Advertisement

Graphical Diagnostics, Tests, and Model Selection

  • Marius Hofert
  • Ivan Kojadinovic
  • Martin Mächler
  • Jun Yan
Chapter
Part of the Use R! book series (USE R)

Abstract

This chapter presents graphical diagnostics and statistical tests, and discusses model selection for copulas.

References

  1. Ben Ghorbal, M., Genest, C., & Nešlehová, J. G. (2009). On the test of Ghoudi, Khoudraji, and Rivest for extreme-value dependence. The Canadian Journal of Statistics, 37(4), 534–552.MathSciNetCrossRefGoogle Scholar
  2. Berg, D. (2009). Copula goodness-of-fit testing: An overview and power comparison. The European Journal of Finance, 15, 675–701.CrossRefGoogle Scholar
  3. Bücher, A., Dette, H., & Volgushev, S. (2012). A test for Archimedeanity in bivariate copula models. Journal of Multivariate Analysis, 110, 121–132.MathSciNetCrossRefGoogle Scholar
  4. Bücher, A., & Kojadinovic, I. (2015). An overview of nonparametric tests of extreme-value dependence and of some related statistical procedures. In D. Dey & J. Yan (Eds.) Extreme value modeling and risk analysis: Methods and applications (pp. 377–398). Boca Baton, FL: Chapman & Hall/CRC.CrossRefGoogle Scholar
  5. Chen, X., & Fan, Y. (2005). Pseudo-likelihood ratio tests for semiparametric multivariate copula model selection. The Canadian Journal of Statistics, 33, 389–414.MathSciNetCrossRefGoogle Scholar
  6. Claeskens, G., & Hjort, N. L. (2008). Model selection and model averaging. London: Cambridge University Press.CrossRefGoogle Scholar
  7. Deheuvels, P. (1981). A non parametric test for independence. Publications de l’Institut de Statistique de l’Université de Paris, 26, 29–50.zbMATHGoogle Scholar
  8. Fermanian, J.-D. (2005). Goodness-of-fit tests for copulas. Journal of Multivariate Analysis, 95(1), 119–152.MathSciNetCrossRefGoogle Scholar
  9. Fermanian, J.-D. (2013). An overview of the goodness-of-fit test problem for copulas. In P. Jaworski, F. Durante, & W. K. Härdle (Eds.), Copulae in mathematical and quantitative finance. Lectures notes in statistics (pp. 61–89). Berlin: Springer.CrossRefGoogle Scholar
  10. Genest, C., & Boies, J.-C. (2003). Detecting dependence with Kendall plots. The American Statistician, 57, 275–284.MathSciNetCrossRefGoogle Scholar
  11. Genest, C., & Favre, A.-C. (2007). Everything you always wanted to know about copula modeling but were afraid to ask. Journal of Hydrological Engineering, 12, 347–368.CrossRefGoogle Scholar
  12. Genest, C., Nešlehová, J., & Quessy, J.-F. (2012). Tests of symmetry for bivariate copulas. Annals of the Institute of Statistical Mathematics, 64, 811–834.MathSciNetCrossRefGoogle Scholar
  13. Genest, C., & Nešlehová, J. G. (2014). On tests of radial symmetry for bivariate copulas. Statistical Papers, 55, 1107–1119.MathSciNetCrossRefGoogle Scholar
  14. Genest, C., Quessy, J.-F., & Rémillard, B. (2007). Asymptotic local efficiency of Cramér–von Mises tests for multivariate independence. The Annals of Statistics, 35, 166–191.MathSciNetCrossRefGoogle Scholar
  15. Genest, C., & Rémillard, B. (2004). Tests of independence and randomness based on the empirical copula process. Test, 13(2), 335–369.MathSciNetCrossRefGoogle Scholar
  16. Genest, C., & Rémillard, B. (2008). Validity of the parametric bootstrap for goodness-of-fit testing in semiparametric models. Annales de l’Institut Henri Poincaré: Probabilités et Statistiques, 44, 1096–1127.MathSciNetCrossRefGoogle Scholar
  17. Genest, C., Rémillard, B., & Beaudoin, D. (2009). Goodness-of-fit tests for copulas: A review and a power study. Insurance: Mathematics and Economics, 44, 199–213.MathSciNetzbMATHGoogle Scholar
  18. Ghoudi, K., Khoudraji, A., & Rivest, L.-P. (1998). Propriétés statistiques des copules de valeurs extrêmes bidimensionnelles. The Canadian Journal of Statistics, 26(1), 187–197.MathSciNetCrossRefGoogle Scholar
  19. Gilbert, P., & Varadhan, R. (2016). numDeriv: Accurate numerical derivatives, R package version 2016.8-27. https://CRAN.R-project.org/package=numDeriv Google Scholar
  20. Grønneberg, S., & Hjort, N. L. (2014). The copula information criteria. Scandinavian Journal of Statistics, 41, 436–459.MathSciNetCrossRefGoogle Scholar
  21. Harder, M., & Stadtmüller, U. (2017). Testing exchangeability of copulas in arbitrary dimension. Journal of Nonparametric Statistics, 29(1), 40–60.MathSciNetCrossRefGoogle Scholar
  22. Hofert, M., & Mächler, M. (2014). A graphical goodness-of-fit test for dependence models in higher dimensions. Journal of Computational and Graphical Statistics, 23(3), 700–716.MathSciNetCrossRefGoogle Scholar
  23. Hofert, M., & Oldford, R. W. (2016). zenplots: Zigzag expanded navigation plots, R package version 0.0-1. https://CRAN.R-project.org/package=zenplots
  24. Hofert, M., & Oldford, R. W. (2017). Visualizing dependence in high-dimensional data: An application to S&P 500 constituent data. Econometrics and Statistics, 8, 161–183.MathSciNetCrossRefGoogle Scholar
  25. Joe, H. (1990). Multivariate concordance. Journal of Multivariate Analysis, 35(1), 12–30.MathSciNetCrossRefGoogle Scholar
  26. Joe, H. (2014). Dependence modeling with copulas. Boca Raton, FL: Chapman & Hall/CRC.Google Scholar
  27. Jordanger, L. A., & Tjøstheim, D. (2014). Model selection of copulas: AIC versus a cross validation copula information criterion. Statistics & Probability Letters, 92, 249–255.MathSciNetCrossRefGoogle Scholar
  28. Kojadinovic, I. (2017). Some copula inference procedures adapted to the presence of ties. Computational Statistics and Data Analysis, 142, 24–41.MathSciNetCrossRefGoogle Scholar
  29. Kojadinovic, I., & Holmes, M. (2009). Tests of independence among continuous random vectors based on Cramér–von Mises functionals of the empirical copula process. Journal of Multivariate Analysis, 100(6), 1137–1154.MathSciNetCrossRefGoogle Scholar
  30. Kojadinovic, I., Segers, J., & Yan, J. (2011). Large-sample tests of extreme-value dependence for multivariate copulas. The Canadian Journal of Statistics, 39(4), 703–720.MathSciNetCrossRefGoogle Scholar
  31. Kojadinovic, I., & Yan, J. (2011). A goodness-of-fit test for multivariate multiparameter copulas based on multiplier central limit theorems. Statistics and Computing, 21(1), 17–30.MathSciNetCrossRefGoogle Scholar
  32. Kojadinovic, I., & Yan, J. (2012). A nonparametric test of exchangeability for extreme-value and left-tail decreasing bivariate copulas. Scandinavian Journal of Statistics, 39(3), 480–496.MathSciNetCrossRefGoogle Scholar
  33. Kojadinovic, I., Yan, J., & Holmes, M. (2011). Fast large-sample goodness-of-fit for copulas. Statistica Sinica, 21(2), 841–871.MathSciNetCrossRefGoogle Scholar
  34. Mashal, R., & Zeevi, A. (2002). Beyond correlation: Extreme co-movements between financial assets. Technical report, Columbia School of Business. https://www0.gsb.columbia.edu/faculty/azeevi/PAPERS/BeyondCorrelation.pdf
  35. McNeil, A. J., Frey, R., & Embrechts, P. (2015). Quantitative risk management: Concepts, techniques and tools (2nd ed.). Princeton, NJ: Princeton University Press.zbMATHGoogle Scholar
  36. Quessy, J.-F. (2005), Méthodologie et application des copules: tests d’adéquation, tests d’indépendance, et bornes sur la valeur-à-risque. PhD thesis, Université Laval, Québec, Canada.Google Scholar
  37. Rémillard, B., & Scaillet, O. (2009), Testing for equality between two copulas. Journal of Multivariate Analysis, 100(3), 377–386.MathSciNetCrossRefGoogle Scholar
  38. Sarkar, D. (2016). latticeExtra: Extra graphical utilities based on lattice, R package version 0.6-28. http://CRAN.R-project.org/package=latticeExtra
  39. Schmid, F., & Schmidt, R. (2007). Multivariate extensions of Spearman’s rho and related statistics. Statistics & Probability Letters, 77(4), 407–416.MathSciNetCrossRefGoogle Scholar
  40. Wild, C. J., & Seber, G. A. F. (1999). Chance encounters: A first course in data analysis and inference. New York: Wiley.zbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Marius Hofert
    • 1
  • Ivan Kojadinovic
    • 2
  • Martin Mächler
    • 3
  • Jun Yan
    • 4
  1. 1.Department of Statistics and Actuarial ScienceUniversity of WaterlooWaterlooCanada
  2. 2.Laboratory of Mathematics and its ApplicationsUniversity of Pau and Pays de l’AdourPauFrance
  3. 3.Seminar for StatisticsETH ZurichZurichSwitzerland
  4. 4.Department of StatisticsUniversity of ConnecticutStorrsUSA

Personalised recommendations