Advertisement

Applicability of the German Hydromorphological Assessment Approach to Tropical Rivers

  • Diana Birnbaum
  • Georg Lamberty
Chapter
Part of the Springer Series on Environmental Management book series (SSEM)

Abstract

In addition to water quality, hydromorphological characteristics are crucial for the integrity of river ecosystems: Factors such as flow diversity, substrate variety, or riparian vegetation create diverse habitats for aquatic organisms with their specific demands. These habitats are impaired by channelization, longitudinal river fragmentation, and degradation of the riparian vegetation. In the state of Rio de Janeiro, rivers are exposed to increasing anthropogenic pressures mainly caused by urban growth, intensive agricultural land use, and alterations induced by climate change. While knowledge about the resulting deterioration of the water quality is well established, the knowledge base about consequences for the hydromorphological quality is thinner. Consequently, the hydromorphological potentials and deficits have to be identified and assessed to preserve or revitalize river ecosystems. For this purpose, the applicability of the German on-site method (LAWA-OS) was tested for hydromorphological assessment of streams. This method assesses the hydromorphological state of stream sections against predefined reference conditions. Based on the assessment results, the method identifies stream sections with different ecological development possibilities such as preservation, revitalization, or restriction. This article describes an on-site application test and formulates the applicability of the LAWA-OS method in Brazil by the example of the state of Rio de Janeiro.

Keywords

River ecology Fluvial geomorphology Basin management Environmental monitoring Visual assessment 

Resumo (Português) Aplicabilidade da Abordagem de Avaliação Hidromorfológica Alemã para Rios Tropicais

Além da qualidade da água, as características hidromorfológicas também são cruciais para a integridade dos ecossistemas fluviais: fatores como diversidade de fluxo, variedade de substrato ou vegetação ripária criam habitats diversos para organismos aquáticos e suas demandas específicas. Esses habitats são prejudicados pela canalização, fragmentação longitudinal e pela degradação da vegetação ripária. No estado do Rio de Janeiro, os rios estão expostos a pressões antropogênicas sempre crescentes causadas pelo crescimento urbano, uso intensivo de terras agrícolas e alterações induzidas pela mudança climática. Embora o conhecimento sobre a deterioração resultante da qualidade da água esteja bem estabelecido, as consequências para a qualidade hidromorfológica são pouco conhecidas. Conseqüentemente, os potenciais e déficits hidromorfológicos devem ser identificados e avaliados para preservar ou revitalizar os ecossistemas fluviais. Para este propósito, nós testamos a aplicabilidade do método alemão LAWA-OS para a avaliação hidromorfológica de rios. Este método avalia o estado hidromorfológico de seções de rios em relação a condições de referência predefinidas. Com base nos resultados da avaliação, o método identifica seções com diferentes possibilidades de desenvolvimento ecológico, como preservação, revitalização ou restrição. Este artigo descreve um teste de aplicação e propõe a aplicação do método LAWA-OS no Brasil, pelo exemplo do estado do Rio de Janeiro.

Palavras-chave

Ecologia do rio, Geomorfologia fluvial, Gestão da bacia, Monitoramento ambiental, Avaliação visual 

Resumen (Español) Aplicabilidad del Enfoque de Evaluación Hidromorfológico Aleman para Ríos Tropicales

Además de la calidad del agua, las características hidromorfológicas también son cruciales para la integridad de los ecosistemas fluviales. Factores como la diversidad de flujo, la variedad del sustrato o la vegetación ribereña crean hábitats diversos para los organismos acuáticos con sus demandas autecológicas. Estos hábitats se ven afectados por la canalización, la fragmentación longitudinal de los ríos y la degradación de la vegetación ribereña. En el estado de Río de Janeiro los ríos están expuestos a las crecientes presiones antropogénicas causadas por el crecimiento urbano, el uso intensivo del suelo agrícola y las alteraciones inducidas por el cambio climático. Si bien el conocimiento sobre el deterioro de la calidad del agua como resultado está bien establecido, las consecuencias para la calidad hidromorfológica son poco conocidas. En consecuencia, los potenciales y déficit hidromorfológicos deben ser identificados y evaluados para preservar o revitalizar los ecosistemas de los ríos. Por esta razón, hemos probado la aplicabilidad del método alemán LAWA-OS para la evaluación hidromorfológica de ríos. Este método evalúa el estado hidromorfológico de secciones de ríos con respecto a condiciones de referencia predefinidas. Con base en los resultados de la evaluación, el método identifica secciones con diferentes posibilidades de desarrollo ecológico, tales como preservación, revitalización o restricción. Este artículo describe una prueba de aplicación in situ y formula la aplicabilidad del método LAWA-OS en Brasil a través del ejemplo del estado de Río de Janeiro.

Palabras clave

Ecología de los ríos Geomorfología fluvial Manejo de cuencas Monitoreo ambiental Evaluación visual 

References

  1. Agostinho AA, Thomaz SM, Gomes LC (2005) Conservation of the biodiversity of Brazil’s inland waters. Conserv Biol 19(3):646–652. https://doi.org/10.1111/j.1523-1739.2005.00701.x CrossRefGoogle Scholar
  2. Agostinho AA, Pelicice FM, Gomes LC (2008) Dams and the fish fauna of the Neotropical region: impacts and management related to diversity and fisheries. Braz J Biol 68(4 SUPPL):1119–1132. https://doi.org/10.1590/s1519-69842008000500019 CrossRefGoogle Scholar
  3. Anderson EP, Pringle CM, Rojas M (2006) Transforming tropical rivers: an environmental perspective on hydropower development in Costa Rica. Aquat Conserv Mar Freshwat Ecosyst 16(7):679–693. https://doi.org/10.1002/aqc.806 CrossRefGoogle Scholar
  4. Araújo RS, Alves MDG, Condesso de Melo MT et al (2015) Water resource management: a comparative evaluation of Brazil, Rio de Janeiro, the European Union, and Portugal. Sci Total Environ 511:815–828. https://doi.org/10.1016/j.scitotenv.2014.11.098 CrossRefGoogle Scholar
  5. Barletta M, Jaureguizar AJ, Baigun C et al (2010) Fish and aquatic habitat conservation in South America: a continental overview with emphasis on neotropical systems. J Fish Biol 76(9):2118–2176. https://doi.org/10.1111/j.1095-8649.2010.02684.x CrossRefGoogle Scholar
  6. Boulton AJ, Boyero L, Covich AP et al (2008) Are tropical streams Different from temperate streams? In: Dudgeon D (ed) Tropical stream ecology. Academic, London, pp 257–284CrossRefGoogle Scholar
  7. Boyero L, Ramírez A, Dudgeon D, Pearson RG (2009) Are tropical streams really different? J N Am Benthol Soc 28(2):397–403CrossRefGoogle Scholar
  8. Burford MA, Revill AT, Palmer DW et al (2011) River regulation alters drivers of primary productivity along a tropical river-estuary system. Mar Freshw Res 62(2):141–151. https://doi.org/10.1071/mf10224 CrossRefGoogle Scholar
  9. Callisto M, Ferreira WR, Moreno P et al (2001) Aplicação de um protocolo de avaliação rápida da diversidade de habitats em atividades de ensino e pesquisa (MG-RJ). Acta Limnol Bras 14(1):91–98. https://doi.org/10.1590/S2179-975X2012005000024 CrossRefGoogle Scholar
  10. Callisto M, Goulart M, Barbosa FA, Rocha O (2005) Biodiversity assessment of benthic macroinvertebrates along a reservoir cascade in the lower São Francisco river (northeastern Brazil). Braz J Biol = Rev Bras Biol 65(2):229–240Google Scholar
  11. Caputo A, Fahrmeir L, Künstler R et al (2008) Arbeitsbuch Statistik. Springer, Berlin/HeidelbergGoogle Scholar
  12. Carpenter SR, Stanley EH, Vander Zanden MJ (2011) State of the world’s freshwater ecosystems: physical, chemical, and biological changes. Annu Rev Environ Resour 36:75–99. https://doi.org/10.1146/annurev-environ-021810-094524 CrossRefGoogle Scholar
  13. Carvalho EM, BA B, Pereira NS (2014) Rapid assessment of habitat diversity in a lotic environment. Interbio 8(1):45–55. https://doi.org/10.1590/s1519-69842008000500007 CrossRefGoogle Scholar
  14. Couceiro SRM, Hamada N, Luz SLB et al (2007) Deforestation and sewage effects on aquatic macroinvertebrates in urban streams in Manaus, Amazonas, Brazil. Hydrobiologia 575(1):271–284. https://doi.org/10.1007/s10750-006-0373-z CrossRefGoogle Scholar
  15. Couceiro SRM, Hamada N, Forsberg BR, Padovesi-Fonseca C (2009) Effects of anthropogenic silt on aquatic macroinvertebrates and abiotic variables in streams in the Brazilian Amazon. J Soils Sediments 10(1):89–103. https://doi.org/10.1007/s11368-009-0148-z CrossRefGoogle Scholar
  16. de Oliveira Naliato DA, Nogueira MG, Perbiche-Neves G (2009) Discharge pulses of hydroelectric dams and their effects in the downstream limnological conditions: a case study in a large tropical river (SE Brazil). Lakes Reserv Res Manag 14(4):301–314. https://doi.org/10.1111/j.1440-1770.2009.00414.x CrossRefGoogle Scholar
  17. de Souza ALTD, Fonseca DG, Libório RA, Tanaka MO (2013) Influence of riparian vegetation and forest structure on the water quality of rural low-order streams in SE Brazil. For Ecol Manag 298:12–18CrossRefGoogle Scholar
  18. Dudgeon D (2008) Tropical stream ecology. Academic, Amsterdam/BostonGoogle Scholar
  19. Elabras Veiga LB, Magrini A (2013) The Brazilian water resources management policy: fifteen years of success and challenges. Water Resour Manag 27(7):2287–2302. https://doi.org/10.1007/s11269-013-0288-1 CrossRefGoogle Scholar
  20. Ferreira WR, Ligeiro R, Macedo DR et al (2014) Importance of environmental factors for the richness and distribution of benthic macroinvertebrates in tropical headwater streams. Freshw Sci 33(3):860–871. https://doi.org/10.1086/676951 CrossRefGoogle Scholar
  21. Garrastazú MC, Mendonça SD, Horokoski TT et al (2015) Carbon sequestration and riparian zones: assessing the impacts of changing regulatory practices in southern Brazil. Land Use Policy 42:329–339. https://doi.org/10.1016/j.landusepol.2014.08.003 CrossRefGoogle Scholar
  22. Gellert G, Pottgiesser T, Euler T (2014) Assessment of the structural quality of streams in Germany – basic description and current status. Environ Monit Assess 186(6):3365–3378. https://doi.org/10.1007/s10661-014-3623-y CrossRefGoogle Scholar
  23. Greathouse EA, Pringle CM, Holmquist JG (2006) Conservation and management of migratory fauna: dams in tropical streams of Puerto Rico. Aquat Conserv Mar Freshwat Ecosyst 16(7):695–712. https://doi.org/10.1002/aqc.804 CrossRefGoogle Scholar
  24. Gupta A (1993) The changing geomorphology of the humid tropics. Geomorphology 7(1–3):165–186CrossRefGoogle Scholar
  25. Hajdukiewicz H, Wyżga B, Zawiejska J et al (2017) Assessment of river hydromorphological quality for restoration purposes: an example of the application of RHQ method to a Polish Carpathian river. Acta Geophys 65:1–18. https://doi.org/10.1007/s11600-017-0044-7 CrossRefGoogle Scholar
  26. Irvine K, Castello L, Junqueira A, Moulton T (2016) Linking ecology with social development for tropical aquatic conservation. Aquat Conserv Mar Freshwat Ecosyst 26(5):917–941. https://doi.org/10.1002/aqc.2706 CrossRefGoogle Scholar
  27. Kieling-Rubio MA, Benvenuti T, Costa GM et al (2015) Integrated environmental assessment of streams in the Sinos River basin in the state of Rio Grande do Sul, Brazil. Braz J Biol 75(2):S105–S113. https://doi.org/10.1590/1519-6984.1013 CrossRefGoogle Scholar
  28. Lamberty G, Zumbroich T, Ribbe L, Souvignet M (2016) Quantifying bias in hydromorphological monitoring: an evaluation of the German LAWA-OS method. Environ Earth Sci 75(22):1–17. https://doi.org/10.1007/s12665-016-6241-x CrossRefGoogle Scholar
  29. LANUV-NRW (2012) Gewässerstruktur in Nordrhein-Westfalen: Kartieranleitung für die kleinen bis großen Fließgewässer – LANUV Arbeitsblatt Nr. 18. Pottgiesser T, Müller A (eds) Landesamt für Natur, Umwelt und Verbraucherschutz Nordrhein-Westfalen (Hrsg.). RecklinghausenGoogle Scholar
  30. Latrubesse EM, Stevaux JC, Sinha R (2005) Tropical rivers. Geomorphology 70(3–4):187–206. https://doi.org/10.1016/j.geomorph.2005.02.005 CrossRefGoogle Scholar
  31. LAWA (2000) Gewässerstrukturgütekartierung in der Bundesrepublik Deutschland: Verfahren für kleine und mittelgroße Fließgewässer – Empfehlung. Linnenweber, C, Friedrich G, Lacombe J (eds). Länderarbeitsgemeinschaft Wasser LAWA (Hrsg.). SchwerinGoogle Scholar
  32. Lima FP, Muniz JN, de Marco P Jr (2010) Evaluating Brazilian conservation projects: the weak link between practice and theory. Natureza a Conservacao 8(1):41–45. https://doi.org/10.4322/natcon.00801006 CrossRefGoogle Scholar
  33. Lorion CM, Kennedy BP (2009) Relationships between deforestation, riparian forest buffers and benthic macroinvertebrates in neotropical headwater streams. Freshw Biol 54(1):165–180CrossRefGoogle Scholar
  34. Machado CS, Alves RIS, Fregonesi BM et al (2015) Integrating three tools for the environmental assessment of the Pardo River, Brazil. Environ Monit Assess 187(9). https://doi.org/10.1007/s10661-015-4788-8
  35. Malmqvist B, Rundle S (2002) Threats to the running water ecosystems of the world. Environ Conserv 29(2):134–153. https://doi.org/10.1017/s0376892902000097 CrossRefGoogle Scholar
  36. Mattos TM, Costa MR, Pinto BCT et al (2014) To what extent are the fish compositions of a regulated river related to physico-chemical variables and habitat structure? Environ Biol Fish 97(6):717–730. https://doi.org/10.1007/s10641-013-0175-x CrossRefGoogle Scholar
  37. Meier G (2016) Bewertungsrobustheit der Gewässerstrukturkartierung nach dem Deutschen Vor-Ort-Verfahren (Rating robustness of hydromorphological assessment according to the German on-site method). Bonn University – Department of Geography (Dissertation)Google Scholar
  38. Meier G, Zumbroich T, Roehrig J (2013) Hydromorphological assessment as a tool for river basin management: the German field survey method. J Nat Res Dev 3:14–26. https://doi.org/10.5027/jnrd.v3i0.02 CrossRefGoogle Scholar
  39. Moulton TP, Wantzen KM (2006) Conservation of tropical streams – special questions or conventional paradigms? Aquat Conserv Mar Freshwat Ecosyst 16(7):659–663. https://doi.org/10.1002/aqc.814 CrossRefGoogle Scholar
  40. Nunes de Souza Lima R, dos Santos Marçal M (2013) Geomorphic assessment of Macaé catchment – RJ based on River Styles classification framework. Revista Brasileira de Geomorfologia 14(2):171–179Google Scholar
  41. O’Keeffe J (2013) Rivers, time and conservation, especially in developing countries. Aquat Conserv Mar Freshwat Ecosyst 23(2):184–188. https://doi.org/10.1002/aqc.2347 CrossRefGoogle Scholar
  42. Pereira PS, Fernandes LAC, Dias RJP et al (2014) Ecological water quality assessment in the Guapiaçu-Macacu hydrographic complex (Rio de Janeiro, Brazil) using multiple indicators. Rev Ambiente Agua 9(3):409–423. https://doi.org/10.4136/ambi-agua.1397 CrossRefGoogle Scholar
  43. Ribeiro MC, Metzger JP, Martensen AC et al (2009) The Brazilian Atlantic Forest: how much is left, and how is the remaining forest distributed? Implications for conservation. Biol Conserv 142(6):1141–1153. https://doi.org/10.1016/j.biocon.2009.02.021 CrossRefGoogle Scholar
  44. Rodrigues ASL, Castro PTA (2008) Adaption of a rapid assessment protocol for rivers on rocky meadows. Acta Limnol Bras 20(4):291–303. https://doi.org/10.1590/S2179-975X2012005000024 CrossRefGoogle Scholar
  45. Rodrigues ASL, Malafaia G, Costa AT, Nalini Júnior HA (2012) Adequação e avaliação da aplicabilidade de um Protocolo de Avaliação Rápida na bacia do rio Gualaxo do Norte, Leste-Sudeste do Quadrilátero Ferrífero, MG, Brasil. Revista Ambiente & Água 7:231–244CrossRefGoogle Scholar
  46. Sánchez-Argüello R, Cornejo A, Pearson RG, Boyero L (2010) Spatial and temporal variation of stream communities in a human-affected tropical watershed. Ann Limnol 46(3):149–156CrossRefGoogle Scholar
  47. Scheifhacken N, Haase U, Gram-Radu L et al (2012) How to assess hydromorphology? A comparison of Ukrainian and German approaches. Environ Earth Sci 65(5):1483–1499. https://doi.org/10.1007/s12665-011-1218-2 CrossRefGoogle Scholar
  48. Sípek V, Matousková M, Dvorák M (2010) Comparative analysis of selected hydromorphological assessment methods. Environ Monit Assess 169(1–4):309–319CrossRefGoogle Scholar
  49. Stevaux JC, Martins DP, Meurer M (2009) Changes in a large regulated tropical river: the Paraná River downstream from the Porto Primavera Dam, Brazil. Geomorphology 113(3–4):230–238. https://doi.org/10.1016/j.geomorph.2009.03.015 CrossRefGoogle Scholar
  50. Veiga LBE, Magrini A (2011) Water resources management: suggestions to the Brazilian model based on the American experience. WIT Trans Ecol Environ 145:39–50. https://doi.org/10.2495/WRM110041 CrossRefGoogle Scholar
  51. Vörösmarty CJ, McIntyre PB, Gessner MO et al (2010) Global threats to human water security and river biodiversity. Nature 467(7315):555–561. https://doi.org/10.1038/nature09440 CrossRefGoogle Scholar
  52. Wantzen KM (2006) Physical pollution: effects of gully erosion on benthic invertebrates in a tropical clear-water stream. Aquat Conserv Mar Freshwat Ecosyst 16(7):733–749. https://doi.org/10.1002/aqc.813 CrossRefGoogle Scholar
  53. Weiß A, Matouskova M, Matschullat J (2008) Hydromorphological assessment within the EU-water framework directive-trans-boundary cooperation and application to different water basins. Hydrobiologia 603(1):53–72. https://doi.org/10.1007/s10750-007-9247-2 CrossRefGoogle Scholar
  54. Wilcoxon F (1945) Individual comparisons by ranking methods. Biom Bull 1(6):80–83. https://doi.org/10.2307/3001968 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • Diana Birnbaum
    • 1
  • Georg Lamberty
    • 1
  1. 1.Institute for Technology and Resources Management in the Tropics and Subtropics (ITT)TH Köln – University of Applied SciencesKölnGermany

Personalised recommendations