Advertisement

Ecosystem-Based Approaches for Disaster Risk Reduction and Climate Change Adaptation in Rio de Janeiro State

  • Wolfram Lange
  • Simone Sandholz
  • Jennifer Viezzer
  • Martin Becher
  • Udo Nehren
Chapter
Part of the Springer Series on Environmental Management book series (SSEM)

Abstract

In the mountain ranges (Região Serrana) of the Rio de Janeiro state (RJ), natural hazards such as landslides, mudslides, and flooding are recurrent, causing considerable human and economic losses. These events are of natural origin, but landscape degradation contributes significantly to increased disaster risk. Extreme climatic events that triggered past disasters are predicted to increase in frequency and intensity in the future. The approaches of ecosystem-based adaptation (EbA) and ecosystem-based disaster risk reduction (Eco-DRR) aim at the sustainable management, conservation, and restoration of ecosystems to cope with the adverse effects of climate change and reduce the impacts of natural hazards. In this context, this chapter provides a comprehensive overview of climate change adaptation (CCA) and disaster risk reduction (DRR) policies at national and state level, before analyzing the linkages between CCA/DRR and biodiversity and ecosystem management. Finally, EbA/Eco-DRR measures that are currently planned or have already been implemented are presented, and the further potential and limitations of EbA/Eco-DRR in RJ are discussed.

Keywords

Natural hazards Disaster risk reduction Climate change adaptation Ecosystem-based approaches Rio de Janeiro state 

Resumo (Português) Abordagens Ecossistêmicas Para a Redução de Risco de Desastres e Adaptação às Mudanças Climáticas no Estado Do Rio de Janeiro

Na Região Serrana do estado do Rio de Janeiro, os riscos naturais, tais como deslizamentos de terra e inundações são recorrentes, ocasionando consideráveis ​​perdas humanas e econômicas. Esses eventos são de origem natural, mas a degradação da paisagem contribui significativamente para aumentar o risco de desastres. A previsão é que os eventos climáticos extremos que provocaram desastres passados ​​ aumentarão em número e intensidade no futuro. As abordagens da adaptação baseada nos ecossistemas (EbA na sigla inglesa) e a redução do risco de desastres baseada em ecossistemas (Eco-DRR na sigla inglesa) visam a gestão sustentável, a conservação e a restauração de ecossistemas para enfrentar os efeitos adversos das mudanças climáticas e reduzir os impactos dos riscos naturais. Neste contexto, este capítulo fornece uma visão abrangente das políticas de adaptação às mudanças climáticas (CCA na sigla inglesa) e redução de risco de desastres (DRR na sigla inglesa) a nível nacional e estadual, como base para analisar os vínculos entre CCA/DRR, biodiversidade e gestão de ecossistemas. Finalmente, algumas medidas exemplares de EbA/Eco-DRR que estão atualmente planejadas ou já foram implementadas são apresentadas a fim de concluir sobre potenciais e limitações adicionais.

Palavras-chave

Riscos naturais Redução de risco de desastres Adaptação às mudanças climáticas Abordagens baseadas nos ecossistemas Estado do Rio de Janeiro 

Resumen (Español) Enfoques Ecosistémicos Para la Reducción de Riesgo de Desastres Y Adaptación al Cambio Climático en el Estado de Río de Janeiro

En la region serrana del estado de Río de Janeiro, los riesgos naturales como deslizamientos de tierra, deslaves e inundaciones son recurrentes y ocasionan considerables pérdidas humanas y económicas. Si bien estos fenómenos son de origen natural, la degradación del paisaje contribuye significativamente a aumentar el riesgo de desastres. Se estima que los mismos eventos climáticos extremos que provocaron desastres en el pasado, aumentarán en número e intensidad en el futuro. Los enfoques de adaptación (EbA por sus siglas en inglés) y de reducción del riesgo de desastres (Eco-DRR por sus siglas en inglés) basados en los ecosistemas, tienen como objeto el manejo sostenible, la conservación y la restauración de los ecosistemas para hacer frente a los efectos adversos del cambio climático y reducir los impactos de los riesgos naturales. En este contexto, el presente capítulo busca proporcionar una vision comprensiva e integral de las políticas de adaptación al cambio climático (CCA por sus siglas en inglés) y de reducción del riesgo de desastres (DRR por sus siglas en inglés) existentes a nivel nacional y estatal, como base para analizar los vínculos entre CCA/DRR, biodiversidad y el manejo de ecosistemas. Finalmente, seÿpresentan algunas medidas de EbA/Eco-DRR implementadas o en fase de planeación, su potencial y las limitaciones adicionales que conlleva el caso particular del estado de Río de Janeiro.

Palabras clave

Riesgos naturales Reducción de riesgo de desastres Adaptación al cambio climático Enfoques basados en ecosistemas Estado de Rio de Janeiro 

References

  1. Alliance Development Works, United Nations University – Institute for Environment and Human Security, The Nature Conservancy (2012) World Risk Report 2012. Alliance Development Works, BerlinGoogle Scholar
  2. Barbier EB (2016) The protective service of mangrove ecosystems: a review of valuation methods. Mar Pollut Bull 109(2):676–681CrossRefGoogle Scholar
  3. Brink E, Aalders T, Adam D et al (2016) Cascades of green: a review of ecosystem-based adaptation in urban areas. Glob Environ Chang 36:111–123CrossRefGoogle Scholar
  4. CBD – Secretariat of the Convention on Biological Diversity (2009) Connecting biodiversity and climate change mitigation and adaptation: report of the second ad hoc technical expert group on biodiversity and climate change. Montreal, Canada: Technical Series No. 41Google Scholar
  5. Daigneault A, Brown P, Gawith D (2016) Dredging versus hedging: comparing hard infrastructure to ecosystem-based adaptation to flooding. Ecol Econ 122:25–35CrossRefGoogle Scholar
  6. Doswald N, Estrella M (2015) Promoting ecosystems for disaster risk reduction and climate change adaptation: opportunities for integration. United Nations Environment Programme, GenevaGoogle Scholar
  7. Dudley N, Buyck C, Furuta N et al (2015) Protected areas as tool for disaster risk reduction, a handbook for practitioners. MOEJ and IUCN, Tokyo/GlandCrossRefGoogle Scholar
  8. Dutra CM, de Cordeiro SHT C, Cordeiro LA, Deitenbach A (2013) Roteiro para a elaboração dos Planos Municipais de Conservação e Recuperação da Mata Atlântica. Série Biodiversidade 48. Brasília/Brazil: MMAGoogle Scholar
  9. Emerton L, Huxham M, Bournazel J, Priyantha Kumara M (2016) Valuing ecosystems as an economic part of climate-compatible development infrastructure in coastal zones of Kenya and Sri Lanka. In: Renaud FK, Sudmeier-Rieux K, Estrella M, Nehren U (eds) Ecosystem-based disaster risk reduction and adaptation in practice. Springer. Advances in Natural and Technological Hazards Research, SwitzerlandGoogle Scholar
  10. Estrella M, Saalismaa N (2013) Ecosystem-based Disaster Risk Reduction (Eco-DRR): An Overview. In: Renaud F, Sudmeier-Rieux K, Estrella M (eds) The role of ecosystem management in disaster risk reduction. United Nations University Press, TokyoGoogle Scholar
  11. Frank B, Formiga-Johnsson RM, Viana VJ, Ikemoto SM (2018) Disaster risk management in the State of Rio de Janeiro. In: Nehren U, Schlüter S, Raedig C, Sattler D, Hissa H (eds) Strategies and tools for a sustainable rural Rio de Janeiro. Springer International Publishing, Rio de JaneiroGoogle Scholar
  12. Guannel G, Arkema K, Ruggiero P, Verutes G (2016) The power of three: coral reefs, seagrasses and mangroves protect coastal regions and increase their resilience. PLoS One 11(7):1–22CrossRefGoogle Scholar
  13. Guzmán Wolfhard L, Raedig C (2018) Connectivity conservation management: connecting private protected areas. In: Nehren U, Schlüter S, Raedig C, Sattler D, Hissa H (eds) Strategies and tools for a sustainable rural Rio de Janeiro. Springer International Publishing, Rio de JaneiroGoogle Scholar
  14. Heinrich J, Nehren U, Sattler D (2010) Waldfragmente des brasilianischen Küstengebirges – Entwicklungsdynamik und aktuelle räumliche Muster. Geogr Rundsch 9:34–41Google Scholar
  15. IPCC (2012) Managing the risks of extreme events and disasters to advance climate change adaptation. A Special Report of Working Groups I and II of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge/New YorkGoogle Scholar
  16. Lange W, Cavalcante L, Dünow L et al (2014) HumaNatureza2 = Proteção Mútua. Percepção de riscos e adaptação à mudança climática baseada nos ecossistemas na Mata Atlântica, Brasil. SLE Publication Series Humboldt Universität zu Berlin, pp 255Google Scholar
  17. Lange W, Sandholz S, Nehren U (2018) Strengthening urban resilience through nature: the potential of ecosystem-based measures for reduction of landslide risk in Rio de Janeiro. Working Paper. Cambridge, MA: Lincoln Institute of Land Policy (accepted – forthcoming)Google Scholar
  18. Lo V (2016) Synthesis report on experiences with ecosystem-based approaches to climate change adaptation and disaster risk reduction. Technical Series No. 85. Secretariat of the Convention on Biological Diversity, Montreal. https://www.cbd.int/doc/publications/cbd-ts-85-en.pdf. Accessed 22 Mar 2017
  19. Marengo JA (2014) O futuro clima do Brasil. Revista USP 103:25–32CrossRefGoogle Scholar
  20. MMA - Ministério do Meio Ambiente (2011) Áreas de preservação permanente e unidades de conservação & áreas de risco. O que uma coisa tem a ver com a outra? Relatório de Inspeção da área atingida pela tragédia das chuvas na Região Serrana do Rio de Janeiro. Série Biodiversidade. MMA, Brasília, Brazil, p 41Google Scholar
  21. Munang R, Thiaw I, Alverson K, Liu J, Han Z (2013) The role of ecosystem services in climate change adaptation and disaster risk reduction. Curr Opin Environ Sustain 5(1):47–52CrossRefGoogle Scholar
  22. Murti R, Buyck C (eds) (2014) Safe havens: protected areas for disaster risk reduction and climate change adaptation. IUCN, GlandGoogle Scholar
  23. Naegeli de Torres F, Richter R, Cardoso Fidalgo EC (2018) Multi-criteria site prioritization for land rehabilitation in the Guapi-Macacu Watershed, Rio de Janeiro. In: Nehren U, Schlüter S, Raedig C, Sattler D, Hissa H (eds) Strategies and tools for a sustainable rural Rio de Janeiro. Springer International Publishing, Rio de JaneiroGoogle Scholar
  24. Nehren U, Kirchner A, Lange W et al (2018) Natural hazards and climate change impacts in the state of Rio de Janeiro: a landscape historical analysis. In: Nehren U, Schlüter S, Raedig C, Sattler D, Hissa H (eds) Strategies and tools for a sustainable rural Rio de Janeiro. Springer International Publishing, Rio de JaneiroGoogle Scholar
  25. Nehren U, Kirchner A, Sattler D et al (2013) Impact of natural climate change and historical land use on landscape development in the Atlantic Forest of Rio de Janeiro, Brazil. Anais Acad Brasil Ciênc 85(2):311–332Google Scholar
  26. Nehren U, Lange W, Kupka S (2017) Ökosystembasierte Maßnahmen zur Risikominderung und Anpassung an den Klimawandel in Südostbrasilien. Geogr Rundsch 4:26–31Google Scholar
  27. Piratelli AJ, Marquez Piña-Rodrigues FC, Raedig C (2018) Integrating biodiversity conservation into agroecosystem management: Using birds to bring conservation and agricultural production together. In: Nehren U, Schlüter S, Raedig C, Sattler D, Hissa H (eds) Strategies and tools for a sustainable rural Rio de Janeiro. Springer International Publishing, Rio de JaneiroGoogle Scholar
  28. Renaud F, Sudmeier-Rieux K, Estrella M (2013) The role of ecosystems for disaster risk reduction. United Nations University Press, TokyoGoogle Scholar
  29. Renaud FK, Sudmeier-Rieux K, Estrella M, Nehren U (eds) (2016) Ecosystem-based disaster risk reduction and adaptation in practice. Springer. Advances in Natural and Technological Hazards ResearchGoogle Scholar
  30. Sandholz S, Lange W, Nehren U (2018) Governing green change: ecosystem-based measures for reducing landslide risk in Rio de Janeiro. Int J Disaster Risk Reduct. https://doi.org/10.1016/j-ijdrr.2018.01.020
  31. Scarano FR, Ceotto P (2015) Brazilian Atlantic forest: impact, vulnerability, and adaptation to climate change. Biodivers Conserv 24:2319–2331CrossRefGoogle Scholar
  32. Seliger R, Sattler D, Soareas da Silva A et al (2018) Rehabilitation of degraded sloped pastures - lessons learned in Itaocara. In: Nehren U, Schlüter S, Raedig C, Sattler D, Hissa H (eds) Strategies and tools for a sustainable rural Rio de Janeiro. Springer International Publishing, Rio de JaneiroGoogle Scholar
  33. UNEP, UNEP-DHI, IUCN et al (2014) Green infrastructure guide for water management: ecosystem-based management approaches for water-related infrastructure projects. UNEP, GenevaGoogle Scholar
  34. van Bohemen H (2012) (Eco) System thinking: Ecological principles for buildings, roads and industrial and urban areas. In: van Bueren EM, van Bohemen H, Itard L, Visscher H (eds) Sustainable urban environments. Springer, Dordrecht, pp 15–70CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • Wolfram Lange
    • 1
  • Simone Sandholz
    • 2
  • Jennifer Viezzer
    • 3
  • Martin Becher
    • 4
  • Udo Nehren
    • 5
  1. 1.Department of GeographyUniversity of CologneKölnGermany
  2. 2.United Nations University – Institute for Environment and Human Security (UNU-EHS)BonnGermany
  3. 3.Federal Ministry of Environment (Ministério do Meio Ambiente – MMA)BrasíliaBrazil
  4. 4.Deutsche Gesellschaft für Technische Zusammenarbeit GmbH (GIZ)EschbornGermany
  5. 5.Institute for Technology and Resources Management in the Tropics and Subtropics (ITT)TH Köln – University of Applied SciencesKölnGermany

Personalised recommendations