporal Logic (\(\mathsf {LTL}\)) synthesis can be understood as the problem of building a controller that defines a winning strategy, for a two-player game against the environment, where the objective is to satisfy a given \(\mathsf {LTL}\) formula. It is an important problem with applications in software synthesis, including controller synthesis. In this paper we establish the correspondence between \(\mathsf {LTL}\) synthesis and fully observable non-deterministic (FOND) planning. We study \(\mathsf {LTL}\) interpreted over both finite and infinite traces. We also provide the first explicit compilation that translates an \(\mathsf {LTL}\) synthesis problem to a FOND problem. Experiments with state-of-the-art \(\mathsf {LTL}\) FOND and synthesis solvers show automated planning to be a viable and effective tool for highly structured \(\mathsf {LTL}\) synthesis problems.

Keywords

Automated planning Controller synthesis LTL Non-deterministic planning 

Notes

Acknowledgements

The authors gratefully acknowledge funding from the Natural Sciences and Engineering Research Council of Canada (NSERC) and Fondecyt grant numbers 1150328 and 1161526.

References

  1. 1.
    Church, A.: Applications of recursive arithmetic to the problem of circuit synthesis. In: Summaries of the Summer Institute of Symbolic Logic, Cornell University, vol. 1, pp. 3–50 (1957)Google Scholar
  2. 2.
    Bloem, R., Jobstmann, B., Piterman, N., Pnueli, A., Saar, Y.: Synthesis of reactive (1) designs. J. Comput. Syst. Sci. JCSS 78(3), 911–938 (2012)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Pnueli, A.: The temporal logic of programs. In: FOCS, pp. 46–57 (1977)Google Scholar
  4. 4.
    Pnueli, A., Rosner, R.: On the synthesis of a reactive module. In: POPL, pp. 179–190 (1989)Google Scholar
  5. 5.
    Bohy, A., Bruyère, V., Filiot, E., Jin, N., Raskin, J.-F.: Acacia+, a tool for LTL synthesis. In: Madhusudan, P., Seshia, S.A. (eds.) CAV 2012. LNCS, vol. 7358, pp. 652–657. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-31424-7_45CrossRefGoogle Scholar
  6. 6.
    Jobstmann, B., Bloem, R.: Optimizations for LTL synthesis. In: FMCAD, pp. 117–124 (2006)Google Scholar
  7. 7.
    De Giacomo, G., Felli, P., Patrizi, F., Sardiña, S.: Two-player game structures for generalized planning and agent composition. In: AAAI (2010)Google Scholar
  8. 8.
    Patrizi, F., Lipovetzky, N., Geffner, H.: Fair LTL synthesis for non-deterministic systems using strong cyclic planners. In: IJCAI (2013)Google Scholar
  9. 9.
    Sardiña, S., D’Ippolito, N.: Towards fully observable non-deterministic planning as assumption-based automatic synthesis. In: IJCAI, pp. 3200–3206 (2015)Google Scholar
  10. 10.
    De Giacomo, G., Vardi, M.Y.: Synthesis for LTL and LDL on finite traces. In: IJCAI, pp. 1558–1564 (2015)Google Scholar
  11. 11.
    Camacho, A., Triantafillou, E., Muise, C., Baier, J.A., McIlraith, S.A.: Non-deterministic planning with temporally extended goals: LTL over finite and infinite traces. In: AAAI, pp. 3716–3724 (2017)Google Scholar
  12. 12.
    Camacho, A., Baier, J.A., Muise, C.J., McIlraith, S.A.: Finite LTL synthesis as planning. In: ICAPS (2018, to appear)Google Scholar
  13. 13.
    Mattmüller, R., Ortlieb, M., Helmert, M., Bercher, P.: Pattern database heuristics for fully observable nondeterministic planning. In: ICAPS, pp. 105–112 (2010)Google Scholar
  14. 14.
    Muise, C., McIlraith, S.A., Beck, J.C.: Improved non-deterministic planning by exploiting state relevance. In: ICAPS, pp. 172–180 (2012)Google Scholar
  15. 15.
    Geffner, H., Bonet, B.: A concise introduction to models and methods for automated planning. Synth. Lectu. Artif. Intell. Mach. Learn. 7(2), 1–141 (2013)CrossRefMATHGoogle Scholar
  16. 16.
    De Giacomo, G., Vardi, M.Y.: Linear temporal logic and linear dynamic logic on finite traces. In: IJCAI (2013)Google Scholar
  17. 17.
    Vardi, M.Y., Wolper, P.: Reasoning about infinite computations. Inf. Comput. 115(1), 1–37 (1994)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Baier, J.A., McIlraith, S.A.: Planning with temporally extended goals using heuristic search. In: ICAPS, pp. 342–345 (2006)Google Scholar
  19. 19.
    Kissmann, P., Edelkamp, S.: Solving fully-observable non-deterministic planning problems via translation into a general game. In: Mertsching, B., Hund, M., Aziz, Z. (eds.) KI 2009. LNCS (LNAI), vol. 5803, pp. 1–8. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-04617-9_1CrossRefGoogle Scholar
  20. 20.
    Rintanen, J., Heljanko, K., Niemelä, I.: Planning as satisfiability: parallel plans and algorithms for plan search. Artif. Intell. AIJ 170(12–13), 1031–1080 (2006)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Reiter, R.: Knowledge in Action: Logical Foundations for Specifying and Implementing Dynamical Systems. MIT Press, Cambridge (2001)MATHGoogle Scholar
  22. 22.
    Duret-Lutz, A., Lewkowicz, A., Fauchille, A., Michaud, T., Renault, E., Xu, L.: Spot 2.0 - a framework for LTL and \(\omega \)-automata manipulation. In: ATVA, pp. 122–129 (2016)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Alberto Camacho
    • 1
  • Jorge A. Baier
    • 2
  • Christian Muise
    • 3
  • Sheila A. McIlraith
    • 1
  1. 1.Department of Computer ScienceUniversity of TorontoTorontoCanada
  2. 2.Chilean Center for Semantic Web ResearchPontificia Universidad Católica de ChileSantiagoChile
  3. 3.IBM Research, Cambridge Research CenterCambridgeUSA

Personalised recommendations