Advertisement

Natural Hazards and Climate Change Impacts in the State of Rio de Janeiro: A Landscape Historical Analysis

  • Udo NehrenEmail author
  • André Kirchner
  • Wolfram Lange
  • Marco Follador
  • Dieter Anhuf
Chapter
Part of the Springer Series on Environmental Management book series (SSEM)

Abstract

Floods, landslides, and mudslides are frequent phenomena in Rio de Janeiro state (RJ). In the past decades, several catastrophic events have occurred and caused severe damages to people and infrastructure. In contrast, the persistent droughts that affected Southeast Brazil between 2014 and 2017 are phenomena that were not known earlier – at least in such frequency and intensity. Climate scenarios predict that extreme events will further increase in the future leading to increased heavy rainfall events on the one hand and longer dry spells on the other. In this chapter, we provide an overview on the different types of natural hazards, their occurrence (frequency) and intensity, and historical disasters caused by these hazards in RJ. Furthermore, we reconstruct in how far climate variability and human impact (in particular deforestation) affected the occurrence of hydrometeorological hazards in the Holocene. Based on the analysis of historical trends and modeling outcomes under different climate scenarios, we discuss potential future hazards.

Keywords

Natural hazards Disasters Climate change impacts Rio de Janeiro state Land use history 

Resumo (Português) Ameaças Naturaís e Impactos das Mudanças Climáticas no Estado do Rio de Janeiro: Uma Análise Histórica da Paisagem

Inundações e deslizamentos de terra são fenômenos frequentes no Estado do Rio de Janeiro. Nas últimas décadas, ocorreram vários eventos catastróficos que causaram graves danos às pessoas e à infraestrutura. Em constraste, as persistentes secas que afetaram o Sudeste do Brasil entre 2012 e 2016 são fenômenos que não eram conhecidos em tempos mais recentes - pelo menos com tamanha frequência e intensidade. Os cenários climáticos preveem que os eventos extremos serão mais frequentes no futuro, levando ao aumento de ocorrências pluviométricos intensas de um lado, e a períodos de seca, de outro. Neste capítulo, fornecemos uma visão geral sobre os diferentes tipos de riscos naturais, sua ocorrência (frequência) e intensidade, bem como os desastres históricos causados por esses ameaças no Estado do Rio de Janeiro. Além disso, reconstruímos em até que ponto a variabilidade climática e o impacto humano (em particular o desmatamento) afetaram a ocorrência de ameaças hidrometeorológicas no holoceno. Com base na análise das tendências históricas e nos resultados das modelagens em diferentes cenários climáticos, discutimos os perigos potenciais.

Palavras-chave

Ameaças naturais Desastres Impactos das mudanças climáticas Estado do Rio de Janeiro História do uso da terra 

Resumen (Español) Amenazas Naturales e Impactos de Cambio Climático en el Estado de Río de Janeiro: Un Análisis Histórico de Paisaje

Inundaciones y deslizamiento de tierras son fenómenos frecuentes en el Estado de Río de Janeiro. En las últimas décadas ocurrieron varios eventos catastróficos que causaron graves daños a personas e infraestructuras. En contraste, las diferentes sequías que afectaron el Sudeste de Brasil entre 2012 y 2016, son fenómenos que no se conocían anteriormente – por lo menos a tal frecuencia e intensidad. Los escenarios climáticos prevén que los eventos extremos irán aumentando aún más en el futuro, lo que conducirá a un aumento en los eventos de lluvias intensas, por un lado, y períodos secos más largos por el otro. Este capítulo provee una visión general sobre los diferentes tipos de riesgos naturales, su ocurrencia (frecuencia) e intensidad, así como los desastres históricos causados por estas amenazas en el Estado de Río de Janeiro. Igualmente, reconstruimos en qué medida la variabilidad climática y el impacto humano (en particular la deforestación) afecta la ocurrencia de amenazas hidrometeorológicas en el Holoceno. Con base al análisis de tendencias históricas y los resultados de modelajes bajo diferentes escenarios climáticos, discutimos los potenciales peligros.

Palabras clave

Amenazas naturales Desastres Impactos de cambio climático Estado de Río de Janeiro Historia de uso de la tierra 

References

  1. Amador ES (1980) Assoreamento da Baía de Guanabara: taxas de sedimentação. Anais Acad Brasil Ciénc 52(4):723–742Google Scholar
  2. Avelar AS, Coelho Netto AL, Lacerda WA et al (2011) Mechanisms of the recent catastrophic landslides in the mountainous range of Rio de Janeiro, Brazil. In: Proceedings of the second world landslide forum, Rome, 3–7 Oct 2011Google Scholar
  3. Barata FE (1969) Landslides in the tropical region of Rio de Janeiro. In: Proceedings of the 7th international conference on soil mechanics and foundation engineering, Mexico City, vol 2, pp 507–516Google Scholar
  4. Behling H (1995) A high resolution Holocene pollen record from Lago do Pires, SE Brazil: vegetation, climate and fire history. J Paleolimnol 14:253–268CrossRefGoogle Scholar
  5. Behling H (2002) South and southeastern grasslands during Late Quaternary times: a synthesis. Palaeogeogr Palaeoclimatol Palaeoecol 177:19–27CrossRefGoogle Scholar
  6. Behling H, Dupont L, Shafford HD, Wefer G (2007) Late quaternary vegetation and climate dynamics in the Serra da Bocaina, southeastern Brazil. Quatern Int 161:22–31CrossRefGoogle Scholar
  7. Behling H, Safford HD (2010) Late-glacial and Holocene vegetation, climate and fire dynamics in the Serra dos Órgãos, Rio de Janeiro state, southeastern Brazil. Glob Chang Biol 16(6):1661–1671CrossRefGoogle Scholar
  8. Bigarella JJ, Becker RD (1975) International symposium on the quaternary. Boletim Paranaense de Geociências 33Google Scholar
  9. Bittencourt F, Follador M, Pereira V et al (2017) Climate vulnerability Index: a case study for the city of Belo Horizonte, Brazil. In: In: Climate change adaptation in Latin America: managing vulnerability, fostering resilience - climate change management series. Springer, Cham. In PressGoogle Scholar
  10. Brandão AMPM (1997) As chuvas e a acão humana: Uma infeliz coincidência. In: Rosa LP, Lacerda WA (eds) Tormentas Cariocas. COPPE/UFRJ, Rio de Janeiro, pp 21–38Google Scholar
  11. Camarinha PI, Debortoli NS, Hirota M (2015) Índice de vulnerabilidade aos desastres naturais relacionadas às secas: no contexto de mundaças climáticas, produto II: Relatório com os resultados e discussões sobre o índice de vulnerabilidade e avaliação dos impactos relacionados às secas para as diferentes regiões do Brasil, FlorianópolisGoogle Scholar
  12. Chou SC, Lyra A, Mourão C et al (2014) Assessment of climate change over South America under RCP 4.5 and 8.5 downscaling scenarios. Am J Clim Chang 3(05):512CrossRefGoogle Scholar
  13. Coelho Netto AL (1999) Catastrophic landscape evolution in a humid region (SE Brazil): inheritances from tectonic, climatic and land use induced changes. In: Supplementi di Geografia Fisica e Dinamica Quaternaria III (T.3). Comitato Glaciologico Italiano, Torino, pp 21–48Google Scholar
  14. Coelho Netto AL, Avelar AS, Fernandes MC, Lacerda WA (2007) Landslide susceptibility in a mountainous geoecosystem,Tijuca Massif, Rio de Janeiro: the role of morphometric subdivision of the terrain. Geomorphology 87:120–131CrossRefGoogle Scholar
  15. Coelho Netto AL, Sato AM, Avelar AS et al (2011) January 2011: the extreme landslide disaster in Brazil. In: Proceedings of the second world landslide forum, Rome, 3–7 Oct 2011Google Scholar
  16. da Costa Nunes AJ (1969) Landslides in soils of decomposed rock due to intense rainstorms. In: Proceedings of the 7th international conference on soil mechanics and foundation engineering, Mexico City, vol 2, pp 547–554Google Scholar
  17. Dantas ME, Coelho Netto AL (1995) Impacto do ciclo cafeeiro na evolução da paisagem geomorphológica no medio vale do Rio Paraiba do Sul. Cad Geosciências 15:22Google Scholar
  18. de Oliveira PE, Behling H, Ledru M-P et al (2005) Paleovegetação e paleoclimas do Quaternário do Brasil. In: Gouveia Souza CR, Suguio K, Santos Oliveira AM, Oliveira PE (eds) . O Quaternário do Brasil, Ribeirão Preto, pp 52–74Google Scholar
  19. de Ploey J, Cruz O (1979) Landslides in the Serra do Mar, Brazil. Catena 6:111–122CrossRefGoogle Scholar
  20. Duarte de Barros W (1956) A erosão no Brasil. Ministério da viação e obras públicas serviço de documentaçãoGoogle Scholar
  21. Dykes AP (2002) Weathering-limited rainfall-triggered shallow mass movements in undisturbed steepland tropical rainforest. Geomorphology 46:73–93CrossRefGoogle Scholar
  22. EM-DAT (n.d.) The emergency events database – Université catholique de Louvain (UCL) – CRED, D. Guha-Sapir - www.emdat.be, Brussels, Belgium. Accessed 30 Aug 2017
  23. Escobar H (2015) Drought triggers alarms in Brazil’s biggest metropolis. Science 347(6224):812CrossRefGoogle Scholar
  24. Fernandes MC, Laguens JVM, Coelho Netto AL (1999) O processo de ocupação por favelas e sua relação com os eventos de deslizamentos no Maciço da Tijuca. Anuário do Instituto de Geociências/UFRJ 22:22–36Google Scholar
  25. Ferreira Filho JBS, Moraes GI (2015) Climate change, agriculture and economic effects on different regions of Brazil. Environ Dev Econ 20(1):37–56CrossRefGoogle Scholar
  26. Follador M, Ferreira Filho JB, Brito M (2015) Avaliação de impactos econômicos de riscos climáticos e proposta preliminar de medidas de adaptação a nível nacional – setor segurança alimentar. Comissão Econômica para a América Latina e o Caribe – Nações Unidas, BrasíliaGoogle Scholar
  27. Follador M, Rocha A, Vaz C et al (2016) Impactos Biofísicos Potenciais da Mudança do Clima na Mata Atlântica. Ministério de Meio Ambiente MMA, BrasíliaGoogle Scholar
  28. Fundação Coppetec and Laboratório de Hidrologia e Estudos de Meio Ambiente (2014) Elaboração do plano estadual de recursos hídricos do Estado do Rio de Janeiro: R3-A – Temas técnicos a eventos críticos, RT-03 – Vulnerabilidade a eventos críticos, vol 1Google Scholar
  29. Furian S, Barbiéro L, Boulet R (1999) Organisation of the soil mantle in tropical southeastern Brazil (Serra do Mar) in relation to landslides processes. Catena 38:65–83CrossRefGoogle Scholar
  30. Getirana ACV (2015) Extreme water deficit in Brazil detected from space. J Hydrometeorol 17(2):591–599CrossRefGoogle Scholar
  31. Godoy JM, Oliveira AV, Almeida AC et al (2012) Guanabara bay sedimentation rates based on 210Pb dating: reviewing the existing data and adding new data. J Braz Chem Soc 23(7):1265–1273CrossRefGoogle Scholar
  32. Haug GH, Hughen KA, Sigman DM et al (2001) Southward migration of the Intertropical Convergence Zone through the Holocene. Science 293:1304–1308CrossRefGoogle Scholar
  33. Hiruma ST, Modenesi-Gauttieri MC, Riccomini C (2013) Late quaternary colluvial deposits in the Bocaina Plateau, southeastern Brazil highlands: age and palaeoenvironmental consequences. Boreas 42:306–316CrossRefGoogle Scholar
  34. Kirchner A (2014) Rekonstruktion der spätpleistozänen und holozänen Landschaftsgenese im Guapi-Macacu Einzugsgebiet, Rio de Janeiro, Südostbrasilien. PhD thesis, University of Leipzig. http://www.qucosa.de/recherche/frontdoor/?tx_slubopus4frontend[id]=14709
  35. Kirchner A, Nehren U (2017) Comment on: “Linked variations in sediment accumulation rates and sea-level in Guanabara Bay, Brazil, over the last 6000 years” by Alberto G. Figueiredo Jr., Mauro B. de Toledo, Renato C. Cordeiro, José M.O. Godoy, Fabiano T. da Silva, Sérgio C. Vasconcelos, Ricardo A. dos Santos [Palaeo 3 415 (2014) 83–90]. Palaeogeogr Palaeoclimatol Palaeoecol 482:114–116Google Scholar
  36. Kirchner A, Nehren U, Behling H, Heinrich J (2015) Mid- and late Holocene fluvial dynamics in the tropical Guapi-Macacu catchment, Southeast Brazil: the role of climate change and human impact. Palaeogeogr Palaeoclimatol Palaeoecol 426:308–318CrossRefGoogle Scholar
  37. Lange W, Sandholz S, Viezzer J et al (2018) Ecosystem-based approaches for disaster risk reduction and climate change adaptation in Rio de Janeiro state. In: Nehren U, Schlüter S, Raedig C, Sattler D, Hissa H (eds) Strategies and tools for a sustainable rural Rio de Janeiro. Springer International Publishing, Rio de JaneiroGoogle Scholar
  38. Lima TA, Macario KD, Anjos RM et al (2002) The antiquity of the prehistoric settlement of the central-south Brazilian coast. Radiocarbon 44(3):733–738CrossRefGoogle Scholar
  39. Machado de Mello F, Machado R, Bilal E (2014) Predisposing factors for shallow landslides susceptibility in Southeastern Rio de Janeiro. Brazil Rom J Mineral Deposits 87(2):55–60Google Scholar
  40. Marengo JA (2014) O futuro clima do Brasil. Revista USP 103:25–32CrossRefGoogle Scholar
  41. Marengo JA, Nobre CA, Seluchi ME et al (2015) A seca e a crise hídrica de 2014-2015 em São Paulo. Revista USP 106:31–44CrossRefGoogle Scholar
  42. Modenesi-Gauttieri MC (2000) Hillslope deposits and the quaternary evolution of the altos campos — Serra da Mantiqueira, from Campos do Jordão to the Itatiaia Massif. Rev Bras Geosci 30(3):504–510Google Scholar
  43. Moss R, Babiker M, Brinkman S et al (2008) Towards new scenarios for analysis of emissions, climate change, impacts, and response strategies. IPCC Expert Meeting Report on New Scenarios. Intergovernmental Panel on Climate Change, Geneva, p 25Google Scholar
  44. Motta D (2016) Estudo avalia o risco de desertificação no estado do Rio de Janeiro, FAPER J. http://www.faperj.br/?id=3091.2.7. Accessed 21 Mar 2017
  45. Nehren U (2008) Quartäre Landschaftsgenese und historische -degradation in der Serra dos Órgãos, Rio de Janeiro. PhD thesis, Univerity of Leipzig. http://www.cuvillier.de/flycms/de/html/30/-UickI3zKPS7xcUg=/Buchdetails.html
  46. Nehren U, Kirchner A, Heinrich J (2016) What do yellowish-brown soils and stone layers tell us about Late Quaternary landscape evolution and soil development in the humid tropics? A field study in the Serra dos Órgãos, Southeast Brazil. Catena 137:173–190CrossRefGoogle Scholar
  47. Nehren U, Kirchner A, Sattler D et al (2013) Impact of natural climate change and historical land use on landscape development in the Atlantic Forest of Rio de Janeiro, Brazil. Anais Acad Brasil Ciênc 85(2):311–332Google Scholar
  48. Nehren U, Lange W, Kupka S (2017) Ökosystembasierte Maßnahmen zur Risikominderung und Anpassung an den Klimawandel in Südostbrasilien. Geogr Rundsch 4:26–31Google Scholar
  49. Nehren U, Sudmeier-Rieux K, Sandholz S et al (eds) (2014) The ecosystem-based disaster risk reduction case study and exercise source book. CNRD/PEDRR. http://postconflict.unep.ch/publications/DRR_CASE_STUDIES_&_EXERCISES.pdf
  50. Nobre CA, Marengo JA, Seluchi ME et al (2016) Some characteristics and impacts of the drought and water crisis in Southeastern Brazil during 2014 and 2015. J Water Resource Prot 8:252–262CrossRefGoogle Scholar
  51. Pereira DR, Martinez MA, Pruski FF, da Silva DD (2016) Hydrological simulation in a basin of typical tropical climate and soil using the SWAT model part I: calibration and validation tests. J Hydrol: Regional Studies 7:14–37Google Scholar
  52. Peterson LC, Haug GH (2006) Variability in the mean latitude of the Atlantic Intertropical Convergence Zone as recorded by riverine input of sediments to the Cariaco Basin (Venezuela). Palaeogeogr Palaeoclimatol Palaeoecol 234:97–113CrossRefGoogle Scholar
  53. Prado LF, Wainer I, Chiessi CM et al (2013) A mid-Holocene climate reconstruction for eastern South America. Clim Past 9:2117–2133CrossRefGoogle Scholar
  54. Ribeiro de Oliveira R, Stingel Fraga J, MacLeod Hickie M (2018) Environmental history, forests and landscape uses in Rio de Janeiro state. In: Nehren U, Schlüter S, Raedig C, Sattler D, Hissa H (eds) Strategies and tools for a sustainable rural Rio de Janeiro. Springer International Publishing, Rio de JaneiroGoogle Scholar
  55. Rodrigues JM, Behling H, Giesecke T (2016) Holocene dynamics of vegetation change in southern and southeastern Brazil is consistent with climate forcing. Quat Sci Rev 146:54–66CrossRefGoogle Scholar
  56. Sandholz S, Lange W, Nehren U (2018) Governing green change: ecosystem-based measures for reducing landslide risk in Rio de Janeiro. Int J Disaster Risk Reduct. in pressGoogle Scholar
  57. Schuster RL, Salcedo DA, Valenzuela L (2002) Overview of catastrophic landslides of South America in the twentieth century. In: Evans SG, DeGraff JV (eds) Catastrophic landslides: effects, occurrence, and mechanisms. Reviews in engineering geology 15. The Geological Society of America, Boulder, pp 1–34Google Scholar
  58. Seliger R, Sattler D, Soares da Silva A et al (2018) Rehabilitation of degraded sloped pastures - lessons learned in Itaocara. In: Nehren U, Schlüter S, Raedig C, Sattler D, Hissa H (eds) Strategies and tools for a sustainable rural Rio de Janeiro. Springer International Publishing, Rio de JaneiroGoogle Scholar
  59. Semmel A, Rohdenburg H (1979) Untersuchungen zur Boden- und Reliefentwicklung in Süd-Brasilien. Catena 6:203–217CrossRefGoogle Scholar
  60. Silva Noelli F (2008) The Tupi expansion. In: Silverman H, Isbell WH (eds) Handbook of South American archaeology, Chap. 33. Springer, New York, pp 659–670CrossRefGoogle Scholar
  61. Soares da Silva A, Seliger R, Sattler D, Heinrich J (2018) Soil degradation in Southeast Brazil: a challenge for restoration and rehabilitation. In: Nehren U, Schlüter S, Raedig C, Sattler D, Hissa HR (eds) Strategies and tools for a sustainable rural Rio de Janeiro. in pressGoogle Scholar
  62. UFSC – Universidade Federal de Santa Catarina, Centro Universitário de Estudos e Pesquisas sobre Destastres (2013) Atlas Brasileiro de Desastres Naturais 1992–2012Google Scholar
  63. Valentin C, Poesen J, Li Y (2005) Gully erosion: impacts, factors and control. Catena 63:132–153CrossRefGoogle Scholar
  64. Wang XF, Auler AS, Edwards RL et al (2007) Millennial-scale precipitation changes in southern Brazil over the past 90,000 years. Geophys Res Lett 34:L23701. https://doi.org/10.1029/2007GL031149 CrossRefGoogle Scholar
  65. Wanner H, Beer J, Bütikofer J et al (2008) Mid- to Late Holocene climate change: an overview. Quat Sci Rev 27:1791–1828CrossRefGoogle Scholar
  66. Wilken RD, Moreira I, Rebello A (1986) 210Pb and 137Cs fluxes in a sediment core from Guanabara bay, Brazil. Sci Total Environ 58:195–198CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • Udo Nehren
    • 1
    Email author
  • André Kirchner
    • 2
  • Wolfram Lange
    • 3
  • Marco Follador
    • 4
    • 5
  • Dieter Anhuf
    • 6
  1. 1.Institute for Technology and Resources Management in the Tropics and Subtropics (ITT)TH Köln – University of Applied SciencesKölnGermany
  2. 2.Department of GeographyUniversity of HildesheimHildesheimGermany
  3. 3.Department of GeographyUniversity of CologneKölnGermany
  4. 4.ALSO ConsultingBelo HorizonteBrazil
  5. 5.Institute BioAtlantic (IBIO)Rio de JaneiroBrazil
  6. 6.Department of GeographyUniversity of PassauPassauGermany

Personalised recommendations