Advertisement

Ecohydrological Modeling and Scenario Impact Assessment in Rural Rio de Janeiro

  • Annika KünneEmail author
  • Sven Kralisch
  • Juliana M. Santos
  • Wolfgang-Albert Flügel
Chapter
Part of the Springer Series on Environmental Management book series (SSEM)

Abstract

Understanding hydrological process dynamics is a crucial requirement for river basin management and environmental planning. Possible future climate changes raise questions about their impact on human livelihoods, which strongly depend on water availability and quality, soil fertility, and other ecosystem services. This chapter presents a physically based, spatially distributed ecohydrological model that was applied within three meso- to macroscale watersheds in the hinterland of Rio de Janeiro. While an increasing population and a fast-growing industrial sector create a high demand for water supply, the study region faces serious problems of forest fragmentation, overexploitation, and soil degradation, which create increasing pressures on water resources. This situation is further intensified by the climate conditions with distinct wet and dry periods that can cause floods and landslides in the rainy season and water shortages during dry periods, especially affecting the agricultural and domestic supply sectors. Recent water shortages raise questions how future climate changes will impact the hydrological dynamics and if river basin management needs to take appropriate counteractions. The results show that the developed models allow simulating hydrological processes at a high spatiotemporal resolution. Given the fact that their process representation is physically based, these models can help answer questions about hydrological dynamics under changing environmental conditions.

Keywords

Ecohydrological modeling System analysis Scenario assessment Climate change Atlantic Forest 

Resumo (Português) Modelagem Ecohidrológico e Avaliação do Impacto de Cenários na Área Rural do Rio de Janeiro

O entendimento dos processos hidrológicos é um requisito crucial para a gestão de bacias hidrográficas e para o planejamento ambiental. Mudanças climáticas futuras levantam questões sobre os seus impactos em meios de subsistência humanos, que dependem fortemente da disponibilidade e qualidade de água, da fertilidade de solo e de outros serviços ambientais. Este capítulo apresenta um modelo ecohidrológico, espacialmente distribuído, que foi aplicado a três bacias hidrográficas de meso a macro escala, na região do interior do Rio de Janeiro. O aumento da população e o crescimento acelerado do setor industrial criam uma alta demanda de abastecimento de água. Por conseguinte, a área de estudo enfrenta sérios problemas de fragmentação da floresta, sobreexploração e degradação do solo que originam pressões crescentes sobre os recursos hídricos. Esta situação é intensificada devido às condições climáticas com períodos distintos de chuva e seca, que podem causar inundações e deslizamentos de terra na estação chuvosa e escassez de água durante períodos secos, afetando especialmente os setores de abastecimento agrícola e doméstico. Recentes episódios de escassez de água levantam questões de como futuras mudanças climáticas irão afetar a dinâmica hidrológica e se a gestão de bacias hidrográficas precisa tomar contra-ações adequadas. Os resultados mostram que os modelos desenvolvidos permitem a simulação de processos hidrológicos com elevada resolução espaço-temporal. Devido ao fato da sua representação dos processos ser baseada fisicamente, esses modelos podem ajudar a responder a questões sobre dinâmicas hidrológicas sob mudanças ambientais.

Palavras-chave

Modelos ecohidrológicos Analise de sistemas Avaliação de cenários Mudanças climáticas Mata Atlântica 

Resumen (Español) El Modelaje Ecohidrológico y Evaluación de Escenarios del Impacto en el Área Rural de Rio de Janeiro

Entender los procesos hidrilógicos es un requisito crucial para la gestion de cuencas hidrográficas y para la planeacion ambiental. Los posibles futuros cambios climáticos plantean interrogantes sobre su impacto en los medios de subsistencia humanos, que dependen fuertemente de la disponibilidad y calidad del agua, la fertilidad del suelo y otros servicios ambientales. Este capítulo presenta un modelo ecohidrológico, distribuido espacialmente, que se aplicó en tres cuencas hidrográficas de meso a macro escala en el interior de Río de Janeiro. Si bien la creciente población y el rápido crecimiento del sector industrial crean una gran demanda de abastecimiento de agua, la región de estudio enfrenta graves problemas de fragmentación forestal, sobreexplotación y degradación del suelo, lo que crea presiones cada vez mayores sobre los recursos hídricos. Esta situación se ve agravada por las condiciones climáticas con distintos períodos húmedos y secos que pueden causar inundaciones y deslizamientos de tierra en la temporada de lluvias, y escasez de agua durante períodos secos, afectando especialmente a los sectores agrícola y doméstico. La reciente escasez de agua plantea interrogantes sobre cómo afectarán los cambios climáticos futuros a la dinámica hidrológica y si la gestión de cuencas hidrográficas necesita tomar medidas adecuadas. Los resultados muestran que los modelos desarrollados permiten simular procesos hidrológicos con una alta resolución espacio-temporal. Dado el hecho de que la representación de procesos está basada físicamente, estos modelos pueden ayudar a responder preguntas sobre dinámica hidrológica en condiciones ambientales cambiantes.

Palabras clave

Modelado ecohidrológico Análisis de sistemas Evaluación de escenarios Cambio climático Bosque Atlántico 

Notes

Acknowledgments

The authors would like to thank all Brazilian partners and friends from the Projeto Rio Rural (SEAPPA) and Embrapa Solos for their help throughout the project and during the fieldwork. We also thank our German partners from the TH Köln in Cologne and from Leipzig University who supported our work with important soil and vegetation measurements plus data and helped us with field measurements and equipment. We finally thank the German Ministry of Education and Research for funding this research via the DINARIO and INTECRAL projects (grant numbers 01LB0801A/C & 033L162K).

References

  1. ANA Agência Nacional de Águas (2015) Sistema nacional de informações sobre recursos hídricos. Banco de Dados Hidrometeorólicos – Módulo de Dados Quáli-Quantitativos – SNIRH. http://www.ana.gov.br/PortalSuporte. Accessed 25 Nov 2015
  2. Bossel H (2004) Systeme, dynamik, simulation. Modellbildung, analyse und simulation komplexer systeme. Books on Demand GmbH, NorderstedtGoogle Scholar
  3. Boyle DP, Gupta HV, Sorooshian S (2000) Toward improved calibration of hydrologic models: combining the strengths of manual and automatic methods. Water Resour Res 36:3663–3674. https://doi.org/10.1029/2000WR900207 CrossRefGoogle Scholar
  4. Britto AL, Formiga Johnsson RM, Ferreira Carneiro PR (2016) Water supply and hydrosocial scarcity in the Rio de Janeiro metropolitan area. Ambient Soc 19:183. https://doi.org/10.1590/1809-4422ASOC150159R1V1912016 CrossRefGoogle Scholar
  5. Campoe OC, Stape JL, Mendes JCT (2010) Can intensive management accelerate the restoration of Brazil’s Atlantic forests? For Ecol Manag 259:1808–1814. https://doi.org/10.1016/j.foreco.2009.06.026 CrossRefGoogle Scholar
  6. Carvalho Filho A, Lumbreras JF, Santos RD (2000) Os solos do estado do Rio de Janeiro. Estudo geoambiental do Estado do Rio de Janeiro. Executed by Empresa Brasileira de Pesquisa Agropecuária – Embrapa Solos. Ministério de Agricultura e Abastecimento, Centro Nacional de Pesquisa de Solos, Serviço Geológico do Brasil. BrasiliaGoogle Scholar
  7. Deb K, Member A, Pratap A et al (2002) A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans Evol Comput 6:182–197CrossRefGoogle Scholar
  8. Dobrovolski R, Rattis L (2015) Water collapse in Brazil: the danger of relying on what you neglect. Nat Conserv 13:80–83. https://doi.org/10.1016/j.ncon.2015.03.006 CrossRefGoogle Scholar
  9. Duringer Jacques P, Shinzato E (2000) Uso e cobertura do solo. Estudo geoambiental do estado do Rio de Janeiro. Executed by CPRM – Serviço Geológico do Brasil. Departamento de Informações Institucionais e Departamento de Gestão Territorial. BrasíliaGoogle Scholar
  10. Evans JP (2011) CORDEX – An international climate downscaling initiative. In: 19th international congress on modelling and simulation, Perth. 12–16Google Scholar
  11. Embrapa (1980) Estudo expedito do solos no Estado do Rio de Janeiro para fins de classificação, correlação e legenda preliminar. EMBRAPASNLCS. Boletim Tecnico 62. Rio de JaneiroGoogle Scholar
  12. Fidalgo EC, Pedreira BCC, Abreu MB et al (2008) Uso e cobertura da terra na bacia hidrográfica do rio Guapi-Macacu. Empresa Brasileira de Pesquisa Agropecuária Embrapa Solos. Ministério da Agricultura, Pecuária e Abastecimento. 31 p. Série Documentos No. 105, Rio de Janeiro, BrazilGoogle Scholar
  13. Fischer C, Kralisch S, Krause P et al (2009) Calibration of hydrological model parameters with the JAMS framework. In: Anderssen RS, Braddock RD, Newham LTH (eds) Proceedings of the 18th world IMACS congress and MODSIM09 international congress on modelling and simulation, Cairns, pp 866–872Google Scholar
  14. Freitas SR, Mello MCS, Cruz CBM (2005) Relationships between forest structure and vegetation indices in Atlantic rainforest. For Ecol Manag 218:353–362. https://doi.org/10.1016/j.foreco.2005.08.036 CrossRefGoogle Scholar
  15. Flügel W-A (1996) Hydrological Response Units (HRU) as modelling entities for 28 hydrological river basin simulation and their methodological potential for modelling 29 complex environmental process systems. – Results from the Sieg catchment. p 42–62Google Scholar
  16. Gupta HV, Kling H, Yilmaz KK, Martinez GF (2009) Decomposition of the mean squared error and NSE performance criteria: implications for improving hydrological modelling. J Hydrol 377:80–91. https://doi.org/10.1016/j.jhydrol.2009.08.003 CrossRefGoogle Scholar
  17. Hagemann S, Loew A, Andersson A (2013) Combined evaluation of MPI-ESM land surface water and energy fluxes. J Adv Model Earth Syst 5:259–286. https://doi.org/10.1029/2012MS000173 CrossRefGoogle Scholar
  18. Hazeleger W, Bintanja R (2014) Accomplishments, current status and future plans of EC-EARTH: a European Earth System Model. 24Google Scholar
  19. INMET Instituto Nacional de Meteorológia (2015) BDMEP – Banco de dados meteorológicos para ensino e pesquisa. http://www.inmet.gov.br. Accessed 25 Nov 2015
  20. IUSS Working Group WRB (2006) World reference base for soil resources 2006, World soil resources report, vol 103. FAO, RomeGoogle Scholar
  21. Kirchner A (2014) Rekonstruktion der spätpleistozänen und holozänen Landschaftsgenese im Guapi-Macacu Einzugsgebiet, Rio de Janeiro, Südostbrasilien. 1–171Google Scholar
  22. Kottek M, Grieser J, Beck C et al (2006) World map of the Köppen-Geiger climate classification updated. Meteorol Z 15:259–263. https://doi.org/10.1127/0941-2948/2006/0130 CrossRefGoogle Scholar
  23. Kralisch S, Krause P (2006) JAMS – a framework for natural resource model development and application. In: Voinov A, Jakeman A, Rizzoli AE (eds) Proceedings of the iEMSs third biannual meeting, BurlingtonGoogle Scholar
  24. Kralisch S, Fischer C (2012) Model representation, parameter calibration and parallel computing – The jams approach. In: Seppelt R, Voinov AA, Lange S, Bankamp D (eds) iEMSs 2012 – Managing Resources of a Limited Planet: Proceedings of the 6th Biennial meeting of the international environmental modelling and software society. Leipzig, Germany, pp 1177–1184Google Scholar
  25. Krause P (2001) Das hydrologische Modellsystem J2000. Ein Modellsystem zur physikalisch basierten Nachbildung der hydrologischen Prozesse in großen Flusseinzugsgebieten. JülichGoogle Scholar
  26. Künne A, Penedo S (2012) Field survey. Unpublished raw dataGoogle Scholar
  27. Künne A, Penedo S, Kralisch S, Schuler AE, Bardy Prado R, Santos JM, Flügel W-A (2016) Modelagem de processos hidrológicos em bacias de meso-escala escassamente monitoradas na mata atlântica, rj, brasil. In: Rodrigues LN, Moura MF, Junio RC de O (eds) Água e Agricultura: incertezas e desafios para a sustentabilidade frente às mudanças do clima e do uso da terra: anais do IV Seminário da Rede Agrohidro. Embrapa, Brasília, pp 7–10Google Scholar
  28. Lindner A, Sattler D (2012) Biomass estimations in forests of different disturbance history in the Atlantic Forest of Rio de Janeiro. Brazil. New Forests 43(3):287–301CrossRefGoogle Scholar
  29. Menezes Raposo de Almeida R, Neto Mi de M, Tubbs D, et al (2010) GEOTECNIA E HIDROGEOLOGIA. In: Sin Hwa C, Aquinio G. Massera da Hora M de, Fróes V (eds) Projeto Macacu. Planejamento Estratégico da Região Hidrográfica dos Rios Guapi - Macacu e Caceribu - Macacu. FEC/UFF, PETROBRÁS AMBIENTAL, Niterói,Google Scholar
  30. Monteith JL (1965) Evaporation and environment. Symp Soc Exp Biol 19:205–234Google Scholar
  31. Nash E, Sutcliffe V (1970) Part I- a discussion of principles * The problem of determining river flows from rainfall, evaporation, and other factors, occupies a central place in the technology of applied hydrology. It is not only the essential problem of flood forecasting but a. 10:282–290Google Scholar
  32. Nehren U, Kirchner A, Sattler D et al (2013) Impact of natural climate change and historical land use on landscape development in the Atlantic Forest of Rio de Janeiro, Brazil. An Acad Bras Cienc 85:497–518. https://doi.org/10.1590/S0001-37652013000200004 CrossRefGoogle Scholar
  33. Penedo S, Künne A, Bardy Prado R, Schuler AE, Roehrig J, Ribbe L (2011) Implementation of a Hydro-climatic Monitoring Network in the Guapi-Macacu River Basin in Rio de Janeiro. Proceedings of the XIV world water Congress, 25–29 Sept 2011, Pernambuco, BrazilGoogle Scholar
  34. Penman HL (1948) Natural evaporation from open water, bare soil and grass. Proc R Soc Lond A Math Phys Sci 193:25. https://doi.org/10.1098/rspa.1948.0037 CrossRefGoogle Scholar
  35. Pfennig B, Kipka H, Wolf M, Fink M, Krause P, Flügel WA (2009) Development of an extended routing scheme in reference to consideration of multidimensional flow relations between hydrological model entities. 1972–1978. Proceedings of the 18th World IMACS / MODSIM Congress, Cairns, Australia 13–17 July 2009Google Scholar
  36. Samani Z (2000) Estimating solar radiation and evapotranspiration using minimum climatological data. J Irrig Drain Eng 126:265–267. https://doi.org/10.1061/(ASCE)0733-9437(2000)126:4(265) CrossRefGoogle Scholar
  37. Santos JM, Künne A, Kralisch S et al (2018) Analyzing hydro-climatic data to improve hydrological understanding in rural Rio de Janeiro, southeast Brazil. In: Nehren, U, Schlüter S, Raedig C, Sattler D, Hissa H (eds) Strategies and tools for a sustainable rural Rio de Janeiro. (in press)Google Scholar
  38. Sattler D, Raedig C, Hebner A, Wesenberg J (2018) Use of native plant species for ecological restoration and rehabilitation measures in Southeast Brazil. In: Nehren, U, Schlüter S, Raedig C, Sattler D, Hissa H (eds) Strategies and tools for a sustainable rural Rio de Janeiro. (in press)Google Scholar
  39. Sattler D, Murray LT, Kirchner A, Lindner A (2014) Influence of soil and topography on aboveground biomass accumulation and carbon stocks of afforested pastures in South East Brazil. Ecol Eng 73:126–131. https://doi.org/10.1016/j.ecoleng.2014.09.003 CrossRefGoogle Scholar
  40. Seliger R, Sattler D, Soares da Silva A et al (2018) Rehabilitation of degraded sloped pastures – lessons learned in Itaocara. In: Nehren U, Schlüter S, Raedig C, Sattler D, Hissa H (eds) Strategies and tools for a sustainable rural Rio de Janeiro, Springer International PublishingGoogle Scholar
  41. Silva LC da, Silva Cunha HC (2001) Geologia do Estado do Rio de Janeiro: texto explicativo do mapa geológico do Estado do Rio de Janeiro, 2nd edn. CPRM, BrasíliaGoogle Scholar
  42. Sin Hwa C, Aquinio G. Massera da Hora M de Fróes V (2010) Projeto Macacu. Planejamento Estratégico da Região Hidrográfica dos Rios Guapi – Macacu e Caceribu – Macacu. FEC/UFF, PETROBRÁS AMBIENTAL, NiteróiGoogle Scholar
  43. The Nature Conservancy (2009) Indicators of hydrologic alteration version 7.1 User’s manual. Nat Conserv 76. https://doi.org/10.1002/0470848944
  44. Thomson AM, Calvin KV, Smith SJ et al (2011) RCP4.5: a pathway for stabilization of radiative forcing by 2100. Clim Chang 109:77–94. https://doi.org/10.1007/s10584-011-0151-4 CrossRefGoogle Scholar
  45. U.S. Geological Survey (2015) SRTM 1 arc-second for global coverage (~30 meters) non-void filled. downloaded 2015 from https://earthexplorer.usgs.gov/
  46. Vuuren DP, Edmonds J, Kainuma M et al (2011) The representative concentration pathways: an overview. Clim Chang 109:5–31. https://doi.org/10.1007/s10584-011-0148-z CrossRefGoogle Scholar
  47. WBCSD (2006) Facts and trends: water. World Bus Counc Sustain Dev 16. https://doi.org/10.1080/0379772780030302
  48. Wesenberg J, Sattler D (2011) Field survey. Unpublished dataGoogle Scholar
  49. Xavier AC, Vettorazzi CA (2003) Leaf area index of ground covers in a subtropical watershed. Sci Agric 60:425–431. https://doi.org/10.1590/S0103-90162003000300002
  50. Zoccal R, Assis AG and Medeiros Evangelista SR (2006) Distribuição geográfica da pecuária leiteira no Brasil 88. Embrapa Gado de Leite, Juiz de Fora, MGGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • Annika Künne
    • 1
    Email author
  • Sven Kralisch
    • 1
  • Juliana M. Santos
    • 1
  • Wolfgang-Albert Flügel
    • 2
  1. 1.Geographic Information Science Group, Institute of GeographyFriedrich Schiller University of JenaJenaGermany
  2. 2.Professor (ret.) and former Head of the Department of Geoinformatics, Hydrology and Modelling (DGHM)Friedrich Schiller University of JenaJenaGermany

Personalised recommendations