Advertisement

Connectivity Conservation Management: Linking Private Protected Areas

  • Lorena Valeria Guzmán Wolfhard
  • Claudia Raedig
Chapter
Part of the Springer Series on Environmental Management book series (SSEM)

Abstract

Fragmentation has become one of the most pressing threats to Brazil’s Atlantic Forest causing habitat loss and the erosion of species diversity, thus compromising ecosystem functioning and the provision of crucial ecosystem services. Beyond the legal obligations of forest owners to protect their forest properties, the creation of private protected areas (Reservas Particulares do Patrimônio Natural, RPPNs) is an important strategy to counteract fragmentation. Such RPPNs allow maintaining or reestablishing connectivity, by acting as stepping stones or as local corridors. However, only few efforts have been carried out to systematically link RPPNs at local implementation level. Therefore, this study aims to explore possible connectivity paths between established and probable future RPPNs in two municipalities. Connectivity routes among RPPNs were identified by using two methods: the “least cost path” method that allowed finding the “cheapest” paths by assigning different weights to land use features and a second method which ranks the different land use features from suitable to non-suitable area for linking RPPNs. Incorporating the willingness of landowners to establish RPPNs into the latter method permitted the identification of suitable linkages between RPPNs and priority areas for future RPPN establishment.

Keywords

Atlantic Forest Connectivity and biodiversity conservation Corridors Private natural heritage reserves (RPPNs) 

Resumo (Português) Gestão da Conservação através da Conectividade: Ligando Áreas Protegidas Privadas

A fragmentação tornou-se uma das ameaças mais prementes para a Mata Atlântica Brasileira, causando perda de habitat e da diversidade de espécies, comprometendo assim o funcionamento do ecossistema e a provisão de serviços ambientais cruciais. Além das obrigações legais dos proprietários para proteger as suas propriedades florestais, a criação de áreas privadas protegidas (Reservas Particulares do Patrimônio Natural, RPPNs) é uma estratégia importante para enfrentar a fragmentação. Essas RPPNs permitem manter ou restabelecer a conectividade, atuando como “stepping stones” ou como corredores ecológicos locais. No entanto, apenas alguns esforços foram realizados para vincular sistematicamente RPPNs ao nível de implementação local. Portanto, este estudo pretende explorar ligações possíveis de conectividade entre as RPPNs existentes e potenciais futuras em dois municípios. As rotas de conectividade entre RPPNs foram identificadas usando dois métodos: o método de “rota do menor custo,” que permitiu encontrar os caminhos “mais viáveis economicamente,” atribuindo pesos diferentes às características de uso da terra e usando o declive e as distâncias entre as RPPNs existentes; e um segundo método que classificou as diferentes características de uso do solo em áreas adequadas e áreas não adequadas para conectar RPPNs. A incorporação da vontade dos proprietários no segundo método permitiu identificar relações entre RPPNs e áreas prioritárias, considerando sua criação futura.

Palavras-chave

Mata Atlântica Conectividade e conservação da biodiversidade Corredores Reservas Privadas de Património Natural (RPPNs) 

Resumen (Español) Gestión de la Conservación a través de la Conectividad: Conectando Áreas Protegidas Privadas

La fragmentación se ha convertido en una de las amenazas que mayor presión ejerce sobre el bosque atlántico de Brasil, causando pérdida de hábitats y erosión de la diversidad de especies, comprometiendo así el funcionamiento de los ecosistemas y la provisión de servicios ecosistémicos cruciales. Más allá de las obligaciones legales de los terratenientes de proteger sus propiedades forestales, la creación de áreas protegidas privadas (RPPNs) puede ser considerada como una estrategia fundamental para contrarrestar la fragmentación. Tales RPPNs permiten mantener o restablecer la conectividad, actuando como trampolines ecológicos (stepping stones) o como corredores locales. Sin embargo, pocos esfuerzos han sido realizados para conectar sistemáticamente las RPPNs a nivel local. Por lo tanto, este estudio tiene como objetivo explorar posibles vías de conectividad entre RPPNs ya establecidas y probables futuras en dos municipios. Las rutas de conectividad entre RPPNs fueron identificadas usando dos métodos: el método de “costo mínimo” que permitió encontrar las rutas “más baratas” asignando diferentes pesos a las características del uso de tierra, usando además la pendiente y distancias entre RPPNs existentes; y un segundo método que clasificó las diferentes características del uso de suelo en áreas apropiadas y no apropiadas para unir RPPNs. La incorporación de la voluntad de los terratenientes para establecer RPPNs permitió identificar vínculos adecuados entre RPPNs y áreas prioritarias para su futuro establecimiento.

Palabras clave

Bosque Atlántico Conectividad y conservación de la biodiversidad Corredores Reservas Privadas de Patrimonio Natural (RPPN) 

Notes

Acknowledgments

We would like to thank the Rio Rural Project, INEA, EMATER Varre-Sai, and EMATER Nova Friburgo for their support on-field and data provision. Special thanks to Rafael Mussi, Jose Luis Monsores, Manoel Duarte, Deise Morais, Binha, Jonas Daniel, Roberta Guagliardi, Mariana Machado, Aldah de Oliveira, and Rosane Grazioli for their help, their time, and their cooperation. Finally, we would like to give our particular thanks to the landowners, the RPPN owners, and their families in Varre-Sai and Nova Friburgo for their collaboration, interest, enthusiasm, and hospitality.

References

  1. Aguiar AP, Chiarello AG, Mendes SL, Matos SL (2005) Mata Atlântica: Biodiversidade, ameaças e perspectivas: Os corredores central e da Serra do Mar na Mata Atlântica brasileira. In: Galindo-Leal and Câmara (eds) Mata Atlântica Biodiversidade, Ameacas e Perspectivas, Fundacao SOS Mata Atlântica/Conservação Internacional, pp 119–132Google Scholar
  2. Aleixo A, Galetti M (2017) The conservation of the avifauna in a lowland Atlantic forest in south-East Brazil. Bird Conserv Int 7:235–261 CrossRefGoogle Scholar
  3. Aliança para a conservação da Mata Atlântica (2009) Corredores de biodiversidade da Mata Atlântica. Retrieved from http://www.corredores.org.br/?area=ma (2010). Accessed 14 Mar 2015
  4. Alves DLA, Fonseca BM (2012) Análise espacial para delimitação de áreas potenciais para corredor ecológico na bacia do Rio Santa Bárbara MG 2014 (Apresentação de Trabalho/Congresso)Google Scholar
  5. Ayres JM, Da Fonseca G, Rylands A et al (2005) Os corredores ecológicos das florestas tropicais do Brasil. Sociedade Civil Mamirauá Belém p 256Google Scholar
  6. Ball A, Gouzerh A, Brancalion P (2014) Multi-scalar governance for restoring the Brazilian Atlantic Forest: a case study on small landholdings in protected areas of sustainable development. Forests 5:599–619CrossRefGoogle Scholar
  7. Barbosa KVC, Knogge C, Develey PF et al (2017) Use of small Atlantic Forest fragments by birds in Southeast Brazil. Perspect Ecol Conserv 15:42–46CrossRefGoogle Scholar
  8. Barros H, Cenamo M (2016) ICMS verde: Incentivo para produção sustentável e redução do desmatamento nos municípios do Amazonas, pp 8–35Google Scholar
  9. Barthlott W, Mutke J, Rafiqpoor D et al (2005) Geographic patterns of vascular plant diversity. Nova Acta Leopoldina 92:61–83Google Scholar
  10. Baum K, Haynes K, Dillemuth F, Cronin J (2004) The matrix enhances the effectiveness of corridors and stepping stones. Ecology 85:671–2676CrossRefGoogle Scholar
  11. Beier P, Majka D, Newell S, Garding E (2008) Best management practices for wildlife corridors. America:1–14Google Scholar
  12. Bennett AF (2003) Linkages in the landscape: the role of corridors and connectivity in wildlife conservation. IUCN, Gland, Switzerland and Cambridge, UK, p 254Google Scholar
  13. Broering A, Junior Sandeville E (2010) Mecanismos de envolvimento comunitário na gestão da paisagem de entorno de Reserva Particular Do Patrimônio Natural – RPPN, um estudo de caso, pp 1–4Google Scholar
  14. Calabrese JM, Fagan WF (2004) A comparison-shopper’s guide to connectivity metrics. Front Ecol Environ 2:529–536CrossRefGoogle Scholar
  15. Castelo TB (2006) Legislação Florestal Brasileira e políticas do governo de combate ao desmatamento na Amazônia Legal. Ambiente e Sociedade 18:221–242CrossRefGoogle Scholar
  16. Chetkiewicz CLB, Clair CCS, Boyce MS (2006) Corridors for conservation: integrating pattern and process. Annu Rev Ecol Evol Syst 37(1):317–342CrossRefGoogle Scholar
  17. Chiavari J, Leme CL (2015) Policy brief Brazil’s new forest code part I: how to navigate the complexity. Climate Policy Initiative and Núcleo de Avaliação de Políticas Climáticas da PUC-Rio de Janeiro, pp 1–8Google Scholar
  18. Christie MR, Knowles LL (2015) Habitat corridors facilitate genetic resilience irrespective of species dispersal abilities or population sizes. Evol Appl 8:454–463CrossRefGoogle Scholar
  19. Costa LP, Leite YLR, da Fonseca GAB, da Fonseca MT (2010) Biogeography of south American Forest mammals: endemism and diversity in the Atlantic Forest. Biotropica 32:872–881CrossRefGoogle Scholar
  20. Crooks KR, Sanjayan M (2006) Connectivity conservation: maintaining connections for nature. In: Crooks KR, Sanjayan M (eds) Connectivity conservation. Cambridge University Press, Cambridge, pp 1–20CrossRefGoogle Scholar
  21. da Silva LAE, Fraga CN, de Almeida TMH et al (2017) Jabot – Sistema de Gerenciamento de Coleções Botânicas: a experiência de uma década de desenvolvimento e avanços. Rodriguésia 68:391–410CrossRefGoogle Scholar
  22. Damschen EI, Haddad NM, Orrock JL et al (2006) Corridors increase plant species richness at large scales. Science 313:1284–1286CrossRefGoogle Scholar
  23. de Martino MS (2010) Inventário do Patrimônio Ambiental e Urbano do Núcleo Histórico de Varre-Sai. p 396Google Scholar
  24. Fahrig L (2010) Effects of habitat fragmentation on biodiversity. Annu Rev Ecol Evol Syst 34:487–515CrossRefGoogle Scholar
  25. Galindo-Leal C, Câmara I (2003) The Atlantic Forest of South America: biodiversity status, threats and outlook. Center for Applied Biodiversity Science at Conservation International and Island Press, Washington, DC. p 488Google Scholar
  26. Goulart FF, Takahashi FSC, Rodrigues M et al (2015) Where matrix quality most matters? Using connectivity models to assess effectiveness of matrix conversion in the Atlantic Forest. Natureza & Conservação 13:47–53CrossRefGoogle Scholar
  27. Haddad NM, Brudvig LA, Damschen EI et al (2014) Potential negative ecological effects of corridors. Conserv Biol 28:1178–1187CrossRefGoogle Scholar
  28. Heller NE, Zavaleta ES (2009) Biodiversity management in the face of climate change: a review of 22 years of recommendations. Biol Conserv 142:14–32CrossRefGoogle Scholar
  29. Kotsakis A (2009) Community participation in biodiversity conservation emerging localities of tension. In: Kessaris AP (ed) Law in the pursuit of development: principles into practice? Routledge, New York, pp 131–145Google Scholar
  30. Lamas IR, Pinto L (2011) CEPF in Atlantic Forest. Final report, Conservation International, Belo Horizonte, p 74Google Scholar
  31. Lino C, Albuquerque J (2007). Mosaicos de Unidades de Conservação no Corredor da Serra do Mar. Conselho Nacional Da Reserva Da Biosfera Da Mata Atlântica, p 97Google Scholar
  32. Machado F, Anderson K (2016) Brazil’s new Forest Code: a guide for decision-makers in supply chains and governments. Brasilia, WWF-BrazilGoogle Scholar
  33. Mackey B, Watson J, Worboys GL (2010) Connectivity conservation and the Great Eastern Ranges corridor, an independent report to the Interstate Agency Working Group (Alps to Atherton Connectivity Conservation Working Group) convened under the Environment Heritage and Protection Council/Natural Resource Management Ministerial CouncilGoogle Scholar
  34. Majka D, Beier P, Newell S et al (2008): Best Management Practices for Wildlife Corridors, Northern Arizona University, pp. 1–14Google Scholar
  35. May PH, Bernasconi P, Wunder S, Lubowski R (2015) Environmental reserve quotas in Brazil’s new forest legislation: an ex ante appraisal. Center for International Forestry Research (CIFOR), BogorGoogle Scholar
  36. Meiklejohn K, Ament R, Tabor G (2009) Habitat corridors & landscape connectivity: clarifying the terminology. Center for Large Landscape Conservation, Bozeman, pp 1–5Google Scholar
  37. MMA – Ministério do Meio Ambiente (2010) Mata Atlântica: Patrimônio Nacional dos Brasileiros. MMA, Brasília, p 408Google Scholar
  38. Morawetz W, Raedig C (2007) Angiosperm biodiversity endemism and conservation in the Neotropics. Taxon 56:1245–1254CrossRefGoogle Scholar
  39. Myers N, Mittermeler RA, Mittermeler CG et al (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858CrossRefGoogle Scholar
  40. Nehren U, Raedig C, Sattler D (2017) Der Atlantische Regenwald von Rio de Janeiro: Nutzungsperspektiven im Spannungsfeld von globalen Herausforderungen und lokalen Bedürfnissen. In: Anhuf D (ed) Brasilien – Herausforderungen der neuen Supermacht des Südens. Passauer Kontaktstudium Geographie 14, Selbstverlag Fach Geographie, Universität Passau, pp 51–67Google Scholar
  41. Parks SA, McKelvey KS, Schwartz MK (2013) Effects of weighting schemes on the identification of wildlife corridors generated with least-cost methods. Conserv Biol 27:145–154CrossRefGoogle Scholar
  42. Pereira LC, Neto FL (2004) Avaliação da aptidão agrícola das terras: proposta metodológica. Embrapa Meio Ambiente. Documentos 43Google Scholar
  43. Pinto N, Keitt TH (2009) Beyond the least-cost path: evaluating corridor redundancy using a graph-theoretic approach. Landsc Ecol 24:253–266CrossRefGoogle Scholar
  44. Pinto SR, Melo F, Tabarelli M, Padovesi A et al (2014) Governing and delivering a biome-wide restoration initiative: the case of Atlantic Forest restoration pact in Brazil. Forests 5(9):2212–2229CrossRefGoogle Scholar
  45. Piratelli AJ, Marquez Piña-Rodrigues FC, Raedig C (2018) Integrating biodiversity conservation into agroecosystem management: using birds to bring conservation and agricultural production together. In: Nehren U, Schlüter S, Raedig C, Sattler D, Hissa H (eds) Strategies and tools for a sustainable rural. Cham. Springer International PublishingGoogle Scholar
  46. Prado FB, Vasconcelos FCW, Chiodi CK (2013) Regime jurídico da Mata Atlântica e o risco à sobrevivência in situ de espécies ameaçadas. Ambiente & Sociedade 17:1–16CrossRefGoogle Scholar
  47. Raedig C, Lautenbach S (2009) Broad-scale angiosperm diversity in Brazil’s Mata Atlântica: using monographic data to assess prospects for conservation. In: Gaese H, Torrico JC, Wesenberg J, Schlüter S (eds) Biodiversity and land use systems in the fragmented Mata Atlântica of Rio de Janeiro. Cuvillier -Verlag, Göttingen, pp 217–243Google Scholar
  48. Raedig C, Dormann CF, Hildebrandt A, Lautenbach S (2010) Reassessing Neotropical angiosperm distribution patterns based on monographic data: a geometric interpolation approach. Biodivers Conserv 19:1523–1546CrossRefGoogle Scholar
  49. Resasco J, Haddad NM, Orrock JL et al (2014) Landscape corridors can increase invasion by an exotic species and reduce diversity of native species. Ecology 95:2033–2039CrossRefGoogle Scholar
  50. Ribeiro MC, Metzger JP, Martensen AC et al (2009) The Brazilian Atlantic Forest: how much is left, and how is the remaining forest distributed? Implications for conservation. Biol Conserv 142:1141–1153CrossRefGoogle Scholar
  51. Ribeiro MC, Martensen AC, Metzger JP et al (2010) Brazilian Atlantic Forest: a shrinking biodiversity hotspot, In: Biodiversity hotspots, pp 405–343Google Scholar
  52. Sanderson, J, Da Fonseca GAB, Galindo-Leal C et al (2006): Escaping the Minimalist Trap: Design and Implementation of Large-Scale Biodiversity Corridors. In: Crooks K.R. & Sanjayan M. (eds.): Connectivity Conservation. Cambridge University Press, Cambridge 14:620–648Google Scholar
  53. Scheer MCB, Blum CT (2011) Arboreal diversity of the Atlantic Forest of Southern Brazil: from the beach ridges to the Paraná river, The dynamical processes of biodiversity – Case studies of evolution and spatial distribution. In: Grillo O (ed) The dynamical processes of biodiversity – Case studies of evolution and spatial distribution, Sociedade Chauá Brazil, Paraná, pp 109–134Google Scholar
  54. Schlüter S, Nehren U, Sattler D, Raedig C (2018) The INTECRAL project. In: Nehren U, Schlüter S, Raedig C, Sattler D, Hissa H (eds) Strategies and tools for a sustainable rural Rio de Janeiro. Springer International PublishingGoogle Scholar
  55. Secretaria do Meio Ambiente (2011) Agenda 21 Nova Friburgo, 122. http://www.agenda21comperj.com.br/sites/localhost/files/NovaFriburgo.pdf. Accessed 20 May 2015
  56. Seoane SCE, Sandri DV, Longhi ST, Maranhão FLC (2010) Corredores ecológicos como ferramenta para a desfragmentação de florestas tropicais. EMBRAPA 30:207–216Google Scholar
  57. SNUC – Sistema Nacional de Unidades de Conservação da Natureza (2000) Lei no 9.985, de 18 de julho de 2000; decreto no 4.340, de 22 de agosto de 2002Google Scholar
  58. Soares-Filho B, Rajão R, Macedo M et al (2014) Cracking Brazil’s Forest code. Science 344:363–364CrossRefGoogle Scholar
  59. SOS Mata Atlântica (2013) XII Edital do programa de incentivo às RPPNs da Mata Atlântcia, p 35Google Scholar
  60. Souza PM, Ponciano NJ, Mata HTC (2007) Strutura fundiária das regiões Norte e Noroeste do Estado do Rio de Janeiro: 1972 a 1998. Rev Econ Sociol Rural 45:71–91CrossRefGoogle Scholar
  61. Stotz DF, Fitzpatrick JW, Parker III TA, Moskovits DK (1996) Neotropical birds: ecology and conservation. p 502Google Scholar
  62. Suleiman S, Agarwal VC, Lal D, Sunusi A (2015) Optimal route location by least cost path (LCP) analysis using (GIS) a case study. International Journal of Scientific Engineering and Technology Research 4:9621–9626Google Scholar
  63. Tabarelli M, Aguiar AV, Ribeiro MC et al (2010) Prospects for biodiversity conservation in the Atlantic Forest: lessons from aging human-modified landscapes. Biol Conserv 143:2328–2340CrossRefGoogle Scholar
  64. Tewksbury JJ, Levey DJ, Haddad NM (2002) Corridors affect plants, animals, and their interactions in fragmented landscapes. Proc Natl Acad Sci 99(20):12923–12926CrossRefGoogle Scholar
  65. Theobald DM (2006) Exploring the functional connectivity of landscapes using landscape networks. In: Crooks KR, Sanjayan M (eds) Connectivity conservation. Cambridge University Press, Cambridge, pp 416–444CrossRefGoogle Scholar
  66. Wiens JA (2006) Introduction: connectivity research – what are the issues? In: Crooks KR, Sanjayan M (eds) Connectivity conservation. Cambridge University Press, Cambridge, pp 23–27CrossRefGoogle Scholar
  67. Worboys GL, Lockwood M, Francis WL (2010) Challenges and opportunities for connectivity conservation. Connectivity Conservation Management. Earthscan London, London, pp 342–346Google Scholar
  68. World Bank (2014) Project performance assessment report, Brazil. Rio de Janeiro sustainable integrated ecosystem management in production landscapes of North Northwestern fluminese project, p 74Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • Lorena Valeria Guzmán Wolfhard
    • 1
  • Claudia Raedig
    • 1
  1. 1.Institute for Technology and Resources Management in the Tropics and Subtropics (ITT)TH Köln – University of Applied SciencesKölnGermany

Personalised recommendations