Advertisement

Precious Versus Non-precious Electrocatalyst Centers

  • Nicolas Alonso-VanteEmail author
Chapter
Part of the Nanostructure Science and Technology book series (NST)

Abstract

This chapter discusses the fuel cell, and electrolyzer reactions performed so far on chalcogenide materials. This latter made of precious metal and non-precious metal centers coordinated with chalcogen atoms.

Keywords

Chalcogens (S, Se) 2D and 3D nanomaterials Chalcogenide semiconductors Chalcogenide metals Electrocatalysts 

References

  1. 1.
    Wang Y, Li L, Yao W, Song S, Sun JT, Pan J, Ren X, Li C, Okunishi E, Wang Y-Q, Wang E, Shao Y, Zhang YY, H-t Yang, Schwier EF, Iwasawa H, Shimada K, Taniguchi M, Cheng Z, Zhou S, Du S, Pennycook SJ, Pantelides ST, Gao H-J (2015) Monolayer PtSe2, a new semiconducting transition-metal-dichalcogenide, epitaxially grown by direct selenization of Pt. Nano Lett 15(6):4013–4018.  https://doi.org/10.1021/acs.nanolett.5b00964CrossRefPubMedGoogle Scholar
  2. 2.
    Huang Z, Zhang W, Zhang W (2016) Computational search for two-dimensional MX2 semiconductors with possible high electron mobility at room temperature. Materials 9(9):716CrossRefGoogle Scholar
  3. 3.
    He T, Kreidler E, Xiong L, Ding E (2007) Combinatorial screening and nano-synthesis of platinum binary alloys for oxygen electroreduction. J Power Sources 165(1):87–91CrossRefGoogle Scholar
  4. 4.
    Kulesza PJ, Miecznikowski K, Baranowska B, Skunik M, Zlotorowicz A, Chojak M, Lewera A, Fiechter S, Bogdanoff P, Dorbandt I Enhancement of the electrocatalytic reduction of oxygen at tungsten oxide modified carbon-supported RuSex nanoparticles and Co-porphyrin centers. In: ECS Transactions, 2007. pp 11–17Google Scholar
  5. 5.
    Colmenares L, Jusys Z, Behm RJ (2006) Electrochemical surface characterization and O2 reduction kinetics of Se surface-modified Ru nanoparticle-based RuSey/C catalysts. Langmuir 22(25):10437–10445CrossRefGoogle Scholar
  6. 6.
    Stassen WN, Heyding RD (1968) Crystal structures of RuSe2, OsSe2, PtAs2, and α-NiAs2. Can J Chem 46(12):2159–2163.  https://doi.org/10.1139/v68-351CrossRefGoogle Scholar
  7. 7.
    Sheu J-S, Shih Y-S, Lin S-S, Huang Y-S (1991) Growth and characterization of RuSe2 single crystals. Mater Res Bull 26(1):11–17.  https://doi.org/10.1016/0025-5408(91)90033-ICrossRefGoogle Scholar
  8. 8.
    Park H-Y, Yoo SJ, Kim SJ, Lee S-Y, Ham HC, Sung Y-E, Kim S-K, Hwang SJ, Kim H-J, Cho E, Henkensmeier D, Nam SW, Lim T-H, Jang JH (2013) Effect of Se modification on RuSey/C electrocatalyst for oxygen reduction with phosphoric acid. Electrochem Commun 27:46–49.  https://doi.org/10.1016/j.elecom.2012.10.032CrossRefGoogle Scholar
  9. 9.
    Kühne HM, Jaegermann W, Tributsch H (1984) The electronic band character of Ru dichalcogenides and its significance for the photoelectrolysis of water. Chem Phys Lett 112(2):160–164.  https://doi.org/10.1016/0009-2614(84)85013-7CrossRefGoogle Scholar
  10. 10.
    Shukla AK, Raman RK (2003) Methanol-resistant oxygen-reduction catalysts for direct methanol fuel cells. Annu Rev Mater Res 33(1):155–168.  https://doi.org/10.1146/annurev.matsci.33.072302.093511CrossRefGoogle Scholar
  11. 11.
    Bernal-Alvarado J, Vargas-Luna M, Solorza-Feria O, Mondragon R, Alonso-Vante N (2000) Photoacoustic characterization of n-RuSe2 semiconductor pellets. J Appl Phys 88(6):3771–3772CrossRefGoogle Scholar
  12. 12.
    Jiang X, Mayers B, Wang Y, Cattle B, Xia Y (2004) Template-engaged synthesis of RuSe2 and Pd17Se15 nanotubes by reacting precursor salts with selenium nanowires. Chem Phys Lett 385(5–6):472–476.  https://doi.org/10.1016/j.cplett.2004.01.033CrossRefGoogle Scholar
  13. 13.
    Üzengi Aktürk O, Tomak M (2015) Adsorption of RuSex (x = 1–5) cluster on Se-doped graphene: First principle calculations. Appl Surf Sci 347:808–815.  https://doi.org/10.1016/j.apsusc.2015.04.124CrossRefGoogle Scholar
  14. 14.
    Dembinska B, Kiliszek M, Elzanowska H, Pisarek M, Kulesza PJ (2013) Enhancement of activity of RuSex electrocatalyst by modification with nanostructured iridium towards more efficient reduction of oxygen. J Power Sources 243:225–232.  https://doi.org/10.1016/j.jpowsour.2013.05.120CrossRefGoogle Scholar
  15. 15.
    Lewera A, Miecznikowski K, Hunger R, Kolary-Zurowska A, Wieckowski A, Kulesza PJ (2010) Electronic-level interactions of tungsten oxide with unsupported Se/Ru electrocatalytic nanoparticles. Electrochim Acta 55(26):7603–7609.  https://doi.org/10.1016/j.electacta.2010.03.038CrossRefGoogle Scholar
  16. 16.
    Chiao S-P, Tsai D-S, Wilkinson DP, Chen Y-M, Huang Y-S (2010) Carbon supported Ru1−xFexSey electrocatalysts of pyrite structure for oxygen reduction reaction. Int J Hydrogen Energy 35(13):6508–6517.  https://doi.org/10.1016/j.ijhydene.2010.04.032CrossRefGoogle Scholar
  17. 17.
    Papageorgopoulos DC, Liu F, Conrad O (2007) Reprint of “A study of RhxSy/C and RuSex/C as methanol-tolerant oxygen reduction catalysts for mixed-reactant fuel cell applications”. Electrochim Acta 53(2):1037–1041CrossRefGoogle Scholar
  18. 18.
    Papageorgopoulos DC, Liu F, Conrad O (2007) A study of RhxSy/C and RuSex/C as methanol-tolerant oxygen reduction catalysts for mixed-reactant fuel cell applications. Electrochim Acta 52(15):4982–4986CrossRefGoogle Scholar
  19. 19.
    Kolary-Zurowska A, Zieleniak A, Miecznikowski K, Baranowska B, Lewera A, Fiechter S, Bogdanoff P, Dorbandt I, Marassi R, Kulesza PJ (2007) Activation of methanol-tolerant carbon-supported RuSex electrocatalytic nanoparticles towards more efficient oxygen reduction. J Solid State Electrochem 11(7):915–921CrossRefGoogle Scholar
  20. 20.
    Kulesza PJ, Miecznikowski K, Baranowska B, Skunik M, Fiechter S, Bogdanoff P, Dorbandt I (2006) Tungsten oxide as active matrix for dispersed carbon-supported RuSex nanoparticles: enhancement of the electrocatalytic oxygen reduction. Electrochem Commun 8(5):904–908CrossRefGoogle Scholar
  21. 21.
    Kulesza PJ, Miecznikowski K, Baranowska B, Skunik M, Kolary-Zurowska A, Lewera A, Karnicka K, Chojak M, Rutkowska I, Fiechter S, Bogdanoff P, Dorbandt I, Zehl G, Hiesgen R, Dirk E, Nagabhushana KS, Boennemann H (2007) Electroreduction of oxygen at tungsten oxide modified carbon-supported RuSex nanoparticles. J Appl Electrochem 37(12):1439–1446CrossRefGoogle Scholar
  22. 22.
    Vogel W, Kaghazchi P, Jacob T, Alonso-Vante N (2007) Genesis of RuxSey Nanoparticles by Pyrolysis of Ru4Se2(CO)11: A Combined X-ray in Situ and DFT Study. J Phys Chem C 111:3908–3913CrossRefGoogle Scholar
  23. 23.
    Haas S, Zehl G, Dorbandt I, Manke I, Bogdanoff P, Fiechter S, Hoell A (2010) Direct Accessing the Nanostructure of Carbon Supported Ru—Se Based Catalysts by ASAXS. J Phys Chem C 114(51):22375–22384.  https://doi.org/10.1021/jp103340tCrossRefGoogle Scholar
  24. 24.
    Shen M-Y, Chiao S-P, Tsai D-S, Wilkinson DP, Jiang J-C (2009) Preparation and oxygen reduction activity of stable RuSex/C catalyst with pyrite structure. Electrochim Acta 54(18):4297–4304.  https://doi.org/10.1016/j.electacta.2009.02.081CrossRefGoogle Scholar
  25. 25.
    Malkhandi S, Yangang Y, Rao V, Bund A, Stimming U (2011) Synthesis and Electrochemical Study of Antimony-Doped Tin Oxide Supported RuSe Catalysts for Oxygen Reduction Reaction. Electrocatalysis 2(1):20–23.  https://doi.org/10.1007/s12678-010-0033-yCrossRefGoogle Scholar
  26. 26.
    Kozlova EA, Safatov AS, Kiselev SA, Marchenko VY, Sergeev AA, Skarnovich MO, Emelyanova EK, Smetannikova MA, Buryak GA, Vorontsov AV (2010) Inactivation and Mineralization of Aerosol Deposited Model Pathogenic Microorganisms over TiO2 and Pt/TiO2. Environ Sci Technol 44(13):5121–5126.  https://doi.org/10.1021/es100156pCrossRefPubMedGoogle Scholar
  27. 27.
    Montiel M, García-Rodríguez S, Hernández-Fernández P, Díaz R, Rojas S, Fierro JLG, Fatás E, Ocón P (2010) Relevance of the synthesis route of Se-modified Ru/C as methanol tolerant electrocatalysts for the oxygen reduction reaction. J Power Sources 195(9):2478–2487CrossRefGoogle Scholar
  28. 28.
    Cao D, Wieckowski A, Inukai J, Alonso-Vante N (2006) Oxygen reduction reaction on ruthenium and rhodium nanoparticles modified with selenium and sulfur. J Electrochem Soc 153(5):A869–A874CrossRefGoogle Scholar
  29. 29.
    Cheng H, Yuan W, Scott K (2007) Influence of thermal treatment on RuSe cathode materials for direct methanol fuel cells. Fuel Cells 7(1):16–20CrossRefGoogle Scholar
  30. 30.
    Scott K, Shukla AK, Jackson CL, Meuleman WRA (2004) A mixed-reactants solid-polymer-electrolyte direct methanol fuel cell. J Power Sources 126(1–2):67–75CrossRefGoogle Scholar
  31. 31.
    Cheng H, Yuan W, Scott K, Browning DJ, Lakeman JB (2007) The catalytic activity and methanol tolerance of transition metal modified-ruthenium-selenium catalysts. Appl Catal B: Environ 75(3–4):221–228CrossRefGoogle Scholar
  32. 32.
    Cheng H, Yuan W, Scott K (2006) The influence of a new fabrication procedure on the catalytic activity of ruthenium-selenium catalysts. Electrochim Acta 52(2):466–473CrossRefGoogle Scholar
  33. 33.
    Serov AA, Min M, Chai G, Han S, Kang S, Kwak C (2008) Preparation, characterization, and high performance of RuSe/C for direct methanol fuel cells. J Power Sources 175(1):175–182CrossRefGoogle Scholar
  34. 34.
    Zehl G, Schmithals G, Hoell A, Haas S, Hartnig C, Dorbandt I, Bogdanoff P, Fiechter S (2007) On the structure of carbon-supported selenium-modified ruthenium nanoparticles as electrocatalysts for oxygen reduction in fuel cells. Angew Chem Int Ed 46(38):7311–7314CrossRefGoogle Scholar
  35. 35.
    Zehl G, Bogdanoff P, Dorbandt I, Fiechter S, Wippermann K, Hartnig C (2007) Carbon supported Ru-Se as methanol tolerant catalysts for DMFC cathodes. Part I: preparation and characterization of catalysts. J Appl Electrochem 37(12):1475–1484CrossRefGoogle Scholar
  36. 36.
    Wippermann K, Richter B, Klafki K, Mergel J, Zehl G, Dorbandt I, Bogdanoff P, Fiechter S, Kaytakoglu S (2007) Carbon supported Ru-Se as methanol tolerant catalysts for DMFC cathodes. Part II: preparation and characterization of MEAs. J Appl Electrochem 37(12):1399–1411CrossRefGoogle Scholar
  37. 37.
    Racz A, Bele P, Cremers C, Stimming U (2007) Ruthenium selenide catalysts for cathodic oxygen reduction in direct methanol fuel cells. J Appl Electrochem 37(12):1455–1462CrossRefGoogle Scholar
  38. 38.
    Nagabhushana KS, Dinjus E, Bönnemann H, Zaikovskii V, Hartnig C, Zehl G, Dorbandt I, Fiechter S, Bogdanoff P (2007) Reductive annealing for generating Se doped 20 wt% Ru/C cathode catalysts for the oxygen reduction reaction. J Appl Electrochem 37(12):1515–1522CrossRefGoogle Scholar
  39. 39.
    Colmenares L, Jusys Z, Behm RJ (2007) Activity, selectivity, and methanol tolerance of Se-modified Ru/C cathode catalysts. J Phys Chem C 111(3):1273–1283CrossRefGoogle Scholar
  40. 40.
    Ohtani T, Ikeda K, Hayashi Y, Fukui Y (2007) Mechanochemical preparation of palladium chalcogenides. Mater Res Bull 42(11):1930–1934.  https://doi.org/10.1016/j.materresbull.2006.12.012CrossRefGoogle Scholar
  41. 41.
    Serov AA, Cho S-Y, Han S, Min M, Chai G, Nam KH, Kwak C (2007) Modification of palladium-based catalysts by chalcogenes for direct methanol fuel cells. Electrochem Commun 9(8):2041–2044CrossRefGoogle Scholar
  42. 42.
    Madhu Singh RN (2011) Palladium selenides as active methanol tolerant cathode materials for direct methanol fuel cell. Int J Hydrogen Energy 36(16):10006–10012.  https://doi.org/10.1016/j.ijhydene.2011.05.069CrossRefGoogle Scholar
  43. 43.
    Sarkar S, Sampath S (2014) Equiatomic ternary chalcogenide: PdPS and its reduced graphene oxide composite for efficient electrocatalytic hydrogen evolution. Chem Commun 50(55):7359–7362.  https://doi.org/10.1039/C4CC02364ACrossRefGoogle Scholar
  44. 44.
    Ziegelbauer JM, Gatewood D, Gullá AF, Guinel MJF, Ernst F, Ramaker DE, Mukerjee S (2009) Fundamental investigation of oxygen reduction reaction on rhodium sulfide-based chalcogenides. J Phys Chem C 113(17):6955–6968CrossRefGoogle Scholar
  45. 45.
    Ziegelbauer JM, Gulla AF, O’Laoire C, Urgeghe C, Allen RJ, Mukerjee S (2007) Chalcogenide electrocatalysts for oxygen-depolarized aqueous hydrochloric acid electrolysis. Electrochim Acta 52(21):6282–6294CrossRefGoogle Scholar
  46. 46.
    Ziegelbauer JM, Murthi VS, O’Laoire C, Gullá AF, Mukerjee S (2008) Electrochemical kinetics and X-ray absorption spectroscopy investigations of select chalcogenide electrocatalysts for oxygen reduction reaction applications. Electrochim Acta 53(17):5587–5596CrossRefGoogle Scholar
  47. 47.
    Liu G, Zhang H (2008) Facile synthesis of carbon-supported IrxSey chalcogenide nanoparticles and their electrocatalytic activity for the oxygen reduction reaction. J Phys Chem C 112(6):2058–2065CrossRefGoogle Scholar
  48. 48.
    Ma J, Ai D, Xie X, Guo J (2011) Novel methanol-tolerant Ir–S/C chalcogenide electrocatalysts for oxygen reduction in DMFC fuel cell. Particuology 9(2):155–160.  https://doi.org/10.1016/j.partic.2010.05.015CrossRefGoogle Scholar
  49. 49.
    Lee K, Zhang L, Zhang JJ (2007) A novel methanol-tolerant Ir-Se chalcogenide electrocatalyst for oyxgen reduction. J Power Sources 165(1):108–113CrossRefGoogle Scholar
  50. 50.
    Faber MS, Lukowski MA, Ding Q, Kaiser NS, Jin S (2014) Earth-abundant metal pyrites (FeS2, CoS2, NiS2, and their alloys) for highly efficient hydrogen evolution and polysulfide reduction electrocatalysis. J Phys Chem C 118(37):21347–21356.  https://doi.org/10.1021/jp506288wCrossRefGoogle Scholar
  51. 51.
    Roger I, Shipman MA, Symes MD (2017) Earth-abundant catalysts for electrochemical and photoelectrochemical water splitting. Nat Rev Chem 1:0003.  https://doi.org/10.1038/s41570-016-0003CrossRefGoogle Scholar
  52. 52.
    Shim Y, Yuhas BD, Dyar SM, Smeigh AL, Douvalis AP, Wasielewski MR, Kanatzidis MG (2013) Tunable Biomimetic Chalcogels with Fe4S4 Cores and [SnnS2n+2]4−(n = 1, 2, 4) Building Blocks for Solar Fuel Catalysis. J Am Chem Soc 135(6):2330–2337.  https://doi.org/10.1021/ja311310kCrossRefPubMedGoogle Scholar
  53. 53.
    Qi K, Yu S, Wang Q, Zhang W, Fan J, Zheng W, Cui X (2016) Decoration of the inert basal plane of defect-rich MoS2 with Pd atoms for achieving Pt-similar HER activity. J Mater Chem A 4(11):4025–4031.  https://doi.org/10.1039/C5TA10337ACrossRefGoogle Scholar
  54. 54.
    Seol M, Jang J-W, Cho S, Lee JS, Yong K (2013) Highly efficient and stable cadmium chalcogenide quantum dot/ZnO nanowires for photoelectrochemical hydrogen generation. Chem Mater 25(2):184–189.  https://doi.org/10.1021/cm303206sCrossRefGoogle Scholar
  55. 55.
    Shim Y, Young RM, Douvalis AP, Dyar SM, Yuhas BD, Bakas T, Wasielewski MR, Kanatzidis MG (2014) Enhanced photochemical hydrogen evolution from Fe4S4-based biomimetic chalcogels containing M2 + (M = Pt, Zn Co, Ni, Sn) centers. J Am Chem Soc 136(38):13371–13380.  https://doi.org/10.1021/ja507297pCrossRefPubMedGoogle Scholar
  56. 56.
    Lee JW, Popov BN (2007) Ruthenium-based electrocatalysts for oxygen reduction reaction-a review. J Solid State Electrochem 11(10):1355–1364CrossRefGoogle Scholar
  57. 57.
    Suarez-Alcantara K, Rodriguez-Castellanos A, Duron-Torres S, Solorza-Feria O (2007) RuxCrySez electrocatalyst loading and stability effects on the electrochemical performance in a PEMFC. J Power Sources 171(2):381–387CrossRefGoogle Scholar
  58. 58.
    Alonso-Vante N (2008) Tailoring of metal cluster-like materials for the molecular oxygen reduction reaction. Pure Appl Chem 80(10):2103–2114CrossRefGoogle Scholar
  59. 59.
    Hara Y, Minami N, Itagaki H (2008) Electrocatalytic properties of ruthenium modified with Te metal for the oxygen reduction reaction. Appl Catal A-Gen 340(1):59–66CrossRefGoogle Scholar
  60. 60.
    Hara Y, Minami N, Itagaki H (2008) Electrocatalytic properties of ruthenium modified with Te metal for the oxygen reduction reaction. Appl Catal A 340(1):59–66.  https://doi.org/10.1016/j.apcata.2008.01.036CrossRefGoogle Scholar
  61. 61.
    Garsuch A, Michaud X, Wagner G, Klepel O, Dahn JR (2009) Templated Ru/Se/C electrocatalysts for oxygen reduction. Electrochim Acta 54(4):1350–1354CrossRefGoogle Scholar
  62. 62.
    Delacôte C, Lewera A, Pisarek M, Kulesza PJ, Zelenay P, Alonso-Vante N (2010) The effect of diluting ruthenium by iron in RuxSey catalyst for oxygen reduction. Electrochim Acta 55(26):7575–7580CrossRefGoogle Scholar
  63. 63.
    Gago AS, Morales-Acosta D, Arriaga LG, Alonso-Vante N (2011) Carbon supported ruthenium chalcogenide as cathode catalyst in a microfluidic formic acid fuel cell. J Power Sources 196(3):1324–1328CrossRefGoogle Scholar
  64. 64.
    Ghoshal S, Jia Q, Li J, Campos F, Chisholm CRI, Mukerjee S (2017) Electrochemical and In Situ Spectroscopic Evidences toward Empowering Ruthenium-Based Chalcogenides as Solid Acid Fuel Cell Cathodes. ACS Catal 7(1):581–591.  https://doi.org/10.1021/acscatal.6b02417CrossRefGoogle Scholar
  65. 65.
    Alonso-Vante N, Giersig M, Tributsch H (1991) Thin layer semiconducting cluster electrocatalysts for oxygen reduction. J Electrochem Soc 138(2):639–640CrossRefGoogle Scholar
  66. 66.
    Alonso-Vante N, Tributsch H (1986) Energy conversion catalysis using semiconducting transition metal cluster compounds. Nature 323(6087):431–432CrossRefGoogle Scholar
  67. 67.
    Lee K, Alonso-Vante N, Zhang J (2014) Transition metal chalcogenides for oxygen reduction electrocatalysts in PEM fuel cells. In: Chen Z, Dodelet J-P, Zhang J (eds) Non-noble metal fuel cell catalysts, 1st edn. Wiley-VCH Verlag GmbH & Co, KGaA, pp 157–182CrossRefGoogle Scholar
  68. 68.
    Alonso-Vante N, Jaegermann W, Tributsch H, Hönle W, Yvon K (1987) Electrocatalysis of oxygen reduction by chalcogenides containing mixed transition metal clusters. J Am Chem Soc 109(11):3251–3257CrossRefGoogle Scholar
  69. 69.
    Alonso-Vante N (2003) Chevrel phase and cluster-like chalcogenide materials. In: Vielstich W, Lamm A, Gasteiger H (eds) Handbook of fuel cells, vol 2. Wiley, Chichester, pp 534–543Google Scholar
  70. 70.
    Alonso-Vante N, Fieber-Erdmann M, Rossner H, Holub-Krappe E, Giorgetti C, Tadjeddine A, Dartyge E, Fontaine A, Frahm R (1997) The catalytic centre of transition metal chalcogenides vis-à-vis the oxygen reduction reaction: an in situ electrochemical EXAFS study. J Phys IV France 7 (2 Part 2)Google Scholar
  71. 71.
    Alonso-Vante N (1996) Electrocatalyse par l’intermédiaire des centres métalliques de composés de métaux de transition. Réduction de l’oxygène moléculaire. J Chim Phys Phys-Chim Biol 93(4):702–710CrossRefGoogle Scholar
  72. 72.
    Alonso-Vante N, Schubert B, Tributsch H (1989) Transition metal cluster materials for multi-electron transfer catalysis. Mater Chem Phys 22(3–4):281–307CrossRefGoogle Scholar
  73. 73.
    Sergent M, Chevrel R (1973) Sur de nouvelles phases séléniées ternaires du molybdène. J Solid State Chem 6(3):433–437.  https://doi.org/10.1016/0022-4596(73)90235-1CrossRefGoogle Scholar
  74. 74.
    Alonso-Vante N (1998) Inert for selective oxygen reduction of oxygen and method for the production thereof. Germany Patent WO1997DE02453 19971016; DE19961044628 19961017Google Scholar
  75. 75.
    Campbell SA (2004) Non-noble metal catalysts for the oxygen reduction reaction. United States Patent 7125820Google Scholar
  76. 76.
    Zaikovskii VI, Nagabhushana KS, Kriventsov VV, Loponov KN, Cherepanova SV, Kvon RI, Bonnemann H, Kochubey DI, Savinova ER (2006) Synthesis and Structural Characterization of Se-Modified Carbon-Supported Ru Nanoparticles for the Oxygen Reduction Reaction. J Phys Chem B 110(13):6881–6890CrossRefGoogle Scholar
  77. 77.
    Alonso-Vante N (2010) Platinum and Non-Platinum Nanomaterials for the Molecular Oxygen Reduction Reaction. ChemPhysChem 11(13):2732–2744CrossRefGoogle Scholar
  78. 78.
    Alonso-Vante N, Tributsch H, Solorza-Feria O (1995) Kinetics studies of oxygen reduction in acid medium on novel semiconducting transition metal chalcogenides. Electrochim Acta 40(5):567–576CrossRefGoogle Scholar
  79. 79.
    Alonso-Vante N, Bogdanoff P, Tributsch H (2000) On the origin of the selectivity of oxygen reduction of ruthenium-containing electrocatalysts in methanol-containing electrolyte. J Catal 190(2):240–246CrossRefGoogle Scholar
  80. 80.
    Alonso-Vante N, Borthen P, Fieber-Erdmann M, Strehblow HH, Holub-Krappe E (2000) In situ grazing incidence X-ray absorption study of ultra thin RuxSey cluster-like electrocatalyst layers. Electrochim Acta 45(25–26):4227–4236CrossRefGoogle Scholar
  81. 81.
    Le Rhun V, Garnier E, Pronier S, Alonso-Vante N (2000) Electrocatalysis on nanoscale ruthenium-based material manufactured by carbonyl decomposition. Electrochem Commun 2(7):475–479CrossRefGoogle Scholar
  82. 82.
    Schmidt TJ, Paulus UA, Gasteiger HA, Alonso-Vante N, Behm RJ (2000) Oxygen reduction on Ru1.92Mo0.08SeO4, Ru/carbon, and Pt/carbon in pure and methanol-containing electrolytes. J Electrochem Soc 147(7):2620–2624CrossRefGoogle Scholar
  83. 83.
    Bron M, Bogdanoff P, Fiechter S, Hilgendorff M, Radnik J, Dorbandt I, Schulenburg H, Tributsch H (2001) Carbon supported catalysts for oxygen reduction in acidic media prepared by thermolysis of Ru3(CO)12. J Electroanal Chem 517(1–2):85–94CrossRefGoogle Scholar
  84. 84.
    Inukai J, Cao D, Wieckowski A, Chang K-C, Menzel A, Komanicky V, You H (2007) In situ synchrotron X-ray spectroscopy of ruthenium nanoparticles modified with selenium for an oxygen reduction reaction. J Phys Chem C 111(45):16889–16894CrossRefGoogle Scholar
  85. 85.
    Solorza-Feria O, Ramı́rez-Raya S, Rivera-Noriega R, Ordoñez-Regil E, Fernández-Valverde SM (1997) Kinetic studies of molecular oxygen reduction on W0.013Ru1.27Se thin films chemically synthesized. Thin Solid Films 311(1–2):164–170. doi:http://dx.doi.org/10.1016/S0040-6090(97)00685-8CrossRefGoogle Scholar
  86. 86.
    Delacote C, Bonakdarpour A, Johnston CM, Zelenay P, Wieckowski A (2009) Aqueous-based synthesis of ruthenium-selenium catalyst for oxygen reduction reaction. Faraday Discuss 140:269–281CrossRefGoogle Scholar
  87. 87.
    Dassenoy F, Vogel W, Alonso-Vante N (2002) Structural studies and stability of cluster-like RuxSey electrocatalysts. J Phys Chem B 106(47):12152–12157CrossRefGoogle Scholar
  88. 88.
    Bron M, Bogdanoff P, Fiechter S, Dorbandt I, Hilgendorff M, Schulenburg H, Tributsch H (2001) Influence of selenium on the catalytic properties of ruthenium-based cluster catalysts for oxygen reduction. J Electroanal Chem 500(1–2):510–517CrossRefGoogle Scholar
  89. 89.
    Bogolowski N, Nagel T, Lanova B, Ernst S, Baltruschat H, Nagabhushana KS, Boennemann H (2007) Activity of selenium modified ruthenium-electrodes and determination of the real surface area. J Appl Electrochem 37(12):1485–1494CrossRefGoogle Scholar
  90. 90.
    Bhatnagar AK, Reddy KV, Srivastava V (1985) Optical energy gap of amorphous selenium: effect of annealing. J Phys D Appl Phys 18(9):L149CrossRefGoogle Scholar
  91. 91.
    Babu PK, Lewera A, Jong HC, Hunger R, Jaegermann W, Alonso-Vante N, Wieckowski A, Oldfield E (2007) Selenium becomes metallic in Ru-Se fuel cell catalysts: An EC-NMR and XPS investigation. J Am Chem Soc 129(49):15140–15141CrossRefGoogle Scholar
  92. 92.
    Tritsaris GA, Nørskov JK, Rossmeisl J (2011) Trends in oxygen reduction and methanol activation on transition metal chalcogenides. Electrochim Acta 56(27):9783–9788CrossRefGoogle Scholar
  93. 93.
    Stolbov S (2012) Nature of the Selenium Submonolayer Effect on the Oxygen Electroreduction Reaction Activity of Ru(0001). J Phys Chem C 116(12):7173–7179.  https://doi.org/10.1021/jp2072952CrossRefGoogle Scholar
  94. 94.
    Gago AS, Gochi-Ponce Y, Feng Y-J, Esquivel JP, Sabaté N, Santander J, Alonso-Vante N (2012) Tolerant chalcogenide cathodes of membraneless micro fuel cells. Chemsuschem 5(8):1488–1494.  https://doi.org/10.1002/cssc.201200009CrossRefPubMedPubMedCentralGoogle Scholar
  95. 95.
    Gochi-Ponce Y, Alonso-Nunez G, Alonso-Vante N (2006) Synthesis and electrochemical characterization of a novel platinum chalcogenide electrocatalyst with an enhanced tolerance to methanol in the oxygen reduction reaction. Electrochem Commun 8(9):1487–1491CrossRefGoogle Scholar
  96. 96.
    Ma J, Canaff C, Alonso N (2013) The effect of tuning and origin of tolerance to organics of platinum catalytic centers modified by selenium. Phys Status Solidi (a) 211(9):2030–2034.  https://doi.org/10.1002/pssa.201330148CrossRefGoogle Scholar
  97. 97.
    Ma J, Gago AS, Vogel W, Alonso-Vante N (2013) Tailoring and Tuning the Tolerance of a Pt Chalcogenide Cathode Electrocatalyst to Methanol. ChemCatChem 5(3):701–705.  https://doi.org/10.1002/cctc.201200777CrossRefGoogle Scholar
  98. 98.
    Ziegelbauer JM, Gatewood D, Gulla AF, Ramaker DE, Mukerjee S (2006) X-ray absorption spectroscopy studies of water activation on an RhxSy electrocatalyst for oxygen reduction reaction applications. Electrochem. Solid State Lett 9(9):A430–A434CrossRefGoogle Scholar
  99. 99.
    Gullá AF, Gancs L, Allen RJ, Mukerjee S (2007) Carbon-supported low-loading rhodium sulfide electrocatalysts for oxygen depolarized cathode applications. Appl Catal A-Gen 326(2):227–235CrossRefGoogle Scholar
  100. 100.
    Kukunuri S, Naik K, Sampath S (2017) Effects of composition and nanostructuring of palladium selenide phases, Pd4Se, Pd7Se4 and Pd17Se15, on ORR activity and their use in Mg-air batteries. J Mater Chem A 5(9):4660–4670.  https://doi.org/10.1039/C7TA00253JCrossRefGoogle Scholar
  101. 101.
    Park S, Xie Y, Weaver MJ (2002) Electrocatalytic pathways on carbon-supported platinum nanoparticles: comparison of particle-size-dependent rates of methanol, formic acid, and formaldehyde electrooxidation. Langmuir 18(15):5792–5798CrossRefGoogle Scholar
  102. 102.
    Solla-Gullon J, Vidal-Iglesias FJ, Feliu JM (2011) Shape dependent electrocatalysis. Annu Rep Sect “C” (Phys Chem) 107:263–297CrossRefGoogle Scholar
  103. 103.
    Park I-S, Xu B, Atienza DO, Hofstead-Duffy AM, Allison TC, Tong YJ (2011) Chemical state of adsorbed sulfur on Pt nanoparticles. ChemPhysChem 12(4):747–752.  https://doi.org/10.1002/cphc.201000998CrossRefPubMedGoogle Scholar
  104. 104.
    Alonso G, Gochi Y, Barbosa R, Arriaga LG, Alonso N (2006) Oxygen reduction reaction and PEM fuel cell performance of a chalcogenide platinum material. ECS Trans 3(1):189–197.  https://doi.org/10.1149/1.2356137CrossRefGoogle Scholar
  105. 105.
    Wang R-F, Liao S-J, Liu H-Y, Meng H (2007) Synthesis and characterization of Pt-Se/C electrocatalyst for oxygen reduction and its tolerance to methanol. J Power Sources 171(2):471–476CrossRefGoogle Scholar
  106. 106.
    Timperman L, Gago AS, Alonso-Vante N (2011) Oxygen reduction reaction increased tolerance and fuel cell performance of Pt and RuxSey onto oxide-carbon composites. J Power Sources 196(9):4290–4297CrossRefGoogle Scholar
  107. 107.
    Wasmus S, Küver A (1999) Methanol oxidation and direct methanol fuel cells: a selective review. J Electroanal Chem 461(1–2):14–31CrossRefGoogle Scholar
  108. 108.
    Grinberg VA, Pasynskii AA, Kulova TL, Maiorova NA, Skundin AM, Khazova OA, Law CG (2008) Tolerant-to-methanol cathodic electrocatalysts based on organometallic clusters. Russ J Electrochem 44(2):187–197.  https://doi.org/10.1134/s1023193508020055CrossRefGoogle Scholar
  109. 109.
    Dembinska B, Dobrzeniecka A, Pisarek M, Kulesza PJ (2015) Selenourea-assisted synthesis of selenium-modified iridium catalysts: evaluation of their activity toward reduction of oxygen. Electrochim Acta 185:162–171.  https://doi.org/10.1016/j.electacta.2015.10.105CrossRefGoogle Scholar
  110. 110.
    Kukunuri S, Austeria PM, Sampath S (2016) Electrically conducting palladium selenide (Pd4Se, Pd17Se15, Pd7Se4) phases: synthesis and activity towards hydrogen evolution reaction. Chem Commun 52(1):206–209.  https://doi.org/10.1039/C5CC06730HCrossRefGoogle Scholar
  111. 111.
    Mora-Hernández JM, Estudillo Wong LA, Alonso Vante N (to be published) The chemical surface modification of nanoparticulated palladium with selenium and its covalent interaction toward the ORR enhancement in Alkaline MediumGoogle Scholar
  112. 112.
    Anthony JW, Bideaux RA, Bladh KW, Nichols MC, Eds. (2003) Handbook of Mineralogy. Mineralogical Society of America, Chantilly, VA 20151–1110, USA., http://www.handbookofmineralogy.org/
  113. 113.
    Charreteur F, Jaouen F, Ruggeri S, Dodelet J-P (2008) Fe/N/C non-precious catalysts for PEM fuel cells: Influence of the structural parameters of pristine commercial carbon blacks on their activity for oxygen reduction. Electrochim Acta 53(6):2925–2938CrossRefGoogle Scholar
  114. 114.
    Bashyam R, Zelenay P (2006) A class of non-precious metal composite catalysts for fuel cells. Nature 443(7107):63–66CrossRefGoogle Scholar
  115. 115.
    Shao M, Chang Q, Dodelet J-P, Chenitz R (2016) Recent advances in electrocatalysts for oxygen reduction reaction. Chem Rev 116(6):3594–3657.  https://doi.org/10.1021/acs.chemrev.5b00462CrossRefPubMedGoogle Scholar
  116. 116.
    Jaouen F, Proietti E, Lefevre M, Chenitz R, Dodelet J-P, Wu G, Chung HT, Johnston CM, Zelenay P (2011) Recent advances in non-precious metal catalysis for oxygen-reduction reaction in polymer electrolyte fuel cells. Energy Environ Sci 4(1):114–130CrossRefGoogle Scholar
  117. 117.
    Tang Y, Chen T, Guo W, Chen S, Li Y, Song J, Chang L, Mu S, Zhao Y, Gao F (2017) Reduced graphene oxide supported MnS nanotubes hybrid as a novel non-precious metal electrocatalyst for oxygen reduction reaction with high performance. J Power Sources 362:1–9.  https://doi.org/10.1016/j.jpowsour.2017.07.019CrossRefGoogle Scholar
  118. 118.
    Fu S, Zhu C, Song J, Du D, Lin Y (2017) Metal-organic framework-derived non-precious metal nanocatalysts for oxygen reduction reaction. Adv Energy Mater:1700363-n/a.  https://doi.org/10.1002/aenm.201700363CrossRefGoogle Scholar
  119. 119.
    Mora-Hernández J, Luo Y, Alonso-Vante N (2016) What can we learn in electrocatalysis, from nanoparticulated precious and/or non-precious catalytic centers interacting with their support? Catalysts 6(9):145CrossRefGoogle Scholar
  120. 120.
    Dresp S, Luo F, Schmack R, Kuhl S, Gliech M, Strasser P (2016) An efficient bifunctional two-component catalyst for oxygen reduction and oxygen evolution in reversible fuel cells, electrolyzers and rechargeable air electrodes. Energy Environ Sci 9(6):2020–2024.  https://doi.org/10.1039/C6EE01046FCrossRefGoogle Scholar
  121. 121.
    Banham D, Ye S, Pei K, J-i Ozaki, Kishimoto T, Imashiro Y (2015) A review of the stability and durability of non-precious metal catalysts for the oxygen reduction reaction in proton exchange membrane fuel cells. J Power Sources 285:334–348.  https://doi.org/10.1016/j.jpowsour.2015.03.047CrossRefGoogle Scholar
  122. 122.
    Trogadas P, Fuller TF, Strasser P (2014) Carbon as catalyst and support for electrochemical energy conversion. Carbon 75:5–42.  https://doi.org/10.1016/j.carbon.2014.04.005CrossRefGoogle Scholar
  123. 123.
    Domínguez C, Pérez-Alonso FJ, Gómez de la Fuente JL, Al-Thabaiti SA, Basahel SN, Alyoubi AO, Alshehri AA, Peña MA, Rojas S (2014) Influence of the electrolyte for the oxygen reduction reaction with Fe/N/C and Fe/N/CNT electrocatalysts. J Power Sources 271:87–96.  https://doi.org/10.1016/j.jpowsour.2014.07.173CrossRefGoogle Scholar
  124. 124.
    Zhao C, Li D, Feng Y (2013) Size-controlled hydrothermal synthesis and high electrocatalytic performance of CoS2 nanocatalysts as non-precious metal cathode materials for fuel cells. J Mater Chem A 1(18):5741–5746.  https://doi.org/10.1039/c3ta10296cCrossRefGoogle Scholar
  125. 125.
    Othman R, Dicks AL, Zhu Z (2012) Non precious metal catalysts for the PEM fuel cell cathode. Int J Hydrogen Energy 37(1):357–372.  https://doi.org/10.1016/j.ijhydene.2011.08.095CrossRefGoogle Scholar
  126. 126.
    Lai L, Potts JR, Zhan D, Wang L, Poh CK, Tang C, Gong H, Shen Z, Lin J, Ruoff RS (2012) Exploration of the active center structure of nitrogen-doped graphene-based catalysts for oxygen reduction reaction. Energy Environ Sci 5(7):7936–7942.  https://doi.org/10.1039/c2ee21802jCrossRefGoogle Scholar
  127. 127.
    Feng Y, Alonso-Vante N (2012) Carbon-supported cubic CoSe2 catalysts for oxygen reduction reaction in alkaline medium. Electrochim Acta 72:129–133.  https://doi.org/10.1016/j.electacta.2012.04.003CrossRefGoogle Scholar
  128. 128.
    Chen Z, Higgins D, Yu A, Zhang L, Zhang J (2011) A review on non-precious metal electrocatalysts for PEM fuel cells. Energy Environ Sci 4(9):3167–3192CrossRefGoogle Scholar
  129. 129.
    Ishihara A, Ohgi Y, Matsuzawa K, Mitsushima S, K-i Ota (2010) Progress in non-precious metal oxide-based cathode for polymer electrolyte fuel cells. Electrochim Acta 55(27):8005–8012.  https://doi.org/10.1016/j.electacta.2010.03.002CrossRefGoogle Scholar
  130. 130.
    Feng Y, Alonso-Vante N (2008) Nonprecious metal catalysts for the molecular oxygen-reduction reaction. Phys Stat Sol (b) 245(9):1792–1806CrossRefGoogle Scholar
  131. 131.
    Fu S, Zhu C, Song J, Du D, Lin Y Metal-organic framework-derived non-precious metal nanocatalysts for oxygen reduction reaction. Adv Energy Mater:1700363-n/a.  https://doi.org/10.1002/aenm.201700363CrossRefGoogle Scholar
  132. 132.
    Kong D, Cha JJ, Wang H, Lee HR, Cui Y (2013) First-row transition metal dichalcogenide catalysts for hydrogen evolution reaction. Energy Environ Sci 6(12):3553–3558.  https://doi.org/10.1039/C3EE42413HCrossRefGoogle Scholar
  133. 133.
    Wan S, Hu J, Li G-D, Yang L, Liu Y, Gao R, Li X, Zou X (2017) Nano-netlike carbon fibers decorated with highly dispersed CoSe2 nanoparticles as efficient hydrogen evolution electrocatalysts. J Alloys Compd 702:611–618.  https://doi.org/10.1016/j.jallcom.2017.01.207CrossRefGoogle Scholar
  134. 134.
    Huang H, Huang W, Yang Z, Huang J, Lin J, Liu W, Liu Y (2017) Strongly coupled MoS2 nanoflake-carbon nanotube nanocomposite as an excellent electrocatalyst for hydrogen evolution reaction. J Mater Chem A.  https://doi.org/10.1039/C6TA09612CCrossRefGoogle Scholar
  135. 135.
    Xu J, Cui J, Guo C, Zhao Z, Jiang R, Xu S, Zhuang Z, Huang Y, Wang L, Li Y (2016) Ultrasmall Cu7S4@MoS2 Hetero-Nanoframes with Abundant Active Edge Sites for Ultrahigh-Performance Hydrogen Evolution. Angew Chem Int Edition:n/a-n/a.  https://doi.org/10.1002/anie.201600686CrossRefGoogle Scholar
  136. 136.
    Deng H, Zhang C, Xie Y, Tumlin T, Giri L, Karna SP, Lin J (2016) Laser induced MoS2/carbon hybrids for hydrogen evolution reaction catalysts. J Mater Chem A 4(18):6824–6830.  https://doi.org/10.1039/C5TA09322HCrossRefGoogle Scholar
  137. 137.
    Zou X, Zhang Y (2015) Noble metal-free hydrogen evolution catalysts for water splitting. Chem Soc Rev 44(15):5148–5180.  https://doi.org/10.1039/C4CS00448ECrossRefPubMedGoogle Scholar
  138. 138.
    Zeng M, Li Y (2015) Recent advances in heterogeneous electrocatalysts for the hydrogen evolution reaction. J Mater Chem A 3(29):14942–14962.  https://doi.org/10.1039/C5TA02974KCrossRefGoogle Scholar
  139. 139.
    Lu Q, Hutchings GS, Yu W, Zhou Y, Forest RV, Tao R, Rosen J, Yonemoto BT, Cao Z, Zheng H, Xiao JQ, Jiao F, Chen JG (2015) Highly porous non-precious bimetallic electrocatalysts for efficient hydrogen evolution. Nat Commun 6.  https://doi.org/10.1038/ncomms7567
  140. 140.
    Kibsgaard J, Jaramillo TF, Besenbacher F (2014) Building an appropriate active-site motif into a hydrogen-evolution catalyst with thiomolybdate [Mo3S13]2− clusters. Nat Chem 6 (3):248–253.  https://doi.org/10.1038/nchem.1853 http://www.nature.com/nchem/journal/v6/n3/abs/nchem.1853.html#supplementary-informationCrossRefGoogle Scholar
  141. 141.
    Hou Y, Laursen AB, Zhang J, Zhang G, Zhu Y, Wang X, Dahl S, Chorkendorff I (2013) Layered nanojunctions for hydrogen-evolution catalysis. Angew Chem Int Ed 52(13):3621–3625.  https://doi.org/10.1002/anie.201210294CrossRefGoogle Scholar
  142. 142.
    Bonde J, Moses PG, Jaramillo TF, Nørskov JK, Chorkendorff I (2009) Hydrogen evolution on nano-particulate transition metal sulfides. Faraday Discuss 140:219–231CrossRefGoogle Scholar
  143. 143.
    Jaramillo TF, Jorgensen KP, Bonde J, Nielsen JH, Horch S, Chorkendorff I (2007) Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts. Science 317(5834):100–102.  https://doi.org/10.1126/science.1141483CrossRefPubMedGoogle Scholar
  144. 144.
    Hinnemann B, Moses PG, Bonde J, Jørgensen KP, Nielsen JH, Horch S, Chorkendorff I, Nørskov JK (2005) Biomimetic hydrogen evolution: MoS2 nanoparticles as catalyst for hydrogen evolution. J Am Chem Soc 127(15):5308–5309.  https://doi.org/10.1021/ja0504690CrossRefPubMedGoogle Scholar
  145. 145.
    Ganesan V, Ramasamy P, Kim J (2017) Hierarchical Ni3.5Co5.5S8 nanosheet-assembled hollow nanocages: Superior electrocatalyst towards oxygen evolution reaction. Int J Hydrogen Energy 42(9):5985–5992.  https://doi.org/10.1016/j.ijhydene.2016.12.060CrossRefGoogle Scholar
  146. 146.
    Hong WT, Risch M, Stoerzinger KA, Grimaud A, Suntivich J, Shao-Horn Y (2015) Toward the rational design of non-precious transition metal oxides for oxygen electrocatalysis. Energy Environ Sci 8(5):1404–1427.  https://doi.org/10.1039/C4EE03869JCrossRefGoogle Scholar
  147. 147.
    Sheng W, Bivens AP, Myint M, Zhuang Z, Forest RV, Fang Q, Chen JG, Yan Y (2014) Non-precious metal electrocatalysts with high activity for hydrogen oxidation reaction in alkaline electrolytes. Energy Environ Sci 7:1719–1724.  https://doi.org/10.1039/c3ee43899fCrossRefGoogle Scholar
  148. 148.
    Raj IA, Vasu KI (1990) Transition metal-based hydrogen electrodes in alkaline solution—electrocatalysis on nickel based binary alloy coatings. J Appl Electrochem 20(1):32–38.  https://doi.org/10.1007/bf01012468CrossRefGoogle Scholar
  149. 149.
    Brown DE, Mahmood MN, Man MCM, Turner AK (1984) Preparation and characterization of low overvoltage transition metal alloy electrocatalysts for hydrogen evolution in alkaline solutions. Electrochim Acta 29(11):1551–1556.  https://doi.org/10.1016/0013-4686(84)85008-2CrossRefGoogle Scholar
  150. 150.
    Yin Y, Zhang Y, Gao T, Yao T, Zhang X, Han J, Wang X, Zhang Z, Xu P, Zhang P, Cao X, Song B, Jin S (2017) Synergistic phase and disorder engineering in 1T-MoSe2 nanosheets for enhanced hydrogen-evolution reaction. Adv Mater 29 (28):1700311-n/a.  https://doi.org/10.1002/adma.201700311CrossRefGoogle Scholar
  151. 151.
    Eftekhari A (2017) Molybdenum diselenide (MoSe2) for energy storage, catalysis, and optoelectronics. Appl Mater Today 8:1–17.  https://doi.org/10.1016/j.apmt.2017.01.006CrossRefGoogle Scholar
  152. 152.
    Guo W, Chen Y, Wang L, Xu J, Zeng D, Peng D-L (2017) Colloidal synthesis of MoSe2 nanonetworks and nanoflowers with efficient electrocatalytic hydrogen-evolution activity. Electrochim Acta 231:69–76.  https://doi.org/10.1016/j.electacta.2017.02.048CrossRefGoogle Scholar
  153. 153.
    Feng Q, Duan K, Xie H, Xue M, Du Y, Wang C (2016) Electrocatalytic Hydrogen Evolution Reaction of 2H MoSe2 Nanoflowers and 2H-MoSe2/α-MoO3 Heterostucture. Electrochim Acta 222:499–504.  https://doi.org/10.1016/j.electacta.2016.11.002CrossRefGoogle Scholar
  154. 154.
    Qu B, Li C, Zhu C, Wang S, Zhang X, Chen Y (2016) Growth of MoSe2 nanosheets with small size and expanded spaces of (002) plane on the surfaces of porous N-doped carbon nanotubes for hydrogen production. Nanoscale 8(38):16886–16893.  https://doi.org/10.1039/C6NR04619CCrossRefPubMedGoogle Scholar
  155. 155.
    Jiang M, Zhang J, Wu M, Jian W, Xue H, Ng T-W, Lee C-S, Xu J (2016) Synthesis of 1T-MoSe2 ultrathin nanosheets with an expanded interlayer spacing of 1.17 nm for efficient hydrogen evolution reaction. J Mater Chem A 4 (39):14949–14953.  https://doi.org/10.1039/c6ta07020eCrossRefGoogle Scholar
  156. 156.
    Tang H, Dou K, Kaun C-C, Kuang Q, Yang S (2014) MoSe2 nanosheets and their graphene hybrids: synthesis, characterization and hydrogen evolution reaction studies. J Mater Chem A 2(2):360–364.  https://doi.org/10.1039/C3TA13584ECrossRefGoogle Scholar
  157. 157.
    Karfa P, Madhuri R, Sharma PK, Tiwari A (2017) Designing of transition metal dichalcogenides based different shaped trifunctional electrocatalyst through “adjourn-reaction” scheme. Nano Energy 33:98–109.  https://doi.org/10.1016/j.nanoen.2017.01.012CrossRefGoogle Scholar
  158. 158.
    Wang X, Chen Y, Zheng B, Qi F, He J, Li P, Zhang W (2016) Few-layered WSe2 nanoflowers anchored on graphene nanosheets: a highly efficient and stable electrocatalyst for hydrogen evolution. Electrochim Acta 222:1293–1299.  https://doi.org/10.1016/j.electacta.2016.11.104CrossRefGoogle Scholar
  159. 159.
    Wang X, Chen Y, Qi F, Zheng B, He J, Li Q, Li P, Zhang W, Li Y (2016) Interwoven WSe2/CNTs hybrid network: a highly efficient and stable electrocatalyst for hydrogen evolution. Electrochem Commun 72:74–78.  https://doi.org/10.1016/j.elecom.2016.09.007CrossRefGoogle Scholar
  160. 160.
    Wang X, Chen Y, Zheng B, Qi F, He J, Li Q, Li P, Zhang W (2017) Graphene-like WSe2 nanosheets for efficient and stable hydrogen evolution. J Alloys Compd 691:698–704.  https://doi.org/10.1016/j.jallcom.2016.08.305CrossRefGoogle Scholar
  161. 161.
    McKone JR, Pieterick AP, Gray HB, Lewis NS (2012) Hydrogen evolution from Pt/Ru-Coated p-Type WSe2 photocathodes. J Am Chem Soc 135(1):223–231.  https://doi.org/10.1021/ja308581gCrossRefPubMedGoogle Scholar
  162. 162.
    Xiao H, Wang S, Wang C, Li Y, Zhang H, Wang Z, Zhou Y, An C, Zhang J (2016) Lamellar structured CoSe2 nanosheets directly arrayed on Ti plate as an efficient electrochemical catalyst for hydrogen evolution. Electrochim Acta 217:156–162.  https://doi.org/10.1016/j.electacta.2016.09.043CrossRefGoogle Scholar
  163. 163.
    Zhou Y, Xiao H, Zhang S, Li Y, Wang S, Wang Z, An C, Zhang J (2017) Interlayer expanded lamellar CoSe2 on carbon paper as highly efficient and stable overall water splitting electrodes. Electrochim Acta 241:106–115.  https://doi.org/10.1016/j.electacta.2017.04.084CrossRefGoogle Scholar
  164. 164.
    Zhou W, Lu J, Zhou K, Yang L, Ke Y, Tang Z, Chen S (2016) CoSe2 nanoparticles embedded defective carbon nanotubes derived from MOFs as efficient electrocatalyst for hydrogen evolution reaction. Nano Energy 28:143–150.  https://doi.org/10.1016/j.nanoen.2016.08.040CrossRefGoogle Scholar
  165. 165.
    Lin J, He J, Qi F, Zheng B, Wang X, Yu B, Zhou K, Zhang W, Li Y, Chen Y (2017) In-situ selenization of co-based metal-organic frameworks as a highly efficient electrocatalyst for hydrogen evolution reaction. Electrochim Acta 247:258–264.  https://doi.org/10.1016/j.electacta.2017.06.179CrossRefGoogle Scholar
  166. 166.
    Kim JK, Park GD, Kim JH, Park S-K, Kang YC (2017) Rational design and synthesis of extremely efficient macroporous CoSe2–CNT composite microspheres for hydrogen evolution reaction. Small 13 (27):1700068-n/a.  https://doi.org/10.1002/smll.201700068CrossRefGoogle Scholar
  167. 167.
    Guo Y, Shang C, Wang E (2017) An efficient CoS2/CoSe2 hybrid catalyst for electrocatalytic hydrogen evolution. J Mater Chem A 5(6):2504–2507.  https://doi.org/10.1039/C6TA09983ACrossRefGoogle Scholar
  168. 168.
    Lee C-P, Chen W-F, Billo T, Lin Y-G, Fu F-Y, Samireddi S, Lee C-H, Hwang J-S, Chen K-H, Chen L-C (2016) Beaded stream-like CoSe2 nanoneedle array for efficient hydrogen evolution electrocatalysis. J Mater Chem A 4(12):4553–4561.  https://doi.org/10.1039/C6TA00464DCrossRefGoogle Scholar
  169. 169.
    Zhou H, Wang Y, He R, Yu F, Sun J, Wang F, Lan Y, Ren Z, Chen S (2016) One-step synthesis of self-supported porous NiSe2/Ni hybrid foam: An efficient 3D electrode for hydrogen evolution reaction. Nano Energy 20:29–36.  https://doi.org/10.1016/j.nanoen.2015.12.008CrossRefGoogle Scholar
  170. 170.
    Ge Y, Gao S-P, Dong P, Baines R, Ajayan PM, Ye M, Shen J (2017) Insight into the hydrogen evolution reaction of nickel dichalcogenide nanosheets: activities related to non-metal ligands. Nanoscale 9(17):5538–5544.  https://doi.org/10.1039/C6NR09977GCrossRefPubMedGoogle Scholar
  171. 171.
    Wang F, Li Y, Shifa TA, Liu K, Wang F, Wang Z, Xu P, Wang Q, He J (2016) Selenium-Enriched nickel selenide nanosheets as a robust electrocatalyst for hydrogen generation. Angew Chem Int Ed 55(24):6919–6924.  https://doi.org/10.1002/anie.201602802CrossRefGoogle Scholar
  172. 172.
    Liang J, Yang Y, Zhang J, Wu J, Dong P, Yuan J, Zhang G, Lou J (2015) Metal diselenide nanoparticles as highly active and stable electrocatalysts for the hydrogen evolution reaction. Nanoscale 7(36):14813–14816.  https://doi.org/10.1039/C5NR03724GCrossRefPubMedGoogle Scholar
  173. 173.
    Theerthagiri J, Sudha R, Premnath K, Arunachalam P, Madhavan J, Al-Mayouf AM (2017) Growth of iron diselenide nanorods on graphene oxide nanosheets as advanced electrocatalyst for hydrogen evolution reaction. Int J Hydrogen Energy 42(18):13020–13030.  https://doi.org/10.1016/j.ijhydene.2017.04.042CrossRefGoogle Scholar
  174. 174.
    Zhang Y, Liu K, Wang F, Shifa TA, Wen Y, Wang F, Xu K, Wang Z, Jiang C, He J (2017) Dendritic growth of monolayer ternary WS2(1-x)Se2x flakes for enhanced hydrogen evolution reaction. Nanoscale 9(17):5641–5647.  https://doi.org/10.1039/C7NR00895CCrossRefPubMedGoogle Scholar
  175. 175.
    Lim WY, Hong M, Ho GW (2016) In situ photo-assisted deposition and photocatalysis of ZnIn2S4/transition metal chalcogenides for enhanced degradation and hydrogen evolution under visible light. Dalton Trans 45(2):552–560.  https://doi.org/10.1039/C5DT03775ACrossRefPubMedGoogle Scholar
  176. 176.
    Barber J, Tran PD (2013) From natural to artificial photosynthesis. J R Soc Interface 10(81):1–16.  https://doi.org/10.1098/rsif.2012.0984CrossRefGoogle Scholar
  177. 177.
    Kanan MW, Surendranath Y, Nocera DG (2009) Cobalt-phosphate oxygen-evolving compound. Chem Soc Rev 38(1):109–114.  https://doi.org/10.1039/B802885KCrossRefPubMedGoogle Scholar
  178. 178.
    Tributsch H, Bennett JC (1977) Electrochemistry and photochemistry of MoS2 layer crystals. I J Electroanal Chem 81(1):97–111.  https://doi.org/10.1016/S0022-0728(77)80363-XCrossRefGoogle Scholar
  179. 179.
    Lukowski MA, Daniel AS, Meng F, Forticaux A, Li L, Jin S (2013) Enhanced hydrogen evolution catalysis from chemically exfoliated metallic MoS2 nanosheets. J Am Chem Soc 135(28):10274–10277.  https://doi.org/10.1021/ja404523sCrossRefPubMedGoogle Scholar
  180. 180.
    Lauritsen JV, Kibsgaard J, Helveg S, Topsoe H, Clausen BS, Laegsgaard E, Besenbacher F (2007) Size-dependent structure of MoS2 nanocrystals. Nat Nano 2(1):53–58CrossRefGoogle Scholar
  181. 181.
    Kibsgaard J, Chen Z, Reinecke BN, Jaramillo TF (2012) Engineering the surface structure of MoS2 to preferentially expose active edge sites for electrocatalysis. Nat Mater 11 (11):963–969. doi:http://www.nature.com/nmat/journal/v11/n11/abs/nmat3439.html#supplementary-information
  182. 182.
    Xie J, Zhang J, Li S, Grote F, Zhang X, Zhang H, Wang R, Lei Y, Pan B, Xie Y (2013) Controllable disorder engineering in oxygen-incorporated MoS2 ultrathin nanosheets for efficient hydrogen evolution. J Am Chem Soc 135(47):17881–17888.  https://doi.org/10.1021/ja408329qCrossRefPubMedGoogle Scholar
  183. 183.
    Merki D, Fierro S, Vrubel H, Hu X (2011) Amorphous molybdenum sulfide films as catalysts for electrochemical hydrogen production in water. Chem Sci 2(7):1262–1267.  https://doi.org/10.1039/C1SC00117ECrossRefGoogle Scholar
  184. 184.
    Li Y, Yu Y, Huang Y, Nielsen RA, Goddard WA, Li Y, Cao L (2015) Engineering the composition and crystallinity of molybdenum sulfide for high-performance electrocatalytic hydrogen evolution. ACS Catalysis 5(1):448–455.  https://doi.org/10.1021/cs501635vCrossRefGoogle Scholar
  185. 185.
    Lassalle-Kaiser B, Merki D, Vrubel H, Gul S, Yachandra VK, Hu X, Yano J (2015) Evidence from in situ X-ray absorption spectroscopy for the involvement of terminal disulfide in the reduction of protons by an amorphous molybdenum sulfide electrocatalyst. J Am Chem Soc 137(1):314–321.  https://doi.org/10.1021/ja510328mCrossRefPubMedGoogle Scholar
  186. 186.
    Jaegermann W, Schmeisser D (1986) Reactivity of layer type transition metal chalcogenides towards oxidation. Surf Sci 165(1):143–160.  https://doi.org/10.1016/0039-6028(86)90666-7CrossRefGoogle Scholar
  187. 187.
    Lukowski MA, Daniel AS, English CR, Meng F, Forticaux A, Hamers RJ, Jin S (2014) Highly active hydrogen evolution catalysis from metallic WS2 nanosheets. Energy Environ Sci 7(8):2608–2613.  https://doi.org/10.1039/C4EE01329HCrossRefGoogle Scholar
  188. 188.
    Mayorga-Martinez CC, Ambrosi A, Eng AYS, Sofer Z, Pumera M (2015) Transition metal dichalcogenides (MoS2, MoSe2, WS2 and WSe2) exfoliation technique has strong influence upon their capacitance. Electrochem Commun 56:24–28.  https://doi.org/10.1016/j.elecom.2015.03.017CrossRefGoogle Scholar
  189. 189.
    Escalera-López D, Griffin R, Isaacs M, Wilson K, Palmer RE, Rees NV (2017) Electrochemical sulfidation of WS2 nanoarrays: Strong dependence of hydrogen evolution activity on transition metal sulfide surface composition. Electrochem Commun 81:106–111.  https://doi.org/10.1016/j.elecom.2017.06.016CrossRefGoogle Scholar
  190. 190.
    Shang X, Yan K-L, Liu Z-Z, Lu S-S, Dong B, Chi J-Q, Li X, Liu Y-R, Chai Y-M, Liu C-G (2017) Oxidized carbon fiber supported vertical WS2 nanosheets arrays as efficient 3 D nanostructure electrocatalyts for hydrogen evolution reaction. Appl Surf Sci 402:120–128.  https://doi.org/10.1016/j.apsusc.2017.01.059CrossRefGoogle Scholar
  191. 191.
    Vrubel H, Hu X (2013) Growth and activation of an amorphous molybdenum sulfide hydrogen evolving catalyst. ACS Catalysis 3(9):2002–2011.  https://doi.org/10.1021/cs400441uCrossRefGoogle Scholar
  192. 192.
    Chang Y-H, Lin C-T, Chen T-Y, Hsu C-L, Lee Y-H, Zhang W, Wei K-H, Li L-J (2013) Highly efficient electrocatalytic hydrogen production by MoSx grown on graphene-protected 3D Ni foams. Adv Mater 25(5):756–760.  https://doi.org/10.1002/adma.201202920CrossRefPubMedGoogle Scholar
  193. 193.
    Li DJ, Maiti UN, Lim J, Choi DS, Lee WJ, Oh Y, Lee GY, Kim SO (2014) Molybdenum sulfide/n-doped cnt forest hybrid catalysts for high-performance hydrogen evolution reaction. Nano Lett 14(3):1228–1233.  https://doi.org/10.1021/nl404108aCrossRefPubMedPubMedCentralGoogle Scholar
  194. 194.
    Li Y, Wang H, Xie L, Liang Y, Hong G, Dai H (2011) MoS2 nanoparticles grown on graphene: an advanced catalyst for the hydrogen evolution reaction. J Am Chem Soc 133(19):7296–7299.  https://doi.org/10.1021/ja201269bCrossRefPubMedPubMedCentralGoogle Scholar
  195. 195.
    He HY (2017) One-step assembly of 2H-1T MoS2:Cu/reduced graphene oxide nanosheets for highly efficient hydrogen evolution. Scientific Reports 7:45608.  https://doi.org/10.1038/srep45608 https://www.nature.com/articles/srep45608#supplementary-informationCrossRefGoogle Scholar
  196. 196.
    Voiry D, Salehi M, Silva R, Fujita T, Chen M, Asefa T, Shenoy VB, Eda G, Chhowalla M (2013) Conducting MoS2 nanosheets as catalysts for hydrogen evolution reaction. Nano Lett 13(12):6222–6227.  https://doi.org/10.1021/nl403661sCrossRefPubMedGoogle Scholar
  197. 197.
    Benson J, Li M, Wang S, Wang P, Papakonstantinou P (2015) Electrocatalytic hydrogen evolution reaction on edges of a few layer molybdenum disulfide nanodots. ACS Appl Mater Interfaces 7(25):14113–14122.  https://doi.org/10.1021/acsami.5b03399CrossRefPubMedGoogle Scholar
  198. 198.
    Ye G, Gong Y, Lin J, Li B, He Y, Pantelides ST, Zhou W, Vajtai R, Ajayan PM (2016) Defects engineered monolayer mos2 for improved hydrogen evolution reaction. Nano Lett 16(2):1097–1103.  https://doi.org/10.1021/acs.nanolett.5b04331CrossRefPubMedGoogle Scholar
  199. 199.
    Guo B, Yu K, Li H, Song H, Zhang Y, Lei X, Fu H, Tan Y, Zhu Z (2016) Hollow structured micro/nano mos2 spheres for high electrocatalytic activity hydrogen evolution reaction. ACS Appl Mater Interfaces 8(8):5517–5525.  https://doi.org/10.1021/acsami.5b10252CrossRefPubMedGoogle Scholar
  200. 200.
    Deng J, Li H, Wang S, Ding D, Chen M, Liu C, Tian Z, Novoselov KS, Ma C, Deng D, Bao X (2017) Multiscale structural and electronic control of molybdenum disulfide foam for highly efficient hydrogen production. Nature Communications 8:14430.  https://doi.org/10.1038/ncomms14430. https://www.nature.com/articles/ncomms14430#supplementary-informationCrossRefGoogle Scholar
  201. 201.
    Dai X, Du K, Li Z, Liu M, Ma Y, Sun H, Zhang X, Yang Y (2015) Co-Doped MoS2 nanosheets with the dominant comos phase coated on carbon as an excellent electrocatalyst for hydrogen evolution. ACS Appl Mater Interfaces 7(49):27242–27253.  https://doi.org/10.1021/acsami.5b08420CrossRefPubMedGoogle Scholar
  202. 202.
    Escalera-López D, Niu Y, Yin J, Cooke K, Rees NV, Palmer RE (2016) Enhancement of the hydrogen evolution reaction from ni-mos2 hybrid nanoclusters. ACS Catalysis 6(9):6008–6017.  https://doi.org/10.1021/acscatal.6b01274CrossRefPubMedPubMedCentralGoogle Scholar
  203. 203.
    Ennaoui A, Fiechter S, Pettenkofer C, Alonso-Vante N, Buker K, Bronold M, Hopfner C, Tributsch H (1993) Iron disulfide for solar energy conversion. Sol Energy Mater Sol Cells 29(4):289–370CrossRefGoogle Scholar
  204. 204.
    Brostigen G, Kjekshus A (1970) Bonding schemes for compounds with the pyrite, marcasite, and arsenopyrite type structures. Acta Chem Scand 24:2993–3012.  https://doi.org/10.3891/acta.chem.scand.24-2993CrossRefGoogle Scholar
  205. 205.
    Jaegermann W, Tributsch H (1988) Interfacial properties of semiconducting transition metal chalcogenides. Prog Surf Sci 29(1–2):1–167.  https://doi.org/10.1016/0079-6816(88)90015-9CrossRefGoogle Scholar
  206. 206.
    Faber MS, Dziedzic R, Lukowski MA, Kaiser NS, Ding Q, Jin S (2014) High-performance electrocatalysis using metallic cobalt pyrite (CoS2) Micro- and Nanostructures. J Am Chem Soc 136(28):10053–10061.  https://doi.org/10.1021/ja504099wCrossRefPubMedGoogle Scholar
  207. 207.
    Leighton C, Manno M, Cady A, Freeland JW, Wang L, Umemoto K, Wentzcovitch RM, Chen TY, Chien CL, Kuhns PL, Hoch MJR, Reyes AP, Moulton WG, Dahlberg ED, Checkelsky J, Eckert J (2007) Composition controlled spin polarization in Co1-xFexS2 alloys. J Phys: Condens Matter 31:315219Google Scholar
  208. 208.
    Samad L, Cabán-Acevedo M, Shearer MJ, Park K, Hamers RJ, Jin S (2015) Direct chemical vapor deposition synthesis of phase-pure iron pyrite (FeS2) thin films. Chem Mater 27(8):3108–3114.  https://doi.org/10.1021/acs.chemmater.5b00664CrossRefGoogle Scholar
  209. 209.
    Caban-Acevedo M, Stone ML, Schmidt JR, Thomas JG, Ding Q, Chang H-C, Tsai M-L, He J-H, Jin S (2015) Efficient hydrogen evolution catalysis using ternary pyrite-type cobalt phosphosulphide. Nat Mater 14(12):1245–1251.  https://doi.org/10.1038/nmat4410. http://www.nature.com/nmat/journal/v14/n12/abs/nmat4410.html#supplementary-informationCrossRefGoogle Scholar
  210. 210.
    Tongay S, Zhou J, Ataca C, Lo K, Matthews TS, Li J, Grossman JC, Wu J (2012) Thermally driven crossover from indirect toward direct bandgap in 2D semiconductors: MoSe2 versus MoS2. Nano Lett 12(11):5576–5580.  https://doi.org/10.1021/nl302584wCrossRefPubMedGoogle Scholar
  211. 211.
    Tsai C, Chan K, Abild-Pedersen F, Norskov JK (2014) Active edge sites in MoSe2 and WSe2 catalysts for the hydrogen evolution reaction: a density functional study. Phys Chem Chem Phys 16(26):13156–13164.  https://doi.org/10.1039/C4CP01237BCrossRefPubMedGoogle Scholar
  212. 212.
    Kong D, Wang H, Cha JJ, Pasta M, Koski KJ, Yao J, Cui Y (2013) Synthesis of MoS2 and MoSe2 films with vertically aligned layers. Nano Lett 13(3):1341–1347.  https://doi.org/10.1021/nl400258tCrossRefPubMedGoogle Scholar
  213. 213.
    Gholamvand Z, McAteer D, Backes C, McEvoy N, Harvey A, Berner NC, Hanlon D, Bradley C, Godwin I, Rovetta A, Lyons MEG, Duesberg GS, Coleman JN (2016) Comparison of liquid exfoliated transition metal dichalcogenides reveals MoSe2 to be the most effective hydrogen evolution catalyst. Nanoscale 8(10):5737–5749.  https://doi.org/10.1039/C5NR08553ECrossRefPubMedGoogle Scholar
  214. 214.
    Bastide S, Lévy-Clément C, Albu-Yaron A, Boucher AC, Alonso-Vante N (2000) MoSe2 nanocrystallites synthesized at low temperature via a chemical solution route. Electrochem Solid-State Lett 3(9):450–451CrossRefGoogle Scholar
  215. 215.
    Kim Y, Tiwari AP, Prakash O, Lee H (2017) Activation of ternary transition metal chalcogenide basal planes through chemical strain for the hydrogen evolution reaction. ChemPlusChem 82(5):785–791.  https://doi.org/10.1002/cplu.201700164CrossRefGoogle Scholar
  216. 216.
    Park S-K, Park GD, Ko D, Kang YC, Piao Y (2017) Aerosol synthesis of molybdenum diselenide–reduced graphene oxide composite with empty nanovoids and enhanced hydrogen evolution reaction performances. Chem Eng J 315:355–363.  https://doi.org/10.1016/j.cej.2017.01.032CrossRefGoogle Scholar
  217. 217.
    Basu M, Zhang Z-W, Chen C-J, Chen P-T, Yang K-C, Ma C-G, Lin CC, Hu S-F, Liu R-S (2015) Heterostructure of Si and CoSe2: a promising photocathode based on a non-noble metal catalyst for photoelectrochemical hydrogen evolution. Angew Chem Int Ed 54(21):6211–6216.  https://doi.org/10.1002/anie.201502573CrossRefGoogle Scholar
  218. 218.
    Basu M, Zhang Z-W, Chen C-J, Lu T-H, Hu S-F, Liu R-S (2016) CoSe2 embedded in C3N4: an efficient photocathode for photoelectrochemical water splitting. ACS Appl Mater Interfaces 8(40):26690–26696.  https://doi.org/10.1021/acsami.6b06520CrossRefPubMedGoogle Scholar
  219. 219.
    Luo Y, Alonso-Vante N (2017) Application of Metal Organic Framework (MOF) in the electrocatalytic process. In: Electrochemistry: Volume 14, vol 14. The Royal Society of Chemistry, pp 194–256.  https://doi.org/10.1039/9781782622727-00194
  220. 220.
    Lu S, Pan J, Huang A, Zhuang L, Lu J (2008) Alkaline polymer electrolyte fuel cells completely free from noble metal catalysts. Proc Natl Acad Sci 105(52):20611–20614.  https://doi.org/10.1073/pnas.0810041106CrossRefPubMedCentralGoogle Scholar
  221. 221.
    Hu Q, Li G, Pan J, Tan L, Lu J, Zhuang L (2013) Alkaline polymer electrolyte fuel cell with Ni-based anode and Co-based cathode. Int J Hydrogen Energy 38(36):16264–16268.  https://doi.org/10.1016/j.ijhydene.2013.09.125CrossRefGoogle Scholar
  222. 222.
    Baresel D, Sarholz W, Scharner P, Schmitz J (1974) Transition metal chalcogenides as oxygen catalysts for fuel cells. Ber Bunsen-Ges 78(6):608–611.  https://doi.org/10.1002/bbpc.19740780616CrossRefGoogle Scholar
  223. 223.
    Behret H, Binder H, Sandstede G (1975) Electrocatalytic oxygen reduction with thiospinels and other sulphides of transition metals. Electrochim Acta 20(2):111–117CrossRefGoogle Scholar
  224. 224.
    Kitayama H, Yoshio I, Ichino T, Osaka T (1983) Oxygen electroreduction on cobalt sulphides in alkaline solution. Waseda Daigaku Rikogaku Kenkyusho Hokoku/Bulletin of Science and Engineering Research Laboratory 104:9–16Google Scholar
  225. 225.
    Feng Y, He T, Alonso-Vante N (2008) In situ Free-Surfactant Synthesis and ORR- Electrochemistry of Carbon-Supported Co3S4 and CoSe2 Nanoparticles. Chem Mater 20(1):26–28CrossRefGoogle Scholar
  226. 226.
    Cherevko S, Geiger S, Kasian O, Kulyk N, Grote J-P, Savan A, Shrestha BR, Merzlikin S, Breitbach B, Ludwig A, Mayrhofer KJJ (2016) Oxygen and hydrogen evolution reactions on Ru, RuO2, Ir, and IrO2 thin film electrodes in acidic and alkaline electrolytes: a comparative study on activity and stability. Catal Today 262:170–180.  https://doi.org/10.1016/j.cattod.2015.08.014CrossRefGoogle Scholar
  227. 227.
    Trotochaud L, Boettcher SW (2014) Precise oxygen evolution catalysts: Status and opportunities. Scripta Mater 74:25–32.  https://doi.org/10.1016/j.scriptamat.2013.07.019CrossRefGoogle Scholar
  228. 228.
    Chen W, Wang H, Li Y, Liu Y, Sun J, Lee S, Lee J-S, Cui Y (2015) In situ electrochemical oxidation tuning of transition metal disulfides to oxides for enhanced water oxidation. ACS Central Sci 1(5):244–251.  https://doi.org/10.1021/acscentsci.5b00227CrossRefGoogle Scholar
  229. 229.
    Wang H, Li Z, Li G, Peng F, Yu H (2015) Co3S4/NCNTs: A catalyst for oxygen evolution reaction. Catal Today 245:74–78.  https://doi.org/10.1016/j.cattod.2014.06.006CrossRefGoogle Scholar
  230. 230.
    Liu T, Liang Y, Liu Q, Sun X, He Y, Asiri AM (2015) Electrodeposition of cobalt-sulfide nanosheets film as an efficient electrocatalyst for oxygen evolution reaction. Electrochem Commun 60:92–96.  https://doi.org/10.1016/j.elecom.2015.08.011CrossRefGoogle Scholar
  231. 231.
    Sidik RA, Anderson AB (2006) Co9S8 as a catalyst for electroreduction of O2: quantum chemistry predictions. J Phys Chem B 110(2):936–941CrossRefGoogle Scholar
  232. 232.
    Zhu L, Susac D, Teo M, Wong KC, Wong PC, Parsons RR, Bizzotto D, Mitchell KAR, Campbell SA (2008) Investigation of CoS2-based thin films as model catalysts for the oxygen reduction reaction. J Catal 258(1):235–242.  https://doi.org/10.1016/j.jcat.2008.06.016CrossRefGoogle Scholar
  233. 233.
    Feng Y, He T, Alonso-Vante N (2009) Oxygen reduction reaction on carbon-supported CoSe2 nanoparticles in an acidic medium. Electrochim Acta 54(22):5252–5256.  https://doi.org/10.1016/j.electacta.2009.03.052CrossRefGoogle Scholar
  234. 234.
    Jirkovský JS, Björling A, Ahlberg E (2012) Reduction of oxygen on dispersed nanocrystalline CoS2. J Phys Chem C 116(46):24436–24444.  https://doi.org/10.1021/jp307669kCrossRefGoogle Scholar
  235. 235.
    Tiwari AP, Kim D, Kim Y, Lee H (2017) Bifunctional oxygen electrocatalysis through chemical bonding of transition metal chalcogenides on conductive carbons. Adv Energy Mater:1602217-n/a.  https://doi.org/10.1002/aenm.201602217CrossRefGoogle Scholar
  236. 236.
    Chua XJ, Luxa J, Eng AYS, Tan SM, Sofer Z, Pumera M (2016) Negative electrocatalytic effects of p-doping niobium and tantalum on MoS2 and WS2 for the hydrogen evolution reaction and oxygen reduction reaction. ACS Catalysis 6(9):5724–5734.  https://doi.org/10.1021/acscatal.6b01593CrossRefGoogle Scholar
  237. 237.
    Wang T, Gao D, Zhuo J, Zhu Z, Papakonstantinou P, Li Y, Li M (2013) Size-dependent enhancement of electrocatalytic oxygen-reduction and hydrogen-evolution performance of MoS2 particles. Chem—A Eur J 19(36):11939–11948.  https://doi.org/10.1002/chem.201301406CrossRefGoogle Scholar
  238. 238.
    Huang H, Feng X, Du C, Song W (2015) High-quality phosphorus-doped MoS2 ultrathin nanosheets with amenable ORR catalytic activity. Chem Commun 51(37):7903–7906.  https://doi.org/10.1039/C5CC01841BCrossRefGoogle Scholar
  239. 239.
    Huang H, Feng X, Du C, Wu S, Song W (2015) Incorporated oxygen in MoS2 ultrathin nanosheets for efficient ORR catalysis. J Mater Chem A 3(31):16050–16056.  https://doi.org/10.1039/C5TA01600BCrossRefGoogle Scholar
  240. 240.
    Zhao K, Gu W, Zhao L, Zhang C, Peng W, Xian Y (2015) MoS2/Nitrogen-doped graphene as efficient electrocatalyst for oxygen reduction reaction. Electrochim Acta 169:142–149.  https://doi.org/10.1016/j.electacta.2015.04.044CrossRefGoogle Scholar
  241. 241.
    Yuan K, Zhuang X, Fu H, Brunklaus G, Forster M, Chen Y, Feng X, Scherf U (2016) Two-dimensional core-shelled porous hybrids as highly efficient catalysts for oxygen reduction reaction. Angew Chem Int Ed 55(24):6858–6863.  https://doi.org/10.1002/anie.201600850CrossRefGoogle Scholar
  242. 242.
    Arunchander A, Peera SG, Sahu AK (2017) Synthesis of flower-like molybdenum sulfide/graphene hybrid as an efficient oxygen reduction electrocatalyst for anion exchange membrane fuel cells. J Power Sources 353:104–114.  https://doi.org/10.1016/j.jpowsour.2017.03.149CrossRefGoogle Scholar
  243. 243.
    Zhou J, Xiao H, Zhou B, Huang F, Zhou S, Xiao W, Wang D (2015) Hierarchical MoS2–rGO nanosheets with high MoS2 loading with enhanced electro-catalytic performance. Appl Surf Sci 358:152–158.  https://doi.org/10.1016/j.apsusc.2015.07.187CrossRefGoogle Scholar
  244. 244.
    Zuo L-X, Jiang L-P, Zhu J-J (2017) A facile sonochemical route for the synthesis of MoS2/Pd composites for highly efficient oxygen reduction reaction. Ultrason Sonochem 35:681–688.  https://doi.org/10.1016/j.ultsonch.2016.02.006CrossRefPubMedGoogle Scholar
  245. 245.
    Zhang H, Tian Y, Zhao J, Cai Q, Chen Z (2017) Small dopants make big differences: enhanced electrocatalytic performance of MoS2 monolayer for oxygen reduction reaction (ORR) by N– and P-Doping. Electrochim Acta 225:543–550.  https://doi.org/10.1016/j.electacta.2016.12.144CrossRefGoogle Scholar
  246. 246.
    Susac D, Zhu L, Teo M, Sode A, Wong KC, Wong PC, Parsons RR, Bizzotto D, Mitchell KAR, Campbell SA (2007) Characterization of FeS2-based thin films as model catalysts for the oxygen reduction reaction. J Phys Chem C 111(50):18715–18723CrossRefGoogle Scholar
  247. 247.
    Hibble SJ, Rice DA, Almond MJ, Mohammad KAH, Pearse SP, Sagar JR (1992) Preparation of new selenium-rich selenides, CrSe3, MoSe~5, WSe~6-7, and ReSe~6-7, and known selenides, by the reaction of metal carbonyls with selenium. J Mater Chem 2(12):1237–1240.  https://doi.org/10.1039/JM9920201237CrossRefGoogle Scholar
  248. 248.
    Sato H, Nagasaki F, Kani Y, Senba S, Ueda Y, Kimura A, Taniguchi M (2001) Electronic structure of CoSe2 studied by photoemission spectroscopy using synchrotron radiation. Solid State Commun 118(11):563–567.  https://doi.org/10.1016/S0038-1098(01)00172-7CrossRefGoogle Scholar
  249. 249.
    Alonso-Vante N, Feng Y, He T (2010) Carbon-supported CoSe2 nanoparticles for oxygen reduction and hydrogen evolution in acid environments. USA Patent 20100233070Google Scholar
  250. 250.
    Feng YJ, He T, Alonso-Vante N (2010) Carbon-supported CoSe2 nanoparticles for oxygen reduction reaction in acid medium. Fuel Cells 10(1):77–83Google Scholar
  251. 251.
    Lee K, Zhang L, Zhang JJ (2007) Ternary non-noble metal chalcogenide (W-Co-Se) as electrocatalyst for oxygen reduction reaction. Electrochem Commun 9(7):1704–1708CrossRefGoogle Scholar
  252. 252.
    Lefevre M, Proietti E, Jaouen F, Dodelet J-P (2009) Iron-based catalysts with improved oxygen reduction activity in polymer electrolyte fuel cells. Science 324(5923):71–74.  https://doi.org/10.1126/science.1170051CrossRefPubMedGoogle Scholar
  253. 253.
    Nekooi P, Akbari M, Amini MK (2010) CoSe nanoparticles prepared by the microwave-assisted polyol method as an alcohol and formic acid tolerant oxygen reduction catalyst. Int J Hydrogen Energy 35(12):6392–6398.  https://doi.org/10.1016/j.ijhydene.2010.03.134CrossRefGoogle Scholar
  254. 254.
    Li H, Gao D, Cheng X (2014) Simple microwave preparation of high activity Se-rich CoSe2/C for oxygen reduction reaction. Electrochim Acta 138:232–239.  https://doi.org/10.1016/j.electacta.2014.06.065CrossRefGoogle Scholar
  255. 255.
    Zhu L, Teo M, Wong PC, Wong KC, Narita I, Ernst F, Mitchell KAR, Campbell SA (2010) Synthesis, characterization of a CoSe2 catalyst for the oxygen reduction reaction. Appl Catal A-Gen 386(1–2):157–165.  https://doi.org/10.1016/j.apcata.2010.07.048CrossRefGoogle Scholar
  256. 256.
    Gao M-R, Gao Q, Jiang J, Cui C-H, Yao W-T, Yu S-H (2011) A methanol-tolerant Pt/CoSe2 nanobelt cathode catalyst for direct methanol fuel cells. Angew Chem Int Ed 50(21):4905–4908.  https://doi.org/10.1002/anie.201007036CrossRefGoogle Scholar
  257. 257.
    Chao Y-S, Tsai D-S, Wu A-P, Tseng L-W, Huang Y-S (2013) Cobalt selenide electrocatalyst supported by nitrogen-doped carbon and its stable activity toward oxygen reduction reaction. Int J Hydrogen Energy 38(14):5655–5664.  https://doi.org/10.1016/j.ijhydene.2013.03.006CrossRefGoogle Scholar
  258. 258.
    Wu R, Xue Y, Liu B, Zhou K, Wei J, Chan SH (2016) Cobalt diselenide nanoparticles embedded within porous carbon polyhedra as advanced electrocatalyst for oxygen reduction reaction. J Power Sources 330:132–139.  https://doi.org/10.1016/j.jpowsour.2016.09.001CrossRefGoogle Scholar
  259. 259.
    Unni SM, Mora-Hernandez JM, Kurungot S, Alonso-Vante N (2015) CoSe2 supported on nitrogen-doped carbon nanohorns as a methanol-tolerant cathode for air-breathing microlaminar flow fuel cells. ChemElectroChem 2(9):1339–1345.  https://doi.org/10.1002/celc.201500154CrossRefGoogle Scholar
  260. 260.
    García-Rosado IJ, Uribe-Calderón J, Alonso-Vante N (2017) Nitrogen-doped reduced graphite oxide as a support for cose electrocatalyst for oxygen reduction reaction in alkaline media. J Electrochem Soc 164(6):F658–F666.  https://doi.org/10.1149/2.1531706jesCrossRefGoogle Scholar
  261. 261.
    Eng AYS, Ambrosi A, Sofer Z, Šimek P, Pumera M (2014) Electrochemistry of transition metal dichalcogenides: strong dependence on the metal-to-chalcogen composition and exfoliation method. ACS Nano 8(12):12185–12198.  https://doi.org/10.1021/nn503832jCrossRefPubMedGoogle Scholar
  262. 262.
    Guo J, Shi Y, Bai X, Wang X, Ma T (2015) Atomically thin MoSe2/graphene and WSe2/graphene nanosheets for the highly efficient oxygen reduction reaction. J Mater Chem A 3(48):24397–24404.  https://doi.org/10.1039/C5TA06909BCrossRefGoogle Scholar
  263. 263.
    Zhao D, Zhang S, Yin G, Du C, Wang Z, Wei J (2013) Tungsten doped Co–Se nanocomposites as an efficient non precious metal catalyst for oxygen reduction. Electrochim Acta 91:179–184.  https://doi.org/10.1016/j.electacta.2013.01.001CrossRefGoogle Scholar
  264. 264.
    Pan S, Cai Z, Duan Y, Yang L, Tang B, Jing B, Dai Y, Xu X, Zou J (2017) Tungsten diselenide/porous carbon with sufficient active edge-sites as a co-catalyst/Pt-support favoring excellent tolerance to methanol-crossover for oxygen reduction reaction in acidic medium. Appl Catal B: Environ 219:18–29.  https://doi.org/10.1016/j.apcatb.2017.07.011CrossRefGoogle Scholar
  265. 265.
    Karfa P, Madhuri R, Sharma PK (2017) Multifunctional fluorescent chalcogenide hybrid nanodots (MoSe2:CdS and WSe2:CdS) as electro catalyst (for oxygen reduction/oxygen evolution reactions) and sensing probe for lead. J Mater Chem A.  https://doi.org/10.1039/C6TA08172JCrossRefGoogle Scholar
  266. 266.
    Iwakura C, Hirao K, Tamura H (1977) Anodic evolution of oxygen on ruthenium in acidic solutions. Electrochim Acta 22(4):329–334.  https://doi.org/10.1016/0013-4686(77)85082-2CrossRefGoogle Scholar
  267. 267.
    Hutchings R, Müller K, Kötz R, Stucki S (1984) A structural investigation of stabilized oxygen evolution catalysts. J Mater Sci 19(12):3987–3994.  https://doi.org/10.1007/bf00980762CrossRefGoogle Scholar
  268. 268.
    Matsumoto Y, Sato E (1986) Electrocatalytic properties of transition metal oxides for oxygen evolution reaction. Mater Chem Phys 14(5):397–426.  https://doi.org/10.1016/0254-0584(86)90045-3CrossRefGoogle Scholar
  269. 269.
    Alonso-Vante N, Colell H, Stimming U, Tributsch H (1993) Anomalous low-temperature kinetic effects for oxygen evolution on RuO2 and Pt electrodes. J Phys Chem 97(29):7381–7384CrossRefGoogle Scholar
  270. 270.
    Rossmeisl J, Qu ZW, Zhu H, Kroes GJ, Nørskov JK (2007) Electrolysis of water on oxide surfaces. J Electroanal Chem 607(1–2):83–89CrossRefGoogle Scholar
  271. 271.
    McCrory CCL, Jung S, Peters JC, Jaramillo TF (2013) Benchmarking heterogeneous electrocatalysts for the oxygen evolution reaction. J Am Chem Soc 135(45):16977–16987.  https://doi.org/10.1021/ja407115pCrossRefPubMedGoogle Scholar
  272. 272.
    García-Mota M, Bajdich M, Viswanathan V, Vojvodic A, Bell AT, Nørskov JK (2012) Importance of correlation in determining electrocatalytic oxygen evolution activity on cobalt oxides. J Phys Chem C 116(39):21077–21082.  https://doi.org/10.1021/jp306303yCrossRefGoogle Scholar
  273. 273.
    He Y, Zhang J, He G, Han X, Zheng X, Zhong C, Hu W, Deng Y (2017) Ultrathin Co3O4 nanofilm as an efficient bifunctional catalyst for oxygen evolution and reduction reaction in rechargeable zinc-air batteries. Nanoscale 9(25):8623–8630.  https://doi.org/10.1039/C7NR02385ECrossRefPubMedGoogle Scholar
  274. 274.
    Zhang C, Berlinguette CP, Trudel S (2016) Water oxidation catalysis: an amorphous quaternary Ba-Sr-Co-Fe oxide as a promising electrocatalyst for the oxygen-evolution reaction. Chem Commun 52(7):1513–1516.  https://doi.org/10.1039/C5CC09361ACrossRefGoogle Scholar
  275. 275.
    Smith RDL, Prévot MS, Fagan RD, Trudel S, Berlinguette CP (2013) Water oxidation catalysis: electrocatalytic response to metal stoichiometry in amorphous metal oxide films containing iron, cobalt, and nickel. J Am Chem Soc.  https://doi.org/10.1021/ja403102j
  276. 276.
    Subbaraman R, Tripkovic D, Chang K-C, Strmcnik D, Paulikas AP, Hirunsit P, Chan M, Greeley J, Stamenkovic V, Markovic NM (2012) Trends in activity for the water electrolyser reactions on 3d M(Ni,Co,Fe,Mn) hydr(oxy)oxide catalysts. Nat Mater 11 (6):550–557. doi:http://www.nature.com/nmat/journal/v11/n6/abs/nmat3313.html#supplementary-information
  277. 277.
    Hou C-C, Cao S, Fu W-F, Chen Y (2015) Ultrafine CoP nanoparticles supported on carbon nanotubes as highly active electrocatalyst for both oxygen and hydrogen evolution in basic media. ACS Appl Mater Interfaces 7(51):28412–28419.  https://doi.org/10.1021/acsami.5b09207CrossRefPubMedGoogle Scholar
  278. 278.
    Kanan MW, Nocera DG (2008) In situ formation of an oxygen-evolving catalyst in neutral water containing phosphate and Co2+. Science 321(5892):1072–1075.  https://doi.org/10.1126/science.1162018CrossRefPubMedGoogle Scholar
  279. 279.
    Bursell M, Pirjamali M, Kiros Y (2002) La0.6Ca0.4CoO3, La0.1Ca0.9MnO3 and LaNiO3 as bifunctional oxygen electrodes. Electrochim Acta 47(10):1651–1660.  https://doi.org/10.1016/s0013-4686(02)00002-6CrossRefGoogle Scholar
  280. 280.
    Suntivich J, May KJ, Gasteiger HA, Goodenough JB, Shao-Horn Y (2011) A perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles. Science 334(6061):1383–1385.  https://doi.org/10.1126/science.1212858CrossRefPubMedGoogle Scholar
  281. 281.
    Han B, Stoerzinger KA, Tileli V, Gamalski AD, Stach EA, Shao-Horn Y (2016) Nanoscale structural oscillations in perovskite oxides induced by oxygen evolution. Nat Mater advance online publication.  https://doi.org/10.1038/nmat4764. http://www.nature.com/nmat/journal/vaop/ncurrent/abs/nmat4764.html#supplementary-information
  282. 282.
    Lee JG, Hwang J, Hwang HJ, Jeon OS, Jang J, Kwon O, Lee Y, Han B, Shul Y-G (2016) A new family of perovskite catalysts for oxygen-evolution reaction in alkaline media: BaNiO3 and BaNi0.83O2.5. J Am Chem Soc 138(10):3541–3547.  https://doi.org/10.1021/jacs.6b00036CrossRefPubMedGoogle Scholar
  283. 283.
    Gao M-R, Zheng Y-R, Jiang J, Yu S-H (2017) Pyrite-type nanomaterials for advanced electrocatalysis. Acc Chem Res.  https://doi.org/10.1021/acs.accounts.7b00187
  284. 284.
    Gao M-R, Xu Y-F, Jiang J, Zheng Y-R, Yu S-H (2012) Water oxidation electrocatalyzed by an efficient Mn3O4/CoSe2 nanocomposite. J Am Chem Soc 134(6):2930–2933.  https://doi.org/10.1021/ja211526yCrossRefPubMedGoogle Scholar
  285. 285.
    Gao M-R, Cao X, Gao Q, Xu Y-F, Zheng Y-R, Jiang J, Yu S-H (2014) Nitrogen-doped graphene supported cose2 nanobelt composite catalyst for efficient water oxidation. ACS Nano 8(4):3970–3978.  https://doi.org/10.1021/nn500880vCrossRefPubMedGoogle Scholar
  286. 286.
    Gao Q, Huang C-Q, Ju Y-M, Gao M-R, Liu J-W, An D, Cui C-H, Zheng Y-R, Li W-X, Yu S-H (2017) Phase-selective syntheses of cobalt telluride nanofleeces for efficient oxygen evolution catalysts. Angew Chem Int Ed 56(27):7769–7773.  https://doi.org/10.1002/anie.201701998CrossRefGoogle Scholar
  287. 287.
    Zheng Y-R, Gao M-R, Gao Q, Li H-H, Xu J, Wu Z-Y, Yu S-H (2015) An efficient CeO2/CoSe2 nanobelt composite for electrochemical water oxidation. Small 11(2):182–188.  https://doi.org/10.1002/smll.201401423CrossRefPubMedGoogle Scholar
  288. 288.
    Xu X, Song F, Hu X (2016) A nickel iron diselenide-derived efficient oxygen-evolution catalyst. Nature Commun 7:12324.  https://doi.org/10.1038/ncomms12324. https://www.nature.com/articles/ncomms12324#supplementary-informationCrossRefGoogle Scholar
  289. 289.
    Gerken JB, Shaner SE, Masse RC, Porubsky NJ, Stahl SS (2014) A survey of diverse earth abundant oxygen evolution electrocatalysts showing enhanced activity from Ni-Fe oxides containing a third metal. Energy Environ Sci 7(7):2376–2382.  https://doi.org/10.1039/C4EE00436ACrossRefGoogle Scholar
  290. 290.
    Liang Y, Liu Q, Luo Y, Sun X, He Y, Asiri AM (2016) Zn0.76Co0.24S/CoS2 nanowires array for efficient electrochemical splitting of water. Electrochim Acta 190:360–364.  https://doi.org/10.1016/j.electacta.2015.12.153CrossRefGoogle Scholar
  291. 291.
    Zhang K, Zhang L, Chen X, He X, Wang X, Dong S, Han P, Zhang C, Wang S, Gu L, Cui G (2012) Mesoporous cobalt molybdenum nitride: a highly active bifunctional electrocatalyst and its application in lithium–O2 batteries. J Phys Chem C 117(2):858–865.  https://doi.org/10.1021/jp310571yCrossRefGoogle Scholar
  292. 292.
    Zhong H, Tian R, Gong X, Li D, Tang P, Alonso-Vante N, Feng Y (2017) Advanced bifunctional electrocatalyst generated through cobalt phthalocyanine tetrasulfonate intercalated Ni2Fe-layered double hydroxides for a laminar flow unitized regenerative micro-cell. J Power Sources 361:21–30.  https://doi.org/10.1016/j.jpowsour.2017.06.057CrossRefGoogle Scholar
  293. 293.
    Liu Y, Jiang H, Zhu Y, Yang X, Li C (2016) Transition metals (Fe Co, and Ni) encapsulated in nitrogen-doped carbon nanotubes as bi-functional catalysts for oxygen electrode reactions. J Mater Chem A 4(5):1694–1701.  https://doi.org/10.1039/C5TA10551JCrossRefGoogle Scholar
  294. 294.
    Liu Q, Jin J, Zhang J (2013) NiCo2S4@graphene as a bifunctional electrocatalyst for oxygen reduction and evolution reactions. ACS Appl Mater Interfaces 5(11):5002–5008.  https://doi.org/10.1021/am4007897CrossRefPubMedGoogle Scholar
  295. 295.
    Shen M, Ruan C, Chen Y, Jiang C, Ai K, Lu L (2015) Covalent entrapment of cobalt-iron sulfides in N-doped mesoporous carbon: extraordinary bifunctional electrocatalysts for oxygen reduction and evolution reactions. ACS Appl Mater Interfaces 7(2):1207–1218.  https://doi.org/10.1021/am507033xCrossRefPubMedGoogle Scholar
  296. 296.
    Jin C, Lu F, Cao X, Yang Z, Yang R (2013) Facile synthesis and excellent electrochemical properties of NiCo2O4 spinel nanowire arrays as a bifunctional catalyst for the oxygen reduction and evolution reaction. J Mater Chem A 1(39):12170–12177.  https://doi.org/10.1039/C3TA12118FCrossRefGoogle Scholar
  297. 297.
    Prabu M, Ketpang K, Shanmugam S (2014) Hierarchical nanostructured NiCo2O4 as an efficient bifunctional non-precious metal catalyst for rechargeable zinc-air batteries. Nanoscale 6(6):3173–3181.  https://doi.org/10.1039/C3NR05835BCrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.University of PoitiersPoitiersFrance

Personalised recommendations