Advertisement

Cardiovascular and Respiratory Systems

  • Bahig M. Shehata
  • Nasim Khoshnam
  • Aliya N. Husain
Chapter
Part of the Molecular Pathology Library book series (MPLB)

Abstract

Primary tumors of the lung and heart are very rare in children as compared to metastatic disease which, although uncommon, is still seen more often. Thus, three entities are discussed here, pleuropulmonary blastoma, inflammatory myofibroblastic tumor, and histiocytoid cardiomyopathy, in each of which there has been recent progress in understanding their molecular pathogenesis. Discussion will also focus on the pathologic and molecular features of cardiac fibroma and NUT midline carcinoma.

Keywords

Pleuropulmonary blastoma PPB DICER1 DICER1-PPB familial tumor predisposition syndrome Inflammatory myofibroblastic tumor Histiocytoid cardiomyopathy NDUFB1 Cardiac fibroma NUT midline carcinoma NUT BRD4 

References

  1. 1.
    Messinger YH, Stewart DR, Priest JR, Williams GM, Harris AK, Schultz KA, Yang J, Doros L, Rosenberg PS, Hill DA, Dehner LP. Pleuropulmonary blastoma: a report on 350 central pathology-confirmed pleuropulmonary blastoma cases by the International Pleuropulmonary Blastoma Registry. Cancer. 2015;121(2):276–85.  https://doi.org/10.1002/cncr.29032.CrossRefPubMedGoogle Scholar
  2. 2.
    Schultz KA, Yang J, Doros L, Williams GM, Harris A, Stewart DR, Messinger Y, Field A, Dehner LP, Hill DA. DICER1-pleuropulmonary blastoma familial tumor predisposition syndrome: a unique constellation of neoplastic conditions. Pathol Case Rev. 2014;19(2):90–100.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Foulkes WD, Priest JR, Duchaine TF. DICER1: mutations, microRNAs and mechanisms. Nat Rev Cancer. 2014;14(10):662–72.CrossRefPubMedGoogle Scholar
  4. 4.
    Hill A, Ivanovich J, Priest JR, et al. DICER1 mutations in familial pleuropulmonary blastoma. Science. 2009;325(5943):965.  https://doi.org/10.1126/science.1174334.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Pugh TJ, Yu W, Yang J, et al. Exome sequencing of pleuropulmonary blastoma reveals frequent biallelic loss of TP53 and two hits in DICER1 resulting in retention of 5p-derived miRNA hairpin loop sequences. Oncogene. 2014;33(45):5295–302. http://www.nature.com/onc/journalCrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Surabhi VR, Chua S, Patel RP, Takahashi N, Lalwani N, Prasad SR. Inflammatory myofibroblastic tumors: current update. Radiol Clin N Am. 2016;54(3):553–63.  https://doi.org/10.1016/j.rcl.2015.12.005.CrossRefPubMedGoogle Scholar
  7. 7.
    Mossé YP, Voss SD, Lim MS, Rolland D, Minard CG, Fox E, Adamson P, Wilner K, Blaney SM, Weigel BJ. Targeting ALK with crizotinib in pediatric anaplastic large cell lymphoma and inflammatory myofibroblastic tumor: a children’s oncology group study. J Clin Oncol. 2017;35(28):3215–21.CrossRefPubMedGoogle Scholar
  8. 8.
    Chun YS, Wang L, Nascimento AG, Moir CR, Rodeberg DA. Pediatric inflammatory myofibroblastic tumor: anaplastic lymphoma kinase (ALK) expression and prognosis. Pediatr Blood Cancer. 2005;45(6):796–801.CrossRefPubMedGoogle Scholar
  9. 9.
    Lovly CM, Gupta A, Lipson D, Otto G, Brennan T, Chung CT, Borinstein SC, Ross JS, Stephens PJ, Miller VA, Coffin CM. Inflammatory myofibroblastic tumors harbor multiple potentially actionable kinase fusions. Cancer Discov. 2014;4(8):889–95.  https://doi.org/10.1158/2159-8290.CD-14-0377.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Antonescu CR, Suurmeijer AJ, Zhang L, Sung YS, Jungbluth AA, Travis WD, Al-Ahmadie H, Fletcher CD, Alaggio R. Molecular characterization of inflammatory myofibroblastic tumors with frequent ALK and ROS1 gene fusions and rare novel RET rearrangement. Am J Surg Pathol. 2015;39(7):957–67.  https://doi.org/10.1097/PAS.0000000000000404.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Shehata BM, Patterson K, Thomas JE, Scala-Barnett D, Dasu S, Robinson HB. Histiocytoid cardiomyopathy: three new cases and a review of the literature. Pediatr Dev Pathol. 1998;1(1):56–69.CrossRefPubMedGoogle Scholar
  12. 12.
    Andreu AL, Checcarelli N, Iwata S, Shanske S, Dimauro S. A missense mutation in the mitochondrial cytochrome b gene in a revisited case with histiocytoid cardiomyopathy. Pediatr Res. 2000;48(3):311–4.CrossRefPubMedGoogle Scholar
  13. 13.
    Vallance HD, Jeven G, Wallace DC, Brown MD. A case of sporadic infantile histiocytoid cardiomyopathy caused by the A8344G (MERRF) mitochondrial DNA mutation. Pediatr Cardiol. 2004;25:538–40.CrossRefPubMedGoogle Scholar
  14. 14.
    Bird LM, Krous HF, Eichenfield LF, Swalwell CI, Jones MC. Female infant with oncocytic cardiomyopathy and microphthalmia with linear skin defect (MLS): a clue to the pathogenesis of oncocytic cardiomyopathy? Am J Med Genet. 1994;53:141–8.CrossRefPubMedGoogle Scholar
  15. 15.
    Shehata BM, Cundiff CA, Lee K, Sabharwal A, Lalwani MK, Davis AK, Agarwal V, Sivasubbu S, Iannucci GJ, Gibson G. Exome sequencing of patients with Histiocytoid cardiomyopathy reveals a de novo NDUFB11 mutation that plays a role in the pathogenesis of Histiocytoid cardiomyopathy. Am J Med Genet A. 2015;167A:2114–21.CrossRefPubMedGoogle Scholar
  16. 16.
    Rea G, Homfray T, Till J, Roses-Noguer F, Buchan RJ, Wilkinson S, Wilk A, Walsh R, John S, McKee S, Stewart FJ, Murday V, Taylor RW, Ashworth M, Baksi AJ, Daubeney P, Prasad S, Barton PJR, Cook SA, Ware JS. Histiocytoid cardiomyopathy and microphthalmia with linear skin defects syndrome: phenotypes linked by truncating variants in NDUFB11. Cold Spring Harb Mol Case Stud. 2017;3(1):a001271.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Scanlan D, Radio SJ, Nelson M, et al. Loss of the PTCH1 gene locus in cardiac fibroma. Cardiovasc Pathol. 2008;17(2):93–7.  https://doi.org/10.1016/j.carpath.2007.08.001.CrossRefPubMedGoogle Scholar
  18. 18.
    Miller DV, Wang H, Wang H, et al. Beta-catenin mutations do not contribute to cardiac fibroma pathogenesis. Pediatr Dev Pathol. 2008;11(4):291–4.CrossRefPubMedGoogle Scholar
  19. 19.
    French CA. NUT midline carcinoma. Cancer Genet Cytogenet. 2010;203(1):16–20.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Shehata BM, Steelman CK, Abramowsky CR, Olson TA, French CA, Saxe DF, Ricketts RR, Katzenstein HM. NUT midline carcinoma in a newborn with multiorgan disseminated tumor and a 2-year-old with a pancreatic/hepatic primary. Pediatr Dev Pathol. 2010;13(6):481–5.CrossRefPubMedGoogle Scholar
  21. 21.
    Samples S, Gledistch K, Polimenakos A. Intrapericardial NUT midline carcinoma: unusual presentation of a rare tumor and literature review with management. Pediatr Cardiol. 2016;37:208–11.CrossRefPubMedGoogle Scholar
  22. 22.
    French CA. Demystified molecular pathology of NUT midline carcinomas. J Clin Pathol. 2010;63:493–6.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Bahig M. Shehata
    • 1
  • Nasim Khoshnam
    • 1
  • Aliya N. Husain
    • 2
  1. 1.Georgia Institute of Technology and Emory University School of MedicineAtlantaUSA
  2. 2.Department of Pathology, University of ChicagoChicagoUSA

Personalised recommendations