Advertisement

Unravelling the Genetic Control of Bacterial Wilt Resistance in Ryegrass: Achievements, Prospects and Challenges

  • R. Kölliker
  • V. Knorst
  • L. Hersemann
  • F. Widmer
  • B. Studer
Conference paper

Abstract

Xanthomonas translucens pv. graminis (Xtg) causes bacterial wilt, one of the most important forage grass diseases in temperate grasslands. Molecular genetic and genomic tools have the potential to significantly benefit resistance breeding and to enable targeted resistance management. In the past, a major QTL for bacterial wilt resistance was identified in Lolium multiflorum and Xtg was shown to rely on a non-canonical type III secretion system for plant infection. Recently, a number of candidate genes for bacterial wilt resistance were identified by comparing genomic sequences of resistant and susceptible parental plants and their progeny. Comparative genomics of different X. translucens pathovars allowed to identify virulence traits characteristic for Xtg. These candidate plant resistance genes together with the bacterial virulence factors provide an invaluable resource for the development of genomics assisted selection strategies. In addition, the well characterised plant genotypes and bacterial strains serve as an ideal model system to fully understand the complex L. multiflorum-Xtg interaction.

Keywords

Xanthomonas translucens pv. graminis Lolium multiflorum Plant resistance Pathogen virulence 

Notes

Acknowledgments

This research was partially funded by the Swiss National Science Foundation (grants no. 065417, 112582 and 13858).

References

  1. Byrne SL, Nagy I, Pfeifer M, Armstead I, Swain S, Studer B, Mayer K, Campbell JD, Czaban A, Hentrup S (2015) A synteny-based draft genome sequence of the forage grass Lolium perenne. Plant J 84:816–826CrossRefGoogle Scholar
  2. Egli T, Goto M, Schmidt D (1975) Bacterial wilt, a new forage grass disease. J Phytopathol 82:111–121CrossRefGoogle Scholar
  3. Goodwin S, McPherson JD, McCombie WR (2016) Coming of age: ten years of next-generation sequencing technologies. Nat Rev Genet 17:333–351CrossRefGoogle Scholar
  4. Hersemann L, Wibberg D, Blom J, Goesmann A, Widmer F, Vorhölter FJ, Kölliker R (2017) Comparative genomics of host adaptive traits in Xanthomonas translucens pv. graminis. BMC Genomics 18:35CrossRefGoogle Scholar
  5. Knorst V, Byrne S, Asp T, Studer B, Widmer F, Kölliker R (2016) Wisdom of crowds: pooled sequencing identifies genomic regions associated with disease resistance in ryegrass. In: Kölliker R, Boller B (eds) Plant Breeding: The Art of Bringing Science to Life; Abstracts of the 20th Eucarpia General Congress. Agroscope, Zurich, p 10Google Scholar
  6. Kölliker R, Kraehenbuehl R, Boller B, Widmer F (2006) Genetic diversity and pathogenicity of the grass pathogen Xanthomonas translucens pv. graminis. Syst Appl Microbiol 29:109–119CrossRefGoogle Scholar
  7. Michel VV (2001) Interactions between Xanthomonas campestris pv. graminis strains and meadow fescue and Italian rye grass cultivars. Plant Dis 85:538–542CrossRefGoogle Scholar
  8. Pritchard L, Birch PRJ (2014) The zigzag model of plant–microbe interactions: is it time to move on? Mol Plant Pathol 15:865–870CrossRefGoogle Scholar
  9. Studer B, Boller B, Herrmann D, Bauer E, Posselt UK, Widmer F, Kölliker R (2006) Genetic mapping reveals a single major QTL for bacterial wilt resistance in Italian ryegrass (Lolium multiflorum Lam.). Theor Appl Genet 113:661–671CrossRefGoogle Scholar
  10. Suter D, Frick R, Hirschi H-U, Bertossa M (2017) Liste der empfohlenen Sorten von Futterpflanzen 2017–2018. Agrarforschung 8:1–16Google Scholar
  11. Westermann AJ, Förstner KU, Amman F, Barquist L, Chao Y, Schulte LN, Müller L, Reinhardt R, Stadler PF, Vogel J (2016) Dual RNA-seq unveils noncoding RNA functions in host–pathogen interactions. Nature 529:496–501CrossRefGoogle Scholar
  12. Wichmann F, Asp T, Widmer F, Kölliker R (2011a) Transcriptional responses of Italian ryegrass during interaction with Xanthomonas translucens pv. graminis reveal novel candidate genes for bacterial wilt resistance. Theor Appl Genet 122:567–579CrossRefGoogle Scholar
  13. Wichmann F, Hug BM, Widmer F, Boller B, Studer B, Kolliker R (2011b) Phenotypic and molecular genetic characterization indicate no major race-specific interactions between Xanthomonas translucens pv. graminis and Lolium multiflorum. Plant Pathol 60:314–324CrossRefGoogle Scholar
  14. Wichmann F, Vorhölter F-J, Hersemann L, Widmer F, Blom J, Niehaus K, Reinhard S, Conradin C, Kölliker R (2013) The noncanonical type III secretion system of Xanthomonas translucens pv. graminis is essential for forage grass infection. Mol Plant Pathol 14:576–588CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • R. Kölliker
    • 1
    • 2
  • V. Knorst
    • 1
    • 2
  • L. Hersemann
    • 2
  • F. Widmer
    • 2
  • B. Studer
    • 1
  1. 1.Molecular Plant Breeding, Institute of Agricultural SciencesETH ZurichZurichSwitzerland
  2. 2.Molecular EcologyAgroscopeZurichSwitzerland

Personalised recommendations